
2
The pairing force and seniority

2.1 Evidence for pairing correlations

The nucleus 208Pb is well described by the independent particle model in terms
of closed shells in both neutrons and protons. The absence of low-lying states
supports this hypothesis. The shell model would then describe the low-lying
levels of 207Pb in terms of the states of a single neutron hole. The observed
energies, angular momenta and parities are in good accord with this picture,
although small admixtures of more complicated configurations must be invoked
to account for some fast electromagnetic decays (see Sections 9.1 and 9.2). The
next step is to interpret the levels of 206Pb in terms of two holes, which are
combinations of the single-hole states of 207Pb, interacting through a residual
interaction. The dramatic effect of the internucleon force is shown by the fact that
there is only one excited state below 1.2 MeV, compared with the five we would
get in the independent hole approximation (see Fig. 2.1). This becomes even
more striking in 204Pb, where the independent hole picture predicts about thirty
levels within 1 MeV of the ground state, whereas again only one is observed
(Mottelson (1996)).

Another indication of the importance of the residual interaction among nucleon
pairs is the well-known difference in physical properties between even and odd
nuclei. For example, studies of cosmic abundances show that nuclei with even
proton and neutron numbers are much more abundant, and thus more stable,
indicating stronger binding energies.

Fig. 2.2 shows a typical trend in binding energies as a function of the num-
ber of nucleons (see also Fig. 1.10). The binding energies of the even nuclei
(N0, N0 ± 2, . . .) give rise to the lower line and odd nuclei to the upper line. The
ordinate is E − λ (N − N0) where E is the energy and λ is the chemical poten-
tial. The term λ (N − N0) subtracts the average dependence of the energy on the
particle number so that the odd–even fluctuations show more clearly. The energy
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34 The pairing force and seniority

Figure 2.1. Level spectrum of 206Pb. The experimental spectrum together with the observed
spin and parities are shown on the left. On the right the different possible configurations ( j1 j2)
are drawn with excitation energies equal to E( j1)+ E( j2) as obtained from 207Pb. The spin
and parities of the different levels that can be obtained from coupling j1 and j2 connect these
asignments with the appropriate levels in the observed spectrum (after Mottelson (1996)).

Figure 2.2. Binding energies (−E) as a function of the number of neutrons. The quantity−λ
is the average binding energy per added neutron, that is λ = chemical potential.
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2.1 Evidence for pairing correlations 35

difference between the lines is �. Whether this quantity reflects the binding
energy associated with a pair interaction between nucleons or not depends on its
magnitude. This is because the quantization of the independent particle model
also implies an extra binding energy for the even system compared with the odd
system. The magnitude of this effect can be estimated in the Fermi gas model
(see equations (2.4)–(2.7)).

The spacing d between states at the Fermi energy with the same spin and
isospin quantum numbers can be written in terms of the total level density sum
of the proton and neutron level densities ρ = 3A/2εF as

d = 4

ρ(εF)
= 8εF

3A
. (2.1)

The factor of 4 is due to the fact that each level can be occupied by two protons
and two neutrons (with spin up and spin down). If the levels are equally spaced
the total energy is

E(N ) = 1
4 d(N − 1)2 − 1

4 d δ(N , even), (2.2)

for each type of particle, as can be seen from Fig. 2.3. Making use of the relations
given in equations (1.28) and (2.2) and of the fact that B(N ) = −E(N ), one finds
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Figure 2.3. Energy E(N ) =∑N
i=1 εi associated with the motion of N identical independent

particles moving in the set of equidistant two-folded single-particle levels shown in upper left
corner. Under close inspection, there is an odd–even staggering as described by equation (2.2).
The dots and the crosses represent the even and odd systems respectively. The continuous
curve corresponds to the expression given by equation (2.2).
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36 The pairing force and seniority

that the effective gap parameter in this model is (Bohr and Mottelson (1969))

(�)kin = 2× d

8
� 2εF

3A
∼ 25

A
MeV. (2.3)

The observed pairing energies are shown in Fig. 1.11 and can be parame-
trized according to equation (1.30). For a 160Dy nucleus (A = 160) we have
(�)kin � 0.16 MeV and� ≈ 0.95 MeV. Thus� is almost an order of magnitude
larger than (�)kin (see also Satula et al. (1998) and Rutz et al. (1999)).

