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Abstract

There are two types of quartic normal extensions of the rational field, depending on the Ga-
lois group of the generating equation. All such extensions are described here in a uniquely
parametrized form.

1991 Mathematics subject classification (Amer. Math. Soc.) 11 R 16.

It is well known that every quadratic extension of the rational field Q is
normal. This is no longer true for quadratic extensions of a quadratic field,
for example Q{\/2) is not normal over Q(\/2). Quadratic extensions are
easy to describe: as D runs through all squarefree integers not equal to 1,
Q(y/D) runs through all quadratic (normal) fields. In the following we shall
describe all normal quartic fields.

In a sense the normal quartic extensions of Q are well known. Indeed the
only transitive permutation groups of order 4 are the cyclic group

G, = {/, (1234), (13)(24), (1432)}

and the Klein group

and so adjunction of a root of a quartic equation to Q generates a normal
extension only if the Galois group of the equation over Q is either Gx or
G2. From here it follows easily that a quartic normal extensions is either
of the form Q(\/a + bVD) where a, b are non-zero integers and D is
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a squarefree greater than 1, or of the form Q(y/~A, \fB) where A, B are
distinct squarefree integers not equal to 1. Our purpose here is to find ap-
propriate restrictions on these integers so as to obtain a unique description
of the extensions.

THEOREM. Quartic normal extensions K of the rational field Q are one
of the following two types.

1. Let D be a squarefree integer greater than 1 with no prime factor of the
form p = - 1 (mod 4); r, s, an integer solution of r2 +s2 = D with s > 0;
and k an odd squarefree integer such that (k, D) = 1. Set a = D + sy/D.
Then K = Q(v^) .

2. Let A, B be squarefree integers not equal to 1 with A < B,

max(\A\,\B\)<\AB\/(A,B)2.

Then K = Q(\/A, \/B).

The parameters D, s, k in the first case and A, B in the second case
uniquely specify the extensions.

We need four lemmas.

LEMMA 1. Given the quartic equation

(1) x4 + ax3 + bx2 + cx + d = 0

over Q, there exists a transformation y = u + vx + wx , u, v, w e Q,
which transforms (1) into

(2) y4+py2 + q = 0

if and only if the Galois group of (I) over Q is a subgroup of the dihedral
group

G = {I, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}

where I is the identity permutation.

PROOF. Essentially this lemma is due to van der Ploeg [2], but not quite
in such an explicit form and we give an independent proof. If there exist as
transformation y = u + vx + wx2 with rational coefficients, u, v , w such
that (1) can be changed into (2) then (1) is soluble by extraction of square
roots alone, hence its group is a subgroup of G. Conversely suppose that the
Galois group of (1) is a subgroup of G. Let the four roots of (1) be x1, x2,
x3, x4, then if/ = xxxz + x2x4 is invariant under G and so if/ e Q. Hence
y/ is a rational root of the Ferrari resolvent

z3 - bz2 + {ac - 4d)z - a2d + 4bd - c2 = 0.
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Let ffj, a2, a3 denote the elementary symmetric polynomials of the roots
of (1); then

(x, - x2 + xi - xAf = a\ - 4a2 + 4y/,

(x, - x2 + x3 - x4)(xf - x\ + x] - x4) = a\ - 4axa2 + 4CT3 + 2(7, y/.

Set yx• — u + vxf + wx2, i = 1 , 2 , 3 , 4 . Then the quartic equation with
roots yx, y2, y3, y4 has the form (2) provided that yx + y2 + y3 + y4 = 0
and yx - y2 + y3 - yA = 0 , that is

4u + vOy +w(al -2a2) = 0, v{xx -x2 + x3 -x4) + w(xl -x2 +x3 -x4) = 0.

Multiplying the second equation by x{ - x2 + x3 - x 4 , we get

v{a\ - 4a2 + 4y/) + w{a\ - 4axa2 + 4a3 + 2axy/) = 0,

giving the rational solution

u = -a2b + ac-2b2 + (-ja2 + 2b\ y/, v = a - 4ab + 4c + 2ay/,

w — a — 4b + 4yi.

It follows that (1) can be changed into (2) by the transformation y - u +
vx + wx2.

LEMMA 2. All integer solutions of

(4) x2+y2 = z4

are obtained by one of the following:
1. x = k2{uA-6u2v2 + v*), y = 4k2uv(u2-v2), z = k(u2 + v2) where

(u, v) = 1, u + v = 1 (mod 2), k any integer,
2. x = D(m2 - n2), y — 2Dmn, z = Dl, where D > 1 is squarefree

with no prime factor = - 1 (mod 4) and m, n, I are integers satisfying
m2 + n2 = Dl2.

