
13 Supersymmetric dynamics

In the previous chapter, we learned how to build realistic particle physics models based on
supersymmetry. There are already significant constraints on such theories, and experiments
at the LHC will test whether these sorts of ideas are correct.

If supersymmetry is discovered, the question will become: how is supersymmetry
broken? Supersymmetry breaking offers particular promise for explaining large hierar-
chies. Consider the non-renormalization theorems. Suppose that we have a model consist-
ing of chiral fields and gauge interactions. If the superpotential is such that supersymmetry
is unbroken at tree level, the non-renormalization theorems for the superpotential which
we proved in Section 9.7 guarantee that supersymmetry is not broken to all orders of
perturbation theory. But they do not necessarily guarantee that effects smaller than any
power of the couplings will not break supersymmetry. So, if we denote the generic coupling
constants by g2, there might be effects of order, say, e−c/g2 which break the symmetry. In
the context of a theory like the MSSM, supposing that soft breakings are of this order might
account for the wide disparity between the weak scale (correlated with the susy-breaking
scale) and the Planck or unification scale.

So, one reason why the dynamics of supersymmetric theories is of interest is its role in
aiding our understanding of dynamical supersymmetry breaking and perhaps in studying a
whole new class of phenomena in nature. But there are yet other reasons to be interested, as
was first clearly appreciated by Seiberg. Supersymmetric Lagrangians are far more tightly
constrained than ordinary Lagrangians. It is often possible to make strong statements about
the dynamics which would be difficult if not impossible for conventional field theories. We
will see this includes phenomena such as electric–magnetic duality and confinement.

13.1 Criteria for supersymmetry breaking: the Witten index

We will consider a variety of theories, some of them strongly coupled. One might
imagine that it is a hard problem to decide whether supersymmetry is broken. Even in
weakly coupled theories, one might wonder whether one could establish reliably that
supersymmetry is not broken since, unless one has solved the theory exactly, it would
seem hard to assert that there is no tiny non-perturbative effect which does not break the
symmetry. One thing we will learn in this chapter is that this is not, however, a particularly
difficult problem. We will exploit several tools. One is known as the Witten index. Consider
the field theory of interest in a finite box. At finite volume the supersymmetry charges
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183 13.1 Criteria for supersymmetry breaking: the Witten index

are well defined, whether or not supersymmetry is spontaneously broken. Because of the
supersymmetry algebra,

Q|B〉 = √
E|F〉, Q|F 〉 = √

E|B〉, (13.1)

i.e. non-zero-energy states come in Fermi–Bose pairs. Zero-energy states are special; they
need not be paired. In the infinite-volume limit, the question of supersymmetry breaking
amounts to the question whether there are zero-energy states. To count these, Witten
suggested evaluating

� = Tr (−1)F e−βH. (13.2)

Non-zero-energy states do not contribute to the index. The exponential is present to provide
an ultraviolet regulator: the Witten index� is independent of β. More strikingly, the index
is independent of all the parameters of the theory. The only way in which � can change
as some parameter is changed is by some zero-energy state acquiring non-zero energy
or a non-zero-energy state acquiring zero energy. But, because of Eq. (13.1), whenever
the number of zero-energy bosonic states changes, the number of zero-energy fermionic
states changes by the same amount. The Witten index is thus topological in character, and
it is from this that it derives its power as well as its applications in a number of areas of
mathematics. What can we learn from this index? If� �= 0 then we can say with confidence
that supersymmetry is not broken. If � = 0, we do not know whether it is.

Let us consider an example: a supersymmetric gauge theory with gauge group SU(2)
and no chiral fields. Since � is independent of the parameters, we can consider the theory
in a very tiny box, with very small coupling. We can evaluate�, somewhat heuristically, as
follows. Work in the A0 = 0 gauge. Consider, first, the bosonic degrees of freedom, the Ais,
which are matrix valued. In order for the energy to be small, we need the Ais to be constant
and to commute. So take Ai to lie in the third dimension in isospin space, and ignore the
other bosonic degrees of freedom. One might try to remove these remaining variables by a
gauge transformation g = exp(iAixi), but g is only a sensible gauge transformation if it is
single-valued, which means that A3

i = 2πn/L. Thus A3
i is a compact variable. This reduces

the problem to the quantum mechanics of a rotor. Thus in the lowest state the wave function
is a constant. Because the A3

i s are non-zero, the lowest energy states will only involve the
gluinos in the three direction. There are two, λ3

1 and λ3
2 (again independent of coordinates).