The large observed odd–even effect may be described in terms of pairwise
correlations of identical particles. These contribute an additional binding energy
for each pair of nucleons near the top of the Fermi distribution coupled to angular
momentum zero. This can be seen from the spectra shown in Fig. 2.1. Giving an
extra binding energy to the p2

1/2(0+) configuration is equivalent to moving up all
the excited states by the same amount. In this way overall agreement between
theory and experiment is obtained.

We conclude this section by collecting together some numerical values of
Fermi gas parameters which will be used in this chapter and in other parts of the
book. The average particle density of nuclear matter is taken to be

ρ(0) = 0.17 nucleons fm−3, (2.4)

i.e.

ρ(0) = 2.8× 1014 gm cm−3, (2.5)

which corresponds to a nuclear radius R = r0 A
1
3 , with r0 = 1.1 fm. The Fermi

wave number is

kF = 1.36 fm−1 , (2.6)

(an average value for neutrons and protons, N = Z = A/2) and the Fermi energy
is

εF = �
2k2

F

2m
� 37 MeV. (2.7)

This value of εF has been used in equation (2.3).

2.2 The pairing interaction

The idea of a pairing interaction was already present in the early developments
of the shell model (Mayer and Jensen (1955)). The purpose of this section is to
identify two general properties of a pairing force interaction. The first is that it
is short range and the second that it has a multipole expansion containing high
angular momentum components (Belyaev (1959), Bayman (1960), Mottelson
(1962)). Both of these properties are illustrated by the example of a delta function
potential discussed at the end of this section and in Section 2.3. The second is
important for understanding the induced pairing interaction in Chapters 8, 10
and 11.
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2.2 The pairing interaction 37

q12 ∼ (I + 1)

I

Z

R

m

(I + 1) R

−m

q
12

∼ 1

Figure 2.4. Schematic representation of two time-reversed orbits coupled to angular momen-
tum I = 0 and I �= 0. Two identical nucleons are assumed to move in time-reversal orbits
labelled by the orbital angular momentum � and the projection m. When the two particles
are coupled to angular momentum zero their orbits wobble within an angle θ12 ∼ 1/�. This
is required by the Heisenberg uncetainty principle within conjugated variables, in the present
case ��z�θ12 � 1. In a simple classical picture where the particles are concentrated at a
radius R, such wobbling results in a typical distance between the two particles of the order of
R/�. The larger the angular momentum the closer is the system to the classical limit and larger
will be the probability that the particles are on top of each other. When the relative motion
of the particles are coupled to a finite value I of the total angular momentum, aside from the
quantal wobbling, there will be a further tilting of the single-particle orbital proportional to
I/�. This will add, on average, a distance RI/� between the two particles.

Consider two particles in the same �-orbit coupled to various total angular
momenta L = 0, 1, 2, . . . . The radial dependence of the single-particle wave-
functions will, in most cases, describe particles moving in orbits with a radius
of the order of the nuclear radius. The main degree of freedom available to the
particles corresponds to different possible orientations of the orbital planes. The
associated particle correlations are mainly correlations in angle. This is illus-
trated in Fig. 2.4. Two identical nucleons are assumed to move in time-reversed
orbits labelled by the orbital angular momentum � with projections m and −m.
When the two particles are coupled to an angular momentum L = 0 their orbits
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38 The pairing force and seniority

wobble within an angle θ12 ∼ 1/�. This is required by the Heisenberg uncertainty
relation for conjugate variables�� �θ12 ∼ 1. In a simple classical picture where
the particles are located at a radius R such a wobbling results in a typical distance
between the particles of the order of R/�.

If we now consider a state of the �2 configuration with I �= 0 (but still I �
l) then the average angle θ12 between the particles will be larger. This will
increase their average separation by a distance of the order of RI/�, giving a
total separation ∼ R(I + 1)/�. Consequently, if the range of the force is small
compared with R/�, the states with I = 2 will have an interaction energy which
is a fraction (∼ 1/3) of that in the I = 0 state.