This is essentially due to Euler, see [1, p. 621]. It can be obtained directly
from the parametric solution of Pythagorean triples. Solutions of m2 + n2 =
Dl2 of course always exist.

LEMMA 3. Let D > 1 be squarefree with no prime factors of the form
p = - 1 (mod4), d\D, d > 0 with d = D (mod2); r,s, t an integer
solution of r2 + s2 = Dt2 with {r, s) = 1. Then the equation x2 + y2 = D
has an integer solution x, y such that (rx + sy, sx - ry) — d.

PROOF. Since (r,s)-l,t cannot be even or have a prime factor p = -1
(mod4). Let r + is = (a + ib)(e + if)(u + iv)2 be a factorization in the

https://doi.org/10.1017/S1446788700034637 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034637


476 Tang Jian-er [4]

Gaussian domain such that a2 + b2 - d, u2 + v2 — t, (M, V) = 1. This
factorisation can clearly be accomplished so that no (odd) prime factor p
of {D, t) divides (e + if)(u + iv). Set x + iy = {a + ib){e - if), then
x2 + y2 = D and

(r + is)(x - iy) - rx + sy + i(sx - ry)

= (a2 + b2)(e + if)2(u + iv)2 = d(e + iff{u + iv)2.

Since (e + if)(u + iv) has no rational integer divisor, (rx+sy, sx-ry) — d.

LEMMA 4. Let Dx, D2 be squarefree integers greater than 1 with no prime

factors p = - 1 (mod4) ; r(., st, tt(i — 1, 2) integers satisfying r2 + s2 =

Dtt
2, (si, tt) — 1; and A;,, k2 squarefree integers. Set

i = 1, 2 . Then Q{dx) = Q(02) if and only if Z), = D2 and

k2(tlt2D + rlr2 + risls2) k2{txt2D -rxr2- r\sxs2)
1 ' 2kxD ' 2kxD

are rational squares for r\ = +1 or - 1 , where D = D{ = D2.

PROOF. Note that if either of the expressions (5) is a rational square then
so is the other, since

{txt2D + rxr2 + ns^it^D - r{r2 - nsxs2) = t\t\D2 - {rxr2 + nsxs2)
2

= {rxs2-nr2sx)
2.

Suppose that £>, / D2, then y/D~x e Q(0,) but y/D~x <£ Q(0 2 ) . Therefore
if Q(0[) = Q(02) w e m u s t n a v e Dx = D2 — D and there exists u, v , w,
XGQ such that 02

7) = u + vd[j) + w6\j)2 + xd[JV , j = 0 , 1, 2 , 3 where B\,
6" , d'" are the conjugates of 0,., i = 1, 2 . Since 6" = - 0 , , 0,'" = -Q\, we
have u = 0, w — 0 hence

02 = vdx + xO\, 02 = vd[ + xd'x , 02 = -vdx - xd\, 02" = -v6[ - xd'x.

Consequently a2 = -v2(d2 + d'2) - 2vx(dx + d'x) - x2{d\ + d'x),

a4 = d2e'2(v2 + vx(62 + e'x) + x2e2d'2)2

where a2 , <r4 are the elementary symmetric polynomials of the 02 . Hence
v and x satisfy

(6) txv
2 + 2kx(2t2

xD - r\)vx + k2(4t\D2 - 3txr
2D)x2 = ^
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and

(7) v2 + 2kltlDvx + k2r2Dx2 = &1, <* = +1 or - 1.
k\r\

Multiplying (6) by \[D, (7) by rl and adding we obtain

hence

(8) v + k,(2t,D-
J i V ""1

for some sign on the right hand side.
Similarly subtracting r, times (7) from \[D times (6) we obtain

sl

for some sign on the right. Eliminating v we have

for one of the four possible choices of sign on the right. Squaring gives

Conversely suppose that for some r\ - ±1 it is true that (k2/2kxD) x
(txt2D - ^r{r2 - <̂ f/5,52) is a rational square for both £ = +1 and £ = - 1 .
Then

defines a rational number for £ = ± 1 . Define v by (8) with some sign on the
right. Then v and x satisfy (6) and (7) as seen by reversing all calculations.
But then v is rational. For multiplying (7) by t{ and subtracting from (6)
we obtain

and rationality of v follows. Hence 82 = vdx + xd\ e Q(0,) and is easily

seen to be of the form 82 = Jk2(t2D + s2VD).
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We are now ready to prove our theorem. We first show that the extensions
described in the theorem are indeed normal. In the case of the first type
extension let r2 + s2 = D, r > 0, 5 > 0, D > 1 squarefree with no prime
factors ± - I(mod4). Let k be squarefree and set 6 = y/ka, a — D+sy/D.
Its conjugates are

0' = \Jk{D - sVD) = r(62 - kD)/sd, 0" = -6, 0'" = -d',

therefore Q(d, d', d", 6'") - Q(0) is normal. In the case of the second type
extension let A, B be squarefree, not equal to 1, 8 = VA + \[B. Clearly,
Q(y/A, \/2?) = Q(0) is a quartic extension and the conjugates are

d' = >/A-VB = (A-B)/0,6" = -8, d'" = -d'.