Now recall that in the A0 = 0 gauge the states must be gauge invariant. One interesting
gauge transformation is multiplication by σ2. This flips the sign of A3 and λ3. If we assume
that our Fock ground state is even under this transformation, the only invariant states are
|0〉 and λ3

1λ
3
2|0〉. So we find � = 2. If we assume that the state is odd then we obtain

� = −2.
As we indicated, this argument is heuristic. A more detailed, but still heuristic, argument

was provided by Witten in his paper on the index �. But Witten also provided a more
rigorous proof, which yields the same result. For general SU(N), one finds that � = N.

This already establishes that a vast array of interesting supersymmetric field theories do
not break supersymmetry, not only all the pure gauge theories but any theory with massive
matter fields. This follows because � is independence of parameters. If the mass is finite,
one can take it to be large; if it is sufficiently large we can ignore the matter fields and
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184 Supersymmetric dynamics

recover the pure gauge result. Later, we will understand the dynamics of these theories in
some detail and will reproduce the result for the index. But we will also see that the limit
of zero mass is subtle, and the index calculation is not directly relevant to that case.

13.2 Gaugino condensation in pure gauge theories

Our goal in this section is to understand the dynamics of a pure SU(N) gauge theory with
massless fermions in the adjoint representation. Without thinking about supersymmetry
one might expect the following, from our experience with real QCD.

1. The theory has a mass gap, i.e. the lowest excitations of the theory are massive.
2. Gauginos, like quarks, condense, i.e.

〈λλ〉 = c�3 = ce−(8π2/b0g2). (13.3)

Note that there is no Goldstone boson associated with the gluino (gaugino) condensate.
The theory has no continuous global symmetry; the classical symmetry,

λ → eiαλ, (13.4)

is anomalous. However, a discrete subgroup,

λ → e2π i/Nλ, (13.5)

is free of anomalies. One can see this by considering instantons in this theory. The instanton
has 2N zero modes; this would appear to preserve a Z2N symmetry. But the transfor-
mation λ → −λ is actually equivalent to a Lorentz transformation (a rotation by 2π ).
Multi-instanton solutions also preserve this symmetry, and it is believed to be exact. So
the gaugino condensate breaks the ZN symmetry; there are N degenerate vacua. This neatly
accounts for the N value of the index. Later we will show that, even though the theory
is strongly coupled, we can demonstrate the existence of the condensate by a controlled
semiclassical computation.

Gluino condensation implies a breakdown of the non-renormalization theorems at the
non-perturbative level. Recall that the Lagrangian is

L =
∫

d2θ SW2
α , (13.6)

so 〈λλ〉 gives rise to a superpotential, i.e.

L =
∫

d2θ S〈λλ〉. (13.7)

This is our first example of a non-perturbative correction to the superpotential. Note,
however, that 〈λλ〉 must depend on S, since it depends on g2:

S〈λλ〉 = e−3S/b0 . (13.8)
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185 13.3 Supersymmetric QCD

So we actually have a superpotential for S:

W(S) = e−S/N. (13.9)

This superpotential violates the continuous shift symmetry which we used to prove the
non-renormalization theorem, but it is compatible with the non-anomalous R symmetry,

S → S + iαN, λ → λeiα . (13.10)

Under this symmetry the superpotential transforms with charge 2.

13.3 Supersymmetric QCD

A rich set of theories for study is that collectively referred to as supersymmetric
QCD. These are gauge theories with gauge group SU(N), Nf flavor fields Qf in the N
representation and Nf flavor fields Q̄f in the N̄ representation; here f = 1, . . . , Nf. We will
see that the dynamics is quite sensitive to the value of Nf. First, we will consider the theory
without any classical superpotential for the quarks. In this case the theory has a large global
symmetry. We can transform the Qs and Q̄s by separate SU(Nf) transformations. We can
also multiply the Qs by a common phase and the Q̄s by a separate common phase:

Qf → eiαQf, Q̄f → eiβQ̄f. (13.11)

Finally, the theory possesses an R symmetry, under which the Qs and Q̄s are neutral. In
terms of component fields, under this symmetry we have

ψQ → e−iαψQ, ψQ̄ → e−iαψQ̄, λa → eiαλa. (13.12)

Now consider the question of anomalies. The SU(Nf) symmetries are free of anomalies,
as is the vector-like symmetry,

Qf → eiαQf, Q̄f → e−iαQ̄f. (13.13)