Let us now expand a general interaction in multipoles (Brink and Satchler
(1968))

V (r12) = V (| 	r1 − 	r2|) =
∑
λ

Jλ(r1, r2)
∑
μ

Yλμ(r̂1)Y ∗λμ(r̂2)

=
∑
λ

2λ+ 1

4π
Jλ(r1, r2)Pλ(cos θ12)

=
∑
λ

Vλ(r1, r2)Pλ(cos θ12). (2.8)

If particles 1 and 2 are in orbitals confined to a fairly restricted radial region,
the dependence on r1, r2 may be ignored for a particular λ. The function Pλ drops
from its maximum at θ12 = 0 in an angular distance 1/λ (Fig. 2.5). Thus 1 and 2
interact through the component λ only if r12 in equation (2.8) fulfils r12 < R/λ,

angular spread of s.p.
wavefunction~(1/  )1/2

1 / 

q12

2 +1
4p( )

1/2

Figure 2.5. Schematic picture indicating the angular spread of the wavefunction of two parti-
cles coupled to angular momentum I = 0. Particle 1 is moving in an orbital with m = �while
particle 2 has m = −�. These one-particle states correspond to wavefunctions concentrated
in the equatorial plane, but possessing an angular spreading ∼ (�)−1/2 due to quantal zero
point fluctuations (after Mottelson (1962)). Copyright © Società italiana di Fisica.
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2.3 The δ-function nucleon–nucleon potential 39

where R is the mean value of the radii 	r1 and 	r2. Thus, as λ increases, the effective
forces range decreases. This leads to the expectation that the strength of the λ
terms increases as the range of V (r12) decreases. For a force of range much
greater than the nuclear size, only the λ = 0 monopole part is important. At the
other extreme, a δ-function force has coefficients Vλ(r1, r2) that increase with λ,
as can be seen from the relation

Vλ = (2λ+ 1)

4πr2
1

δ(r1 − r2). (2.9)

Pairing force effects come from all the high λ terms, representing the short-
range effects of V (r12).

2.3 The δ-function nucleon–nucleon potential

As discussed in Section 2.2, the δ-function potential

V (r12) = −4πV0 δ(	r1 − 	r2), (2.10)

is a simple representation of a short-range attractive effective interaction between
identical valence nucleons. Two identical nucleons in a shell model orbit with an-
gular momentum j coupled to a total angular momentum I have a wavefunction
| j j I M〉 and the interaction energy EI is

EI = 〈 j j I M |V | j j I M〉.
The matrix element can be evaluated to give

EI = − (2 j + 1)

2
V0 I ( j)|〈I j 0 1

2 | j 1
2〉|2, (2.11)

where

I ( j) =
∫

R4
j r

2dr,

is an integral depending on the radial wavefunction R j of the level j , and
〈I j 0 1

2 | j 1
2〉 is a Clebsch–Gordon coefficient. The details of the derivation

of equation (2.11) are given e.g. in Bayman (1960), Brink and Satchler (1968)
de-Shalit and Talmi (1963), Lawson (1980) and Heyde (1990). When the total
angular momentum I = 0, the energy E0 in equation (2.11) simplifies to

E0 = − (2 j + 1)

2
V0 I ( j). (2.12)

The radial integral I ( j) can be estimated by assuming that R j is constant inside
the nuclear radius R0 and is zero outside. Normalizing the wavefunction gives

R j =
√

3/R3
0,
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40 The pairing force and seniority

and

I ( j) ≈ 3/R3
0 .

If one corrects this estimate for the spillout of the nucleons (see Appendix D,
Section D.2), one has to divide the result by (1+ a/R)3 ≈ 1.4, thus leading to

I ( j) ≈ 1.2 fm−3/A, (2.13)

if R0 = 1.2A
1
3 fm. In the limit j � I the Clebsch–Gordon coefficient in equation

(2.11) can be estimated by using its semiclassical limit

lim
j�I
〈 j 1

2 I 0| j 1
2〉 ≈ PI (0) = (−1)I/2 I !

2I (I/2)!(I/2)!
. (2.14)

Substituting I = 0, 2, 4 and 6 into equation (2.14) gives

E2 ∼ (1/4) E0, E4 ∼ (9/64) E0, E6 ∼ (25/256)E0, (2.15)

showing that pairing is much stronger for the state with I = 0 than for other
values of I . The spectrum (2.15) is illustrated in Fig. 2.6.

