Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T17:03:02.476Z Has data issue: false hasContentIssue false

5 - Modeling the In-Flow Capture of Magnetic Nanoparticles

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Darton, N. J., Hallmark, B., Han, X., Palit, S., Slater, N. K., and Mackley, M. R., The in-flow capture of superparamagnetic nanoparticles for targeting therapeutics. Nanomed. Nanotechnol., 4:1(2008), 1929.Google Scholar
Darton, N. J., Hallmark, B., James, T., Agrawal, P., Mackley, M. R., and Slater, N. K. H. H. Magnetic capture of superparamagnetic nanoparticles in a constant pressure microcapillary flow. J. Magn. Magn. Mater., 321:10(2009), 1571–4.Google Scholar
Iacob, G., Rotariu, O., Strachan, N. J. C., and Häfeli, U. O. Magnetizable needles and wires–modeling an efficient way to target magnetic microspheres in vivo. Biorheology., 41:5(2004), 599612.Google Scholar
Rotariu, O. and Strachan, N. J. C. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. J. Magn. Magn. Mater., 293:1 (2005), 639–46.CrossRefGoogle Scholar
Voltairas, P. A., Fotiadis, D. I., and Michalis, L. K. Hydrodynamics of magnetic drug targeting. J. Biomech., 35:6(2002), 813–21.Google Scholar
Hallmark, B., Darton, N. J.,James, T., Agrawal, P., and Slater, N. K. H. Magnetic field strength requirements to capture superparamagnetic nanoparticles within capillary flow. J. Nanoparticle Res., 12:8(2010), 2951–65.Google Scholar
Hallmark, B., Darton, N. J., Han, X., Palit, S., Mackley, M. R., and Slater, N. K. H. Observation and modelling of capillary flow occlusion resulting from the capture of superparamagnetic nanoparticles in a magnetic field. Chem. Eng. Sci., 63:15(2008), 3960–5.Google Scholar
Bird, R. B., Armstrong, R. C., and Hassager, O. Dynamics of polymeric liquids. Volume 1 – Fluid Mechanics, 2nd edn (New York, NY: John Wiley and Sons Inc., 1987).Google Scholar
Herschel, W. H. and Bulkley, R. Konsistenzmessungen von Gumni-Benzollosungen. Kolloid Zeitschrift., 39(1926), 291300.CrossRefGoogle Scholar
Steffe, J. Rheological Methods in Food Process Engineering, 2nd edn (East Lansing, MI: Freeman Press, 1996).Google Scholar
Merrill, E. W., Benis, A. M., Gilliland, E. R., Sherwood, T. K., and Salzman, E. W. Pressure-flow relations of human blood in hollow fibers at low flow rates. J. Appl. Physiol., 20:5 (1965), 954–67.Google Scholar
Ballyk, P. D., Steinman, D. A., and Ethier, C. R. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology., 31:5 (1994), 565–86.Google Scholar
Johnston, B. M., Johnston, P. R., Corney, S., and Kilpatrick, D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech., 37:5 (2004), 709–20.Google Scholar
Haverkort, J. W., Kenjeres, S., and Kleijn, C. R. Computational simulations of magnetic particle capture in arterial flows. Ann. Biomed. Eng., 37:12(2009), 2436–48.Google Scholar
Shaw, S., Murthy, P. V. S. N., and Pradhan, S. C. Effect of non-Newtonian characteristics of blood on magnetic targeting in the impermeable micro-vessel. J. Magn. Magn. Mater., 322:8 (2010), 1037–43.Google Scholar
Casson, N. A flow equation for pigment-oil suspensions of the printing ink type. In C. C. Mill, , ed., Rheology of Disperse Suspensions (New York, NY: Pergamon Press, 1959) pp. 84104.Google Scholar
Chung, T. J. Computational Fluid Dynamics, 2nd edn (Cambridge: Cambridge University Press, 2002).Google Scholar
Ganguly, R., Gaind, A. P., Sen, S., and Puri, I. K. Analyzing ferrofluid transport for magnetic drug targeting. J. Magn. Magn. Mater., 289 (2005), 331–4.CrossRefGoogle Scholar
Li, X. L., Yao, K. L., and Liu, Z. L. CFD study on the magnetic fluid delivering in the vessel in high-gradient magnetic field. J. Magn. Magn. Mater., 320:11 (2008), 1753–8.Google Scholar
Jayalalitha, G., Shanthoshini Deviha, V., and Uthayakumar, R., Fractal model for blood flow in cardiovascular system. Comput. Biol. Med., 38:6 (2008), 684–93.Google Scholar
Avilés, M. O., Ebner, A. D., Chen, H., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A. Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles. J. Magn. Magn. Mater., 293:1 (2005), 605–15.Google Scholar
Kenjereš, S. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields. Int. J. Heat Fluid Flow., 29 (2008), 752–64.Google Scholar