The R symmetry and the axial U(1) symmetry are both anomalous. But we can define a
non-anomalous R by combining the two. The gauginos give a contribution to the anomaly
proportional to N, so we need the fermions to carry an R-charge −N/Nf. Since the bosons
(and the chiral multiplets) carry an R-charge that is larger by 1, we have

Qf(x, θ) → eiα(Nf−N)/Nf Qf(x, θe−iα), Q̄f(x, θ) → eiα(Nf−N)/Nf Q̄f(x, θe−iα). (13.14)

So, the symmetry of the quantum theory is SU(Nf)L × SU(Nf)R × U(1)R × U(1)V, where
the vector symmetry U(1)V transforms the Q and Q̄ fields by opposite phases.

We have seen that supersymmetric theories often have, classically, a large vacuum
degeneracy and this is true of this theory. In the absence of a superpotential, the potential
is completely determined by the D terms for the gauge fields. It is helpful to treat D as a
matrix-valued field,

D =
∑

TaDa. (13.15)
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186 Supersymmetric dynamics

As a matrix, D can be expressed elegantly in terms of the scalar fields. We start with the
identity

(T a)
j
i (T

a) l
k = δl

iδ
j
k − 1

N
δ

j
iδ

l
k. (13.16)

One can derive this result in a number of ways. Consider propagators for fields (such as
gauge bosons) in the adjoint representation of the gauge group. Take the group, first, to be
U(N). The propagator of the matrix-valued fields satisfies〈

Aj
iA

l
k
〉 ∝ δl

iδ
j
k. (13.17)

But this is the same thing as 〈
AaAb(Ta)

j
i(T

b)lk
〉
. (13.18)

So we obtain the identity without the 1/N terms. Now remembering that A must be
traceless, we see that we need to subtract the trace as above. (This identity is important
in understanding the 1/N expansion in QCD.) Thus a field φ in the fundamental
representation makes a contribution

δD j
i = φ∗

i φ
j − 1

N
δ

j
iφ

∗
kφ

k. (13.19)

In the antifundamental representation the generators are −TaT (this follows from the
fact that these generators are minus the complex conjugates of those in the fundamental
representation, and the fact that the Tas are Hermitian). So the full D term is

Dj
i =

∑
f

Q∗
i Q j − Q̄iQ̄∗j − Tr terms. (13.20)

In this matrix form it is not difficult to look for supersymmetric solutions, i.e. solutions of
Dj

i = 0. A simple strategy is first to construct

D̂j
i =

∑
f

Q∗
i Qj − Q̄iQ̄∗ j (13.21)

and demand that D̂ either vanish or be proportional to the identity. Let us start with the case
Nf ≤ N. For definiteness, take N = 3, Nf = 2; the general case is easy to work out. By a
sequence of SU(3) transformations, we can bring Q to the following form:

Q =
⎛⎝ v11 v12

0 v22
0 0

⎞⎠. (13.22)

By a sequence of SU(Nf) transformations, we can bring this to the simpler form

Q =
⎛⎝ v1 0

0 v2
0 0

⎞⎠. (13.23)
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187 13.3 Supersymmetric QCD

At this point we have used up our freedom to make further symmetry transformations on Q̄.
But it is easy to find the most general Q̄ which makes the D terms vanish. The contribution
of Q to Dj

i is simply

D = diag(|v1|2, |v2|2). (13.24)

So, in order that D vanish, Q̄ must make an equal and opposite contribution. In order that
there be no off-diagonal contributions, Q̄ can have entries only on the diagonal, so

Q̄ =
⎛⎝ eiα1 v1 0

0 eiα2 v2
0 0

⎞⎠. (13.25)

In general, in these flat directions – directions in field space in which the potential is
flat – the gauge group is broken to SU(N − Nf). The unbroken flavor group depends on
the values of the vis. We have exhibited Nf complex moduli above, but actually there are
more, associated with the generators of the broken flavor symmetries (SU(Nf) × U(1)).
Thus there are N2

f + 2Nf complex moduli. Note that there are 2NNf − N2
f broken gauge

generators, which gain mass by “eating” the components of Q, Q̄ that are not moduli. Of
the original 2NNf chiral fields this leaves precisely N2

f + 2Nf massless fields, so we have
correctly identified the number of moduli.