The pairing force is an approximation to a short-range potential like the
δ-function interaction, and is defined so that the energy EI of a pair is large
when I = 0 and is zero for I �= 0. It can be expressed in second quantized form
by using the pair-creation operator (see Appendix A)

P†
j =

∑
m>0

(−1) j−ma†
jma†

j−m, (2.16)

and the corresponding pair-annihilation operator

Pj =
∑
m>0

(−1) j−ma j−ma jm . (2.17)

Figure 2.6. Spectrum of two particles moving in a single- j orbital coupled to angular mo-
mentum I and interacting through a contact nucleon–nucleon potential.
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2.3 The δ-function nucleon–nucleon potential 41

The operator P†
j creates a pair of identical nucleons (say neutrons) with total

angular momentum I = 0 and the normalized pair state |( j j)0〉 can be written as

|( j j)0〉 = 1√
j + 1

2

P†
j |0〉. (2.18)

The pairing force interaction potential is defined as

V = −G P†
j Pj , (2.19)

and with this potential the interaction energy of a pair is

EI =
{
−G( j + 1

2 ) if I = 0,

0 if I �= 0.
(2.20)

The pairing potential can be generalized to the case where the nucleon pair
can occupy one of several j-orbits. The generalization is

V = −
∑

j j ′
G( j j ′)P†

j Pj ′ . (2.21)

To understand the physical properties of the pairing potential in another way we
write

a†
jm = a†

ν and (−1) j−ma†
j−m = a†

ν (2.22)

The operator a+ν creates a nucleon in a single-particle state |ν〉 = | jm〉 and a+ν
creates an identical nucleon in the time-reversed state |ν〉 = (−1) j−m | j − m〉
(see Appendix A). The generalized pairing potential is

V = −
∑
νν ′>0

Gνν ′P
†
ν Pν ′, (2.23)

where P†
ν = a†

νa
†
ν̄ and Pν = aν̄aν . The sum in equation (2.23) is over ν > 0 and

ν ′ > 0 which corresponds to m and m ′ positive. The pairing strength Gν,ν ′ is
an amplitude for a nucleon pair in the state |ν ′〉 and the time-reversed state |ν ′〉
to make a transition to the state |ν〉 and its time-reversed state |ν〉. The pairing
force potential produces correlations between pairs of nucleons in time-reversed
states.

We finish this section by making an estimate of the pairing force strength
parameter G. By comparing equations (2.12) and (2.20) we see that

G = V0 I ( j) ≈ 1.2 fm−3 V0/A. (2.24)
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42 The pairing force and seniority

To estimate V0 we use the δ-function potential to relate V0 to the strength of the
shell model single-particle potential U (r ) by writing (see equation (A.28))

U (r ) = −4π
∫

d3r ′V0δ(r− r′)ρ(r ′) = −4πV0ρ(r ), (2.25)

where ρ(r ) is the nucleon density inside a nucleus. If ρ(r ) = ρ0 is constant then

ρ0 = A/(
4π

3
R3

0) � 0.17 fm−3.

Hence

V0 ≈ − U0

4πρ0
= 50 MeV fm3

4π × 0.17
= 294

4π
MeV fm3, (2.26)

and (see Section 2.5)

G ≈ 28

A
MeV. (2.27)

This estimate should not be taken too seriously because the real nucleon–nucleon
interaction is much more complicated than that defined in equation (2.10) (see
Chapter 8, Section 8.1). We shall, however, see in the following sections that the
estimate (2.27) is not unreasonable.

2.4 The degenerate model and quasi-spin

A simple shell model Hamiltonian for a number of identical nucleons outside
a closed shell and interacting by a pairing force residual interaction can be
written as

H =
∑

j

N jε j −
∑

j j ′
G j j ′P

†
j Pj ′, (2.28)

where ε j is the energy of the single-particle orbit j while N j = a†
j a j . There is a

simple limiting case of this Hamiltonian for which the eigenvalues and eigenvec-
tors can be found analytically. This is the degenerate model (see Appendix H),
where all the single-particle energies are the same and all the pairing strengths
are equal

ε j = ε; G j j ′ = G. (2.29)

In this case several j-levels are degenerate and the total degeneracy is∑
j

(2 j + 1) = 2�.