Therefore Q(0, d', 6", d'") = Q(0) is normal.
Now adjunction of a root of (1) to Q can generate a quartic normal ex-

tension only if the Galois group of the equation is either

<?, = {/, (1234), (13)(24), (1432)}

or

over Q. By Lemma 1 there exists a transformation y = u+vx+wx2 over Q
such that (1) is changed into (2). Therefore we may assume that our quartic
normal field is generated by a root of an equation of the form (2). We may
also assume that the coefficients p, q in (2) are integers, otherwise multiply
y by a suitable integer to get rid of the denominator.

Suppose the group of (2) is Gl. We first show that the extension K is of
the following type:

1* Let D be as in type 1, r,s,t an integer solution of r2 + s2 = Dt2

with s > 0, t > 0, (s, t) = 1; and k a squarefree integer. Then K = Q(d)

where 6 = Jk(tD + sVD). Let T, , T2 , T3 , T4 be the elementary symmetric
polynomials of the roots y{, y2, y3, y4 of (2), then xx = 0, T2 = p , T3 = 0,
T4 = q, therefore

Ĉ i + y2 - ^ - y*)<yx - y2+^ - yJ&i - y2 - ^ + n ) = h - 4h h + 8 T 3 = °-
The roots can be arranged so that yx —y2 + j>3 —y4 = 0 say, and since T, = 0,
we get

y3 = -yx, y4 = -y2 > y\ + y\ = ~xi = -P > y\y\ = x* = <i-

Consider y/ - (1/16)(>-1 + iy2 - y3 - iyA)4 over Q(i). It belongs to Gx

and so its value is

¥ = (?, + iy2f = (y\ + y2
2)

2 - *y\y\ ±

= P2-Sq± 4i\/q(p2 - Aq)
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But p and q are integral, so there exists an integer T such that q{p2-4q) =
T2, hence (p2 - iq)2 + (4T)2 = p4 . By Lemma 2, one of the following two
conditions holds.

1. There exist integers u, v with (u,v) = I, u + v = 1 (mod2), and
an integer k ^ 0 such that p = k(u2 + v2) and

2 O , 2 / 4 , 2 2 4-, . , 1 , 2 2N

p - % q = k {u - 6 M v + v ) o r 4 k u v ( u - v ) .
2. There exists a squarefree integer D > 1 with no prime factor = - 1

(mod 4), and integers m, n, I satisfying m2 + n2 = Dl2 , such that p = Dl
and p2 - 8q = D(m2 - n2) or 2Dmn . In Case 1 we have q = k2u2v2 or
(l/8)A:2(M2-2MV-t;2)2. If (2) is

/ + k(u2 + v2)y2 + k2uv2 = 0 then (y2 + ku2)(y2 + kv2) = 0,

and the equation is reducible and does not generate a quartic field. So (2) is

yA + k(u2 + v2)y2 + -gk2(u2 - 2uv ~ v2)2 = 0,

its roots are

y = (±l/2)y/-k[2(u2 + v2) ± V2(u2 + 2uv - v2)]

with independent ± signs. By definition u2 + v2 and u2 + 2uv - v2 are
copnme,

(w2 + 2uv - v2)2 + (u2 - 2uv - v2)2 = 2(u2 + v2)2,

and so Q(y) is an extension of type 1* with D = 2, t - u2 + v2, s -
\u2 + 2uv - v2\.

In Case 2 we have

q = (1/4)D«2 or (\/S)D(m - nf.

If (2) is / + Dly2 + (l/4)Z>n2 = 0, its roots are

y = (±1/2) (\J-ID + n\[D ± \J-ID - nVDj

with m2 + n2 = Dl2, hence Q(y) is an extension of type 1* with t =
\l\/(l,n), s = \n\/(l,n), r = m/(l,n), k = (-/ / | / | )(/ , n). If (2) is / +
Dly2 + (l/8)D(w - n)2 = 0 and D is odd then

y = (±l/2)y/-l(2D) ±(m + n)V2D.

i + n)2 + {m- n)2 = 2D12, Q(y) is ai
1* with t = | / | /( / ,m + n), s = \m + n\/{l ,m + n), k = ( - / / | / | ) ( / ,m + n).
By the equality (m + n)2 + {m - n)2 = 2D12, Q(y) is an extension of type
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Similarly if D
must be even,
Similarly if D is even, since (m ± n)2 T 2mm = Dl2 , m + n and m - n

y = ±y/-l(D/2) ± ((m

and by the equality ((m + n)/2)2 + {{m - n)/2)2 = (D/2)l2 , Q(y) is again an
extension of type 1* with t = | / | / ( / , (m+n)/2), s = \m+n\/2(l, (m+n)/2),
k = (-l/\l\)(l, (m + n)/2). It follows that if the group of (2) is <?, then
adjunction of its roots to Q generates an extension of type 1 *.