Our discussion, so far, does not look gauge invariant. But this is easily, and elegantly,
rectified. The moduli can be written as the gauge-invariant combinations

M f
f̄ = Q̄f̄ Q f. (13.26)

Expanding the fields Q and Q̄ about their expectation values gives back the explicit form
for the moduli in terms of the underlying gauge-invariant fields. This feature, we will see,
is quite general.

The case Nf = N is similar to the case Nf<N, but there is a significant new feature.
In addition to the flat directions with Q = Q̄ (up to phases), the potential also vanishes
if Q = vI, where I is the identity matrix. This possibility can also be described in a
gauge-invariant way since now we have an additional pair of gauge invariant fields, which
we will refer to as “baryons”:

B = εi1...iNεa1...aNQa1
i1 · · · QaN

iN , (13.27)

and similarly for B̄.
In the case Nf > N there is a larger set of baryon-like objects, corresponding to additional

flat directions. We will describe them in greater detail later. Before closing this section we
should stress that for Nf ≥ N − 1 the gauge symmetry is completely broken. For large
values of the moduli, the effective coupling of the theory is g2(v) since infrared physics
cuts off at the scale of the gauge field masses. By taking v as sufficiently large that g2(v)
is small, the theories can be analyzed by perturbative and semiclassical methods. Strong
coupling is more challenging, but much can be understood. We will see that the dynamics
naturally divides into three cases: Nf < N, Nf = N, and Nf > N.
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188 Supersymmetric dynamics

13.4 Nf < N: a non-perturbative superpotential

Our problem now is to understand the dynamics of these theories. Away from the origin
of the moduli spaces, this turns out to be a tractable problem. We consider first the case
Nf < N. Suppose that the vis are large and roughly uniform in magnitude. Even here, we
have to distinguish two cases. If Nf = N − 1, the gauge group is completely broken and
the low-energy dynamics consists of the set of chiral fields Mf̄,f. If Nf < N − 1, there is an
unbroken gauge group, SU(N−Nf), with no matter fields (chiral fields) transforming under
this group at low energies. The gauge theory is an asymptotically free theory, essentially
like ordinary QCD with fermions in the adjoint representation. Such a theory is believed
to have a mass gap of order the scale of the theory, �N−Nf . Below this scale, again, the
only light fields are the moduli M f

f̄ . In both cases we can try to guess the form of the
very-low-energy effective action for these fields from symmetry considerations.

We are particularly interested in whether there is a superpotential in this effective action.
If not then the moduli have exactly no potential. In other words, even in the full quantum
theory, they correspond to an exact, continuous, set of ground states. What features should
this superpotential possess? Most important, it should respect the flavor symmetries of
the original theory (because the fields M are gauge invariant, it automatically respects
the gauge symmetry). Among these symmetries are the SU(Nf) × SU(Nf) non-Abelian
symmetry. The only invariant that we can construct from M is

� = det M. (13.28)

The determinant is invariant because it transforms under M → VMU as det V det U det M
and, for SU(Nf) transformations, the determinant is unity. Under baryon number symmetry,
M is invariant. But, under U(1)R symmetry the its transformation law is more complicated:

�→ e2iα(Nf−N). (13.29)

Under this R-symmetry, any would-be superpotential must transform with charge 2, so the
form of the superpotential is unique:

W = �(3N−Nf)/(N−Nf)�−1/(N−Nf). (13.30)

Here we have inserted a factor �, the scale of the theory, on dimensional grounds.
Our goal in the next two sections will be to understand the dynamical origin of this

superpotential, known as the Affleck, Dine and Seiberg (ADS) superpotential. We will see
that there is a distinct difference between the cases Nf = N − 1 and Nf<N−1. First, though,
consider the case N = Nf. Then the field � has R-charge zero, and no superpotential is
possible. So, no potential can be generated, perturbatively or non-perturbatively. Similarly,
in the case Nf > N we cannot construct a gauge-invariant field which is also invariant under
the SU(Nf)× SU(Nf) flavor symmetry. This may not be obvious, since it would seem that
we could again construct � = det M. But in this case � = 0 in the flat directions.

From the perspective of ordinary, non-supersymmetric, field theories, what we have
established here is quite surprising. Normally, we would expect that in an interacting
theory, even if the potential vanished classically there would be quantum corrections. For

https://doi.org/10.1017/9781009290883.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.019
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theories with N ≥ Nf, we have just argued that this is impossible. So this is a new feature
of supersymmetric theories: there are often exact moduli spaces, even at the quantum level.