The Hamiltonian (2.28) can be written as

H = εN − GS+S− = εN − G P†P, (2.30)
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2.4 The degenerate model and quasi-spin 43

where

S+ = P† =
�∑
ν=1

a†
νa

†
ν and S− = P =

�∑
ν=1

aν aν, (2.31)

and N̂ is the number operator for the total number of nucleons outside the closed
shells

N̂ =
�∑
ν=1

(a†
νaν + a†

ν aν). (2.32)

The operators S+, S− and Sz = 1
2 (N̂ −�) satisfy the commutation relation

[S+, S−] = −2Sz = �− N̂ ,

[S+, Sz] = Sz, [S−, Sz] = −Sz. (2.33)

These are the same as the commutation relation for the angular momentum
operators J+, J− and Jz and for this reason they are called quasi-spin operators.
The quasi-spin method was introduced by Anderson (1958) and used by Ichimura
(1964), Lawson(1980) and others. Angular momentum methods can be used to
find the eigenvalues and eigenvector of the simplified Hamiltonian (2.28). The
operator

S2 = S+S− + Sz(Sz − 1), (2.34)

which is the analogue of the square of the total angular momentum, commutes
with S+, S− and also with H .

The Hamiltonian (2.28) can be written as

H = εN̂ − G

(
S2 − Sz(Sz − 1)

)
, (2.35)

and the eigenvalues are

E = εN̂ − G

(
S(S + 1)− Sz(Sz − 1)

)
= εN̂ − G(S + Sz)(S − Sz + 1). (2.36)

The standard convention is to write

S = 1
2 (�− υ) , (2.37)

where the quantum number υ is called the seniority, a concept which was intro-
duced by Racah (1942, 1943) in papers on the group theoretical classification of
atomic wavefunctions (see de Shalit and Talmi (1963)). One can then write

(S + Sz) = 1
2 (N̂ − υ) and (S − Sz) = �− 1

2 (N̂ + υ), (2.38)
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44 The pairing force and seniority

and

E = εN − E(N , υ),

with

E(N , υ) = − 1
4 G(N − υ)(2�− N − υ + 2). (2.39)

The combination (S + Sz) must be an integer, hence N − υ is an even integer.
It is useful to consider the cases where N is even and N is odd.

(i) N-even: The ground state has υ = 0 and has energy

E(N , 0) = − 1
4 G(2N�− N 2 + 2N ). (2.40)

The first excited state has υ = 2 with excitation energy

�E = G� = 2�. (2.41)

High excited states have υ = 4, 6, . . .
(ii) N-odd: The ground state has υ = 1 and energy

E(N , 1) = −G

4
(N − 1)(2�− N + 1), (2.42)

and the first excited state has υ = 3 again with excitation energy

�E = G� = 2�. (2.43)

This excitation energy is the pairing energy and the gap parameter � is
analogous to the gap parameter appearing in the BCS theory of pairing to be
discussed in Chapter 3 (see also Appendix G, in particular equation (G.10);
see also Appendix H, equation (H.4)).

2.5 Pairing binding energy formula

The lowest eigenvalue of the pairing Hamiltonian (2.25) can be written as

Eg = εN + 1
4 G N (N − 1)− 1

4 G(2�+ 1)[N ], (2.44)

where

[N ] = N if N is even,

[N ] = N − 1 if N is odd. (2.45)

An accurate binding energy formula (Talmi (1972)) follows from (2.44) by
adding an average interaction E between all pairs of nucleons. The result is

Eg = εN + 1
2αN (N − 1)+ 1

2β[N ], (2.46)
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2.6 Quasi-spin wavefunctions 45

where

α = 1
2 G + E and β = − 1

2 G(2�+ 1). (2.47)

The last term in equation (2.47) is the pairing energy term found in the sys-
tematics of nuclear binding energies which depends on the evenness or oddness
of the number of protons and neutrons. The large observed odd–even effect is
a consequence of the pair correlations induced by the pairing force. Using the
expression given in equation (1.28) to extract a pairing energy from equation
(2.46), the terms proportional to ε and α cancel and there is a contribution only
from the third term and we obtain

� = − 1
2β = 1

4 G(2�+ 1). (2.48)

The empirical fit to� given in equation (1.30) can be used to obtain an estimate
of the pairing force parameter G.

When � is large the value (2.48) for � obtained from the binding energy
formula given in equation (2.46) is almost equal to the gap parameter (2.43)
from excitation energies. They differ by a factor (1+ 1/2�) (see also equation
(H.4)).

Lawson (1980) has fitted Talmi’s formula to the binding energies of
Ca isotopes and obtained

β = −3.23 MeV, � = 1.62 MeV. (2.49)

Equation (1.30) gives � = 1.81 MeV for A = 44, which is close to Lawson’s
number. Using � = j + 1

2 = 4 for the 7/2 shell, (2.48) and (2.49) yield a value
of G = 0.72 MeV, which corresponds to a relation G ≈ 31/A MeV (see equation
(2.27)).