Next we show that any extension of type 1* is of type 1. So sup-

pose r2 + s2 = Dt2, (s, t) = 1, k squarefree, 0 = \Jk{tD + sy/D). If

here 2\k, set $ = tD + r\fij, J = tD - rVZ>, then 6 = y/kfi/2 + ^/fc/f/2

with (t,r) = 1 (since (t,s) = 1) and clearly Q(0) = ®(y/kf}/2). So we
may assume 2 \ k. Let \k, D) = d, k = kxd, then (k{, D) = 1 and 2 \ k{,
2\d hence Did + D = 0(mod2). By Lemma 3, the equation x2 + y2 = D
has an integer solution x, y such that {rx + sy, sx - ry) = D/d. Now

(rx + syf + (sx - ry)2 = (r2 + s2)(x2 + y2) = (tD)2

hence there exist integers u, v with (M, V) = 1, u + v = I(mod2) such
that rx + sy = (D/d)(u2 - v2) or (D/d)(2uv), tD = (D/d)(u2 + v2). If
rx + sy = (D/d)(u2 - v2), set r\ - yjkx (D + yVD) and apply Lemma 4 with

0j = 1j(rl =x,sl=y,tl = l)

and
62 = d{r2 = r,s2 = s, t2 = t, k2 = k).

The expressions (5) in Lemma 4 and u2, v2 respectively hence by the
Lemma, Q(t]) = Q(0). Similarly if rx + sy — (D/d)(2uv) then sx - ry =

(D/d){u2 - v2) and setting t] = ykx [D + xVD) we can apply Lemma 4 with
0\ = *l ir\ = y •: sx = x, tx = \), 62 = 0 . The expressions in (5) are now
v2, u respectively, and we again conclude that Q(^) = Q(0). In either case
the extension is of type 1. (Since Q(Vka) = Q(VJcE), a = D - s\fB, we
may assume at any rate s > 0) .

To show uniqueness of the parameters s, k, suppose that

r,2 = /

By Lemma 4 (and changing the sign of sx if necessary)
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is a square. Now r\ + s2 - D, r2 + s\ = D, hence

{rxr2 + sxs2)
2 + (rxs2 - r2sx)

2 = D2.

Set (rxr2+sxs2, D) = d, then there exist integers u, v satisfying (u, v) = I,
u + v = I(mod2) such that rxr2 + sxs2 = d(u2 - v2) or d(2uv), D =
d{u2 + v2). Suppose rxr2 + sxs2 = d(u2 - v2), then

k2(D + rxr2 + s2s2)/2kxD = k2u /kx{u +v )

hence kxk2(u
2 + v2) is a square. But (kx, D) = 1, {k2, D) = 1 and kx,

k2, D are squarefree therefore kx — k2 and u2 + v2 = 1, d — D. But then
rxr2 + sxs2 = D, rxs2-sxr2 - 0 which together with r\ + s2 = D, r\ + s\ - D
give r, = r2, sx=s2.

If rxr2 + sxs2 = d{2uv) then

. , 2
T-(D + r,r~ +s,s7) = s 1- ,2k.kJu +v ) is a square.

As before, it impl ies kx = k2 , u2 + v2 — 2, D = 2d, rxr2 + sxs2 — 2d — D,
rxs2 - sxr2 = 0 hence rx = r2, sx= s 2 .

Finally suppose that the group of (2) is G2. Then all three quantities
Vi ^ i ^ + ^ J V fi^yiy^ + yiyA' V3=>;i>;4+>'2>'3 belong to G2 and are
roots of the Ferrari resolvent of (2),

(9) z3 -pz2 -4qz + 4pq = 0.

Hence (9) has three rational roots. But (9) is (z -p){z2 - Aq) = 0 and so q
is a square f2 . Since G2 is transitive, the roots

y = ±L(y/-p

of (2) are quartic algebraic numbers. Let

-p + 2f= mM, -p-2f= n2N
where M, N are squarefree. Then the field is generated by any two of the
squareroots of M, N, MN/(M, N) . Exactly one of these three numbers
has a largest absolute value. Denoting by A, B the other two we may assume
A < B, man{\A\, \B\) < \AB\/(A,B)2 and we obtain Q(y) = Q(v^4, VS),
an extension of type 2. Uniqueness of the parameters A , B is obvious.
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