In the next few sections we will demonstrate that non-perturbative effects do indeed
generate the superpotential of Eq. (13.30). The presence of the superpotential means that,
at least at weak coupling (large vi), there is no stable vacuum of the theory. At best, we
can consider time-dependent, possibly cosmological, solutions. If we add a mass term for
the quarks, however, we find an interesting result. If the masses are the same, we expect
that all the vis will be the same, vi = v. Suppose that the mass term is small. Then the full
superpotential, at low energies, is

W = mQ̄Q +�(3N−Nf)/(N−Nf)�−1/(N−Nf). (13.31)

Remembering that � ∼ v2Nf , the equation for a supersymmetric minimum has the form

v2N/(N−Nf) =
(m
�

)
�2N/(N−Nf). (13.32)

Note that v is a complex number; this equation has N roots

v = e2π ik/N�
(m
�

)(N−Nf)/2N
. (13.33)

What is the significance of these N solutions? The mass term breaks the SU(Nf)×SU(Nf)

symmetry to the vector sum. It also breaks the U(1)R. But it leaves unbroken a ZN subgroup
of the U(1). In Eqs. (13.14), α = 2Nf/N is a symmetry of the mass term. So these N vacua
are precisely those expected from the breaking of the ZN subgroup. This ZN is the same
as that expected for a pure gauge theory, as one can see by thinking of the case where the
mass of the Qs and Q̄s is large.

13.4.1 The�-dependence of the superpotential

Previously, we proved a non-renormalization theorem for the gauge couplings by thinking
of the gauge coupling itself as a background field S. This relied on the shift symmetry

S → S + iα.

This symmetry, however, is only a symmetry of perturbation theory. On the one hand,
since the imaginary part a of S, couples to FF̃, instanton and other non-perturbative effects
violate the symmetry. On the other hand the theory also has an anomalous chiral symmetry,
the R symmetry, under which we can take all the scalar fields to be neutral. So the theory
is symmetric under this R symmetry combined with a simultaneous shift

S → S + i(N − Nf)α. (13.34)

Any superpotential must transform with charge 2 under this symmetry. The field � is
neutral. But we have, for the � parameter,

� = exp

(
− 8π2

b0g2

)
= exp

(
− 8π2

3N − Nf
S
)

(13.35)
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so it transforms as follows:

�(3N−Nf)/(N−Nf) → e2iα�(3N−Nf)/(N−Nf). (13.36)

13.5 The superpotential in the case Nf < N − 1

Consider first the case Nf < N−1. At energies well below the scale v, the theory consists of
a pure (supersymmetric) SU(N−Nf) gauge theory and a number of neutral chiral multiplets.
The chiral multiplets can couple to the gauge theory only through non-renormalizable
operators. Because the moduli are neutral, there are no dimension-four couplings. There
are possible dimension-five couplings; they are of the form

δφW 2
α , (13.37)

where δφ represents the fluctuations of the moduli fields about their expectation values;
the coefficient of this operator will be of order 1/v.

We can be more precise about the form of this coupling by noting that it must respect the
various symmetries if it is written in terms of the original, unshifted fields (this is similar
to our argument for the form of the superpotential). In particular, a coupling of the form

Lcoup = (S + a ln�)W 2
α (13.38)

respects all the symmetries: it clearly respects the SU(Nf) symmetries, and it also respects
the non-anomalous U(1)R symmetry, for a suitable choice of a, since

ln �→ ln �+ (N − Nf)/Nfα. (13.39)

It is not hard to see how this coupling is generated:

� ≈ v N + v N−1φ. (13.40)

Thus Im φ couples to FF̃ through the anomaly diagram, just like an axion. The real part
couples to F2. One can see this by a direct calculation or by noting that the masses of the
heavy fields are proportional to v, so the gauge coupling of the SU(N − Nf) theory depends
on v:

α−1
N−Nf

(μ) = α−1
N (v)+ b(N−Nf)

0
4π

ln
μ

v
. (13.41)

Since � ∼ vNf , we see that we have precisely the correct coupling. It is easy to see which
Feynman graphs generate the couplings to the real and imaginary parts.