2.6 Quasi-spin wavefunctions

States in a quasi-spin multiplet have the same value of S but different values of
Sz . In other words, they have the same seniority but different particle number.
The operator S+ increases Sz by one unit and the particle number by two units
without changing S or υ. In a similar way S− conserves S and υ but reduces the
particle number by 2 units.

We consider some special cases. When υ = 0 the quasi-spin quantum number
S = 1

2�. This case gives the ground state of even nuclei. The state |0〉 with
N = 0 corresponds to Sz = −S = − 1

2�. The ground state with N nucleons and
υ = 0 is obtained by creating N/2 pairs with the pair-creation operator S+,

|N , 0〉 = A(N , 0)SN/2
+ |0〉, (2.50)

where A(N , 0) is a normalization constant. Next we consider the case where
υ = 2 and S = 1

2�− 1. A state with Sz = −S has nucleon number N = 2 and
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the property

S−|N = 2, υ = 2〉 = 0. (2.51)

This state is highly degenerate, because all two-nucleon states where the nucleons
are not paired have this property. Each of the unpaired nucleon states leads to a
sequence of states with the same seniority and different particle number. Thus the
general state with seniority υ should be written as |N , υ, α〉 where the quantum
number α distinguishes between states with the same particle number and the
same seniority. The energies do not depend on α and the pair operators S+ and
S− do not change α. The state with lowest seniority for any particular N and α
has N = υ unpaired nucleons and

S−|υ, υ, α〉 = 0. (2.52)

The state |N , υ, α〉 can be obtained from it by adding (N − υ)/2 pairs

|N , υ, α〉 = A(N , υ)S(N−υ)/2
+ |υ, υ, α〉. (2.53)

The following physical picture emerges from the arguments in this section. An
eigenstate |N , υ, α〉 of the quasi-spin Hamiltonian has υ unpaired nucleons. The
state of these nucleons is labelled by the quantum numbersα. The remaining N −
υ nucleons form coherent pairs, with properties contained in the pair-creation
operator S+. The ground state in any nucleus is the state with the maximum
number of pairs or alternatively the smallest number υ of unpaired nucleons.

From angular momentum theory (Brink and Satchler (1968)) the matrix ele-
ments of the ladder operator S+ and S− between normalized states are

〈S, Sz + 1|S+|S, Sz〉 =
√

(S − Sz)(S + Sz − 1), (2.54)

〈S, Sz − 1|S−|S, Sz〉 =
√

(S + Sz)(S − Sz + 1).

In the following we write the matrix elements in terms of the particle number N
and the seniority υ and replace the quasi-spin raising and lowering operators by
the pair-creation and pair-annihilation operators P+ = S+ and P = S− so that
they become

〈N + 2, υ, α|P†|N , υ, α〉 = 1
2

√
(2�− N − υ)(N − υ + 2), (2.55)

〈N − 2, υ, α|P|N , υ, α〉 = 1
2

√
(N − υ)(2�− N − υ + 2).

The matrix elements (2.55) are called pair-transfer matrix elements and involve
the addition or removal of a correlated pair from the initial state. Transitions
with large neutron pair-transfer matrix elements have large cross-sections in
two-neutron transfer reactions, for example in (t, p) or (p, t) reactions. The
cross-section is proportional to the square of the magnitude of the pair-transfer
matrix element.
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Pairing correlations enhance pair-transfer processes (Broglia et al. (1973)).
Consider, for example, the pair-addition matrix element between states of se-
niority υ = 0. The basic matrix element is between an initial state with N = 0
and a final state with N = 2. Its value from equation (2.55) is

〈2, 0|P†|0, 0〉 =
√
�. (2.56)

The corresponding matrix element for adding a pair to the state with N/2 corre-
lated pairs is

〈N + 2, 0|P†|N , 0〉 = 1
2

√
(2�− N )(N + 2). (2.57)

The enhancement of the transfer cross-section is given by∣∣∣∣〈N + 2, 0|P†|N , 0〉
〈2, 0|P†|0, 0〉

∣∣∣∣2

= (2�− N )(N + 2)

2�
≈ N + 2

2
, (2.58)

when 2�� N . In this limit the enhancement is proportional to the number of
pairs in the final state. The pair-transfer operators S+ and S− do not change the
seniority. Hence pair-transfer cross-sections which involve a change in seniority
should be small (see Chapter, 4, equation (4.52), Fig. 4.2).