But we have seen that in the SU(N − Nf) theory, gaugino condensation gives rise to a
superpotential for the coefficient of W2

α; in this case, it is precisely

W = �(3N−Nf)/(N−Nf)

�1/(N−Nf).
(13.42)

So we have understood the origin of the superpotential in these theories.
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13.6 Nf = N − 1: the instanton-generated superpotential

In the case Nf = N−1, the superpotential is generated by a different mechanism: instantons.
Before describing the actual computation we give some circumstantial evidence for this
fact. Consider the instanton action. This is

exp

(−8π2

g2(v)

)
. (13.43)

Here we have assumed that the coupling is to be evaluated at the scale of the scalar vevs.
The gauge group is, after all, completely broken so, provided that the computation is finite,
this is the only relevant scale (we are also assuming that all the vevs are of the same order).
Thus any superpotential we might compute behaves as

W ∼ v3
(
�

v

)2N+1
∼ �2N+1

v2N−2 , (13.44)

which is the behavior predicted by the symmetry arguments.
To actually compute the instanton contribution to the superpotential, we need to develop

further than in Chapter 5 the instanton computation and the structure of the supersymmetry
zero modes. The required techniques were developed by ’t Hooft, when he computed
the baryon-number-violating terms in the effective action of the standard model; ’t Hooft
started by noting that, in the presence of the Higgs field, there is no instanton solution. This
can be seen by a simple scaling argument. Here the instanton solution will involve Aμ and
φ. Suppose one has such a solution. Now simply do a rescaling of all lengths such that

xμ → ρxμ, Aμ → 1
ρ

Aμ, φ → φ (13.45)

(because φ must tend to its expectation value at ∞, we cannot rescale it). Then the gauge
kinetic terms are invariant but the scalar kinetic terms are not; |Dφ|2 → ρ2|Dφ|2. So the
action is changed, and there is no solution.

However, the instanton configuration, while not a solution, is still distinguished by its
topology; ’t Hooft argued that it makes sense to integrate over solutions of a given topology.
This just means that we write down a configuration for each value of ρ, and integrate
over ρ. For small ρ we can understand this in the following way. The non-zero modes
of the instanton, before turning on the scalar vevs, all have eigenvalues of order 1/ρ or
larger and can be ignored. There are also zero modes. Those associated with rotations and
translations will remain at zero, even in the presence of the scalar, since they correspond
to exact symmetries. But this is not the case for the dilatational zero mode; this mode is
slightly lifted. The scaling argument above shows that the action is smallest at small ρ; we
will see in a moment that the action of the interesting configurations vanishes as ρ → 0.
We know from our earlier studies of QCD, however, that renormalization of the coupling
tends to make the action large at small ρ. Together, these effects yield a minimum of the
action at small but finite ρ, giving a self-consistent justification of the approximation.
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To proceed with the computation, we will use ’t Hooft’s notation for the instanton, which
we introduced in Chapter 5. Recall that

A a
μ(x) = 2ηaμνxν

x2 + ρ2 . (13.46)

It is straightforward to work out Fμν (see the exercises):

F a
μν = ηaμν

(x2 + ρ2)2
. (13.47)

We note that F is self-dual, since η is, so this is a solution of the Euclidean equations.
A second-rank antisymmetric tensor Fμν is a six-dimensional representation of SO(4);
under SU(2) × SU(2) it decomposes as (3, 1) + (1, 3), where these are the self-dual and
anti-self-dual parts of the tensor. The η symbol is essentially a Clebsch–Gordan coefficient,
which describes a mapping of one SU(2) subgroup of SO(4) into SU(2).

At large distances, the instanton is a gauge transformation of “nothing”. i.e. vanishing
values for the fields. The gauge transformation is just

gi
j = iσ̄ μi

j x̂μ. (13.48)

This can be thought of as a mapping of S3 into SU(2); the winding number of the instanton
just counts the number of times space is mapped onto the group.

In this form it is useful to note another way to describe the instanton solution. By an
inversion of coordinates one can write

Aa
μ = 2

g2
ρ2

x2 + ρ2 ηaμν
xν

x2 . (13.49)

This singular gauge instanton is often useful since it falls off more rapidly at large x than
the original instanton solution.

Now, for the doublets we solve the equation

D2Q = D2Q̄ = 0. (13.50)

This has solutions

Qi = Q̄i† = iσ̄ μi
j x̂μ

(
1

x2 + ρ2

)1/2
〈Q j〉, (13.51)

and similarly for Q̄. Like the solution for Aμ, these solutions are “pure gauge” configura-
tions as r → ∞, i.e. they are gauge transformations by g of the constant vev. (Note, here
and above, that the σμs are the Euclidean versions of the two-component Dirac matrices,
σμ = (i, �σ), σ̄ μ = (i, −�σ).)

The action of this configuration is

S(ρ) = 1
g2 (8π

2 + 4π2ρ2v2). (13.52)

Some features of this result are worth noting.
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193 13.6 Nf = N − 1: the instanton-generated superpotential

1. The integral over ρ now converges for large ρ, since it is exponentially damped.
2. Terms in the potential involving |Q|4 make smaller contributions to the action,

according to powers of ρ. Rescaling x as ρx, one sees that these terms are of order ρ4.
But ρ is at most of order gv−1 = mw (from item 1 above), so these terms are suppressed.
This justifies their neglect in the equations of motion.

Our goal is to compute the instanton contribution to the effective action. We particularly
want to see whether the instanton generates the conjectured non-perturbative superpoten-
tial. In order to compute the effective action, we need to ask about the fermion zero modes.
Before turning on the vevs for the scalars, there are six zero modes. Two of these are
generated by supersymmetry transformations of the instanton solution

δλ = σμνβα Fμνεβ , (13.53)

so

λSS[β]
αa = 8σμaβ

α

(x2 + ρ2)2
. (13.54)

Note that, because of the anti-self-duality of σ̄ μν , two supersymmetry generators annihilate
the lowest-order solution, i.e. there are only two supersymmetry zero modes. If we neglect
the Higgs, the classical Yang–Mills action has a conformal (scale) symmetry. This is the
origin of the zero mode associated with changes in ρ. in the classical solution. In the super-
symmetric case, there is, apart from supersymmetry, an additional fermionic symmetry
called superconformal invariance. In superspace the corresponding generators are

QSC =� xQ, (13.55)

so

λSC[β]
αa = 8� xσμaβ

α

(x2 + ρ2)2
. (13.56)

There are also two matter-field zero modes, one for each of the quark doublets:

ψ i
Qα = δi

α

(x2 + ρ2)3/2
= ψQ̄ (13.57)

(in the last equation we treated Q̄ as a doublet also; one can instead treat it as a 2∗
representation by multiplying by εij).

When we turn on the scalar vevs these modes are corrected. The superconformal
symmetry is broken by the vevs and, not surprisingly, the superconformal zero modes are
lifted. In fact, they pair with the two quark zero modes. We can compute this pairing by
treating the Yukawa terms in the Lagrangian as a perturbation, replacing the scalar fields
by their classical values. Expanding to second order, i.e. including∫

d 4x Q∗ψQλ

∫
d 4x′ Q̄∗ψQ̄λ (13.58)

and expanding the fields in the lowest-order eigenmodes, the superconformal and matter-
field zero modes can be absorbed by these terms. Note, in particular, that both Qcl and
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194 Supersymmetric dynamics

λSC are odd under x → −x while the matter-field zero modes are even, so the integral is
non-zero. The supersymmetry zero modes, being even, cannot be soaked up in this way.

The wave functions of the supersymmetry zero modes are altered in the presence of the
Higgs fields, and they now have components in the ψ∗

Q and ψ ∗̄
Q directions. For ψQ, for

example, we need to solve the equation

Dμσ̄μψSS∗
Q = λSSQ∗. (13.59)

This equation is easy to solve, starting with our solution of the scalar equation. If we simply
take

ψSS
Q = DμσμQ∗, (13.60)

then, substituting back into the left-hand side of Eq. (13.59) we obtain

D2Q + σμνFμνQ; (13.61)

the first term vanishes for the classical solution, while the second is indeed just λSSQ∗.
With these ingredients we can compute the superpotential terms in the effective action.

In particular, the non-perturbative superpotential predicts a non-zero term in the component
form of the effective action proportional to

∂2W
∂Q∂Q̄

= 1
v4ψQψQ̄. (13.62)

We can calculate this term by studying the corresponding Green’s function. We need to
be careful, now, about the various collective coordinates. We want to study the gauge-
invariant correlation function

〈Q̄(x)ψQ(x)ψQ̄( y)Q( y)〉 (13.63)

in the presence of the instanton. Since we are interested in the low-momentum limit of the
effective action, we can take x and y to be widely separated. We need to integrate over the
instanton location x0 and the instanton orientation and scale size. Because the gauge fields
are massive, we can take x and y both to be far from the instanton. Then, from our explicit
solution for the supersymmetry zero modes, we obtain