2.7 Pairing rotations

The expression (2.39) for the energy in the degenerate pairing model can also be
written in terms of the seniority and the number π of pairs missing or in excess
of the middle of the shell. The energy eigenvalues in this representation are

E(υ, π ) = − 1
4 G(�− υ)(�+ 2− υ)+ Gπ (π + 1) . (2.59)

The dependence of the energy and of the transfer matrix element on v and π
exhibits a natural grouping of levels. States with the same seniority and different
number of particles can be interpreted as members of a collective band. Their
energy displays a smooth dependence on π and they are connected by enhanced
and fairly constant matrix elements of the two-nucleon transfer operator. States
belonging to different bands are widely separated in energy and are not connected
by the pairing operator. In fact the bands resemble those of a rotor and we can call
them pairing rotational bands (Bohr (1968), Bes and Broglia (1966), Belyaev
(1972)). Later we shall see that they can be interpreted as rotational bands in
gauge space (Chapter 4).

Because of nuclear shell structure, the j-shells are bunched together within
a major shell, and a general tendency towards the degenerate pairing model is
realized in some nuclei, especially in single closed-shell nuclei.

The main term in nuclear binding energies is linear in the number of particles
and this must be subtracted before a comparison with pairing rotations can be
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made. The experimental binding energies of some Sn-isotopes with this sub-
traction are displayed in Fig. 4.2 (see Bes and Broglia (1977)). They follow the
rotational parabola closely. The available data on two-neutron transfer cross-
sections is also given in the same figure. These should be proportional to the
squares of the matrix elements of P+. Two important features of the band de-
scription are well satisfied, namely (i) the cross-sections between ground states
are much stronger than those linking ground and excited states and (ii) the ground
state cross-sections are rather constant (see Appendix H, Section H.3).

2.8 Exact solution of the pairing Hamiltonian

Exact solutions of the pairing problem have been studied by a number of authors
(Kerman et al. (1960), Lipkin (1960), Nogami (1963, 1964)). In what follows we
will discuss an exact solution of the pairing force problem for a non-degenerate
set of single-particle levels ε j and a constant pairing strength G j j ′ = G
(Richardson (1963, 1965, 1977), Richardson and Sherman (1964)). The method
did not involve diagonalizing the pairing Hamiltonian, but instead led to a set
of non-linear equations for parameters in the pairing wavefunctions. Recently
there has been renewed interest in Richardson’s method both for condensed
matter and nuclear physics applications (Sierra et al. (2000), Dukelsky et al.
(2002)). Also new and efficient algorithms for solving Richardson’s equations
have been developed. This section introduces Richardson’s method and draws
attention to some recent developments. Here we quote some of the important
equations and refer to the original papers for details.

The Hamiltonian in question is

H =
∑

j

N jε j − G
∑

j j ′
P†

j Pj , (2.60)

the exact eigenstates with n pairs being

ψ =
n∏
α

[∑
j

1

2ε j − eα
P†

j

]
|0〉, (2.61)

where |0〉 is a state without any paired particles. This wavefunction has a very
interesting structure. It depends on the single-particle energies and on parameters
eα. For example, in a system with 8 pairs distributed among 16 pair levels
Richardson’s wavefunction for the ground state depends on only 8 parameters.
On the other hand, the dimension of the shell model space for the seniority zero
levels is about 12 000.
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The quantities eα in the above wavefunction are solutions of a set of n non-
linear equations which can be written as∑

j

d j

2ε j − eα
+

n∑
β �=α

1

eβ − eα
+ 1

2G
= 0. (2.62)

The parameters d j = (ν j −� j )/2 depend on the pair degeneracies� j = (2 j +
1)/2. The seniority ν j is the number of unpaired particles in the level j . This
condition allows for the blocking of single-particle levels by unpaired particles.
The notation here is the one used by Dukelsky et al. (2002). The total energy of
the state ψ is

E(eα) = 〈0|H |0〉 +
∑
α

eα. (2.63)

In the ground state, pairs fill up the lowest available levels up to the Fermi level
when the interaction strength G is zero. When the interaction strength is small the
pair-occupation numbers for pair states below the Fermi level are almost unity
and the occupation numbers of states above the Fermi level are small. When the
interaction strength increases, the occupation numbers change smoothly from
unity to zero as ε j increases through the Fermi energy. The pair-occupation
numbers are given by

n j = ∂E(eα)

∂ε j
=

∑
α

∂eα
∂ε j

. (2.64)

Differentiating equation (2.62) with respect to ε j yields a set of linear equations
for the derivatives ∂eα/∂ε j (Richardson (1977)).