ψQ(x) ∝ �DQ ∝ �D iσμ
(
xμ − xμ0

)
[(x − x0)2 + ρ2]1/2 → g(x − x0)SF(x − x0), (13.64)

with a similar equation for ψQ̄. The g and g† factors are canceled by corresponding factors
in Q and Q̄, at large distances. Substituting these expressions into the path integral and
integrating over x0 gives a convolution, v2 ∫ d4x0 SF(x − x0)SF(y − y0). Extracting the
external propagators, we obtain the effective action. Integrating over ρ gives a term of
precisely the desired form. If we contract the gauge and spinor indices in a gauge and
rotationally invariant manner, the integral over rotations just gives a constant factor. It
requires some work to do all the bookkeeping correctly. The evaluation of the determinant
is greatly facilitated by supersymmetry: there is a precise fermion–boson pairing of all
the non-zero modes. In the exercises, you are asked to work out more details of this
computation; further details can also be found in the references.
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Q
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Q

ψQ

ψQ

ψQ

ψQ

λ

λ

λ

λ

Q

Q

Fig. 13.1 Schematic description of the instanton computation of the superpotential. Four zero modes are tied together by
the scalar vevs; two gluino zero modes turn intoψ zero modes as well.

Without working through all the details we can see the main features.

1. The perturbative lifting of the zero modes gives rise to a contribution proportional to v2

(see Fig. 13.1).
2. The matter-field component of the supersymmetry zero modes studied above gives a

contribution to the gauge-invariant correlation function:

v4
∫

d 4x0 Sf (x − x0)Sf ( y − y0). (13.65)

3. The integral over the gauge collective coordinates (equivalently the rotational collective
coordinates) simply gives a constant, since we have computed a gauge- and rotationally
invariant quantity.

4. The scale-size collective coordinate integral behaves as

W = A
∫

dρ v4 exp −
[(

8π2

g2(ρ)
+ 4π2ρ2v2

)]
(13.66)

where the power of ρ has been determined from dimensional analysis and A is a
constant.

5. Extracting the constant requires careful attention to the normalization of the zero modes
and to the Jacobians for the collective coordinates. However, the non-zero modes come
in Fermi–Bose pairs, and their contribution to the functional integral cancels.

6. The final ρ integral gives

W = A′�5

v2 , (13.67)

which is consistent with the expectations of the symmetry analysis.

This analysis generalizes straightforwardly to the case of general Nc.
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196 Supersymmetric dynamics

13.6.1 An application of the instanton result: gaugino condensation

The instanton calculation for the case Nf = N − 1 is a systematic weak-coupling computa-
tion of the superpotential which appears in the low-energy-effective action. Seiberg noted
that this result, plus holomorphy, allows systematic study of the strongly coupled regime
of other theories. To understand this, take N = 2 and add a mass term for the quark. In this
case, for very small mass the superpotential is

W = mQ̄Q + �2N+1

Q̄Q
. (13.68)

We can solve the equation for Q:

Q̄ =
(

0
v

)
, v =

(
�5

m

)1/4

. (13.69)

Using this we can evaluate the expectation value of the superpotential at the minimum:

W(m,�) = �5/2m1/2. (13.70)

Because W is holomorphic, this result also holds for large m. For large m, the low-energy
theory is just a pure SU(2) gauge theory. We expect for large m that the superpotential is
〈λλ〉 = �3

le. But this is equal to

W = 〈λλ〉 = m3 exp

[
− 8π2

2g2(m)

]
. (13.71)

The right-hand side is simply�3
le. We have, in fact, done a systematic, reliable computation

of the gluino condensate in a strongly interacting gauge theory!

Suggested reading

Excellent treatments of supersymmetric dynamics appear in the text by Weinberg (1995),
and in Michael Peskin’s lectures (1997). We have already mentioned ’t Hooft’s original
instanton paper (1976). The instanton computation of the superpotential is described in
Affleck et al. (1984).

Exercises

(1) Verify that σμν and σ̄μν are self-dual and anti-self-dual, respectively. This means that
Tr σ aσμν is a self-dual tensor. Verify the connection to η; do the same thing for η̄.

(2) Verify Eq. (13.47), which shows that F is self-dual and so solves the Euclidean Yang–
Mills equations. Check that asymptotically the instanton potential is a gauge transform
of “nothing.”
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197 Exercises

(3) Verify the solution Eq. (13.51) of the scalar field equation. Compute the action of this
field configuration.

(4) Perform the zero-mode counting for the case of general Nc, Nf = Nc − 1. Show that,
again, all but two zero modes pair with matter-field zero modes; two supersymmetry
zero modes contain matter-field components which can give rise to the expected
superpotential.
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