The solutions eα may be real or complex. Complex solutions occur in
complex conjugate pairs. Until recently most numerical applications have fo-
cused on problems with doubly degenerate single-particle levels and have used
Richardson’s (1977) technique for solving the equations of the theory, but re-
cently problems of more direct relevance to nuclear structure have been studied.
Dukelsky et al. (2002) have solved the pairing force problem for 114Sn and
116Sn in a large basis of single-particle states (d5/2, g7/2, s1/2, d3/2 and h11/2)
and calculated the occupation numbers of the single-particle states as a func-
tion of the pairing strength G. Their calculations illustrate how the eα move in
the complex plane as G changes. As Richardson’s method is exact the energies
and occupation numbers vary smoothly with G. More recently Rombouts et al.
(2004) have found a new method for solving Richardson’s equations which is
especially convenient for shell model applications where the single-particle lev-
els are degenerate. The studies in these last two references provide interesting
insights into the variation of the eα with the coupling strength G. One disad-
vantage of Richardson’s method is that the parameters eα do not seem to have a
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simple physical interpretation. Another is that, although physical quantities like
energies and occupation numbers vary smoothly with the interaction strength G,
the eα can have a singular cusp-like behaviour for certain values of G. Ways of
avoiding this problem have been developed by Rombouts et al. (2004).

In 1977 Richardson was able to show that his theory was equivalent to the BCS
theory in a suitable large N limit by using an analogue with a two-dimensional
electrostatic problem. The energy levels j were represented by a system of fixed
negative charges d j and positions ε j on the y-axis and the eα were represented
by n movable positive charges with positions xα, yα in the x–y plane equal
to the real and imaginary parts of eα. The attractive coupling strength G was
represented by a uniform electric field 1/2G acting in the negative y-direction.
The real and imaginary parts of the eα correspond to the x- and y-coordinates of
the charges. Equation (2.62) is the equilibrium equation for the forces acting on
the positive charge α. The electrostatic potential energy of the movable charges
corresponding to the force equation (2.62) is

U =
∑

j

d j ln |2ε j − eα| −
∑
α �=β

ln |eα − eβ | +
∑
α

eα/2G. (2.65)

Stationary points of the electrostatic energy U are solutions of Richardson’s
equations. This electrostatic analogy was exploited by Dukelsky et al. (2002)
in the solution of the pairing problem for 114Sn and 116Sn. It allows one to get
a physical picture of the solutions of Richardson’s equations. It also points to
possible instabilties because the stationary points of U are saddle points rather
than minima. Recently Volya et al. (2001) have developed a method based on
quasi-spin for diagonalizing the Hamiltonian of a system with a constant pairing
interaction. It is an alternative to solving Richardson’s equations and can be
extended to include other terms in the nuclear Hamiltonian (see Volya et al.
(2002)).

2.8.1 The degenerate case

The pairing force problem for a set of degenerate single-particle levels was solved
with the quasi-spin method in Section 2.4. Richardson’s equations (2.62) also
have a simple solution in this case. The solution gives the energy eigenvalues
E(eα) with seniority υ when there are n pairs in a level with degeneracy �. The
total number of particles N is related to the number of pairs by n = (N − υ)/2. If
one takes the energy of the degenerate single-particle state to be ε0 = 0, equation
(2.62) reduces to

�− υ
2eα

+
∑
β �=α

1

eβ − eα
+ 1

2G
= 0. (2.66)
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Multiplying by eα and summing over α gives

E(eα) =
n∑
1

eα = −2G

(
n(�− ν)

2
−

∑
β �=α

eα
eα − eβ

)
(2.67)

= −G (n(�− υ)− n(n − 1)) (2.68)

= −G

4
(N − υ)(2�− N − υ + 2), (2.69)

which is identical to equation (2.39) in Section 2.4. In this example the
Richardson wavefunction (2.61) does not depend on the individual eα and re-
duces to the simple pairing force wavefunction in equation (2.50). When there
is more than one single-particle level, as in the case of 116Sn, the interplay be-
tween the different eα and single-particle energies determines the structure of
the pairing wavefunction.
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