Mahmoudi, M., Shokrgozar, M. A., Simchi, A., et al., Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol). J. Phys. Chem. C, 113:6 (2009), 2322–31.CrossRefGoogle Scholar
Mardinoglu, A., Cregg, P. J., Murphy, K., Curtin, M., and Prina-Mello, A. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application. J. Magn. Magn. Mater., 323:3–4 (2011), 324–9.CrossRefGoogle Scholar
Cregg, P. J., Murphy, K., Mardinoglu, A., and Prina-Mello, A. Many particle magnetic dipole–dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting. J. Magn. Magn. Mater., 322:15 (2010), 2087–94.Google Scholar
Li, X. L., Yao, K. L., Liu, H. R., and Liu, Z. L. The investigation of capture behaviors of different shape magnetic sources in the high-gradient magnetic field. J. Magn. Magn. Mater., 311:2 (2007), 481–8.CrossRefGoogle Scholar
Păltânea, V., Păltânea, G., and Popovici, D. Numerical approach for an application of magnetic drug targeting in cancer therapy. Rev. Roum. Sci. Techn., 53 (2008), 137–46.Google Scholar
Munir, A., Wang, J., and Zhou, H. S. Dynamics of capturing process of multiple magnetic nanoparticles in a flow through microfluidic bioseparation system. IET Nanobiotechnol., 3:3 (2009), 5564.Google Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 36:13 (2003), R167–81.Google Scholar
Chen, H., Ebner, A. D., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater., 284 (2004), 181–94.Google Scholar
Chen, H. T., Ebner, A. D., Kaminski, M. D., Rosengart, A. J., and Ritter, J. A. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 2. Parametric study with multi-wire two-dimensional model. J. Magn. Magn. Mater., 293:1 (2005), 616–32.CrossRefGoogle Scholar
Furlani, E. J. and Furlani, E. P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater., 312:1 (2007), 187–93.CrossRefGoogle Scholar
Ewijk, G. A. van, Vroege, G. J., and Philipse, A. P. Susceptibility measurements on a fractionated aggregate-free ferrofluid. J. Phys. Condens. Matter., 14:19(2002), 4915–25.Google Scholar
Connolly, J., St Pierre, T. G., and Dobson, J. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres. Biomed. Mater. Eng., 15:6(2005), 421–31.Google ScholarPubMed
Cregg, P. J., Murphy, K., and Mardinoglu, A. Inclusion of magnetic dipole–dipole and hydrodynamic interactions in implant-assisted magnetic drug targeting. J. Magn. Magn. Mater., 321:23(2009), 3893–8.Google Scholar
Cherry, E. M., Maxim, P. G., and Eaton, J. K. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Med. Phys., 37:1 (2010), 175–82.Google Scholar
Saffman, P. G., The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22:2 (2006), 385400.Google Scholar
Darton, N. J., Hallmark, B.,Agrawal, P., James, T., Ho, V. H. B., and Slater, N. K. H. On the magnetic field architecture required to capture superparamagnetic nanoparticles in a microcapillary flow. J. Nanoparticle Res., 12:1 (2010), 307–17.CrossRefGoogle Scholar
Chin, C-J., Yiacoumi, S., Tsouris, C., Relle, S., and Grant, S. B., Secondary-minimum aggregation of superparamagnetic colloidal particles. Langmuir, 16:8(2000), 3641–50.Google Scholar
Korth, B. D., Keng, P., Shim, I., et al., Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J. Am. Chem. Soc., 128:20 (2006), 6562–3.Google Scholar
Wilson, R. J., Hu, W., Wong, C., et al., Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells. J. Magn. Magn. Mater., 321:10 (2009), 1452–8.Google Scholar
Neto, C., Bonini, M., and Baglioni, P. Self-assembly of magnetic nanoparticles into complex superstructures: Spokes and spirals. Colloids Surf. A Physicochem. Eng. Asp., 269:1–3 (2005), 96100.Google Scholar
Zubarev, A. Yu and Iskakova, L. Yu, Condensation phase transitions in ferrofluids. Phys. A Stat. Mech. Appl., 335:3–4 (2004), 325–38.CrossRefGoogle Scholar
Zubarev, A. Yu and Iskakova, L. Yu, To the theory of rheological properties of ferrofluids: Influence of drop-like aggregates. Phys. A Stat. Mech. Appl., 343:15 (2004), 6580.Google Scholar
Kendall, K. and Kosseva, M. R. Nanoparticle aggregation influenced by magnetic fields. Colloids Surf. A Physicochem. Eng. Asp. 286:1–3 (2006), 112–6.Google Scholar
Maass, W., Duschl, M., Hoffmann, H., and Friedlaender, F. J. A new model for the explanation of the saturation buildup in the transverse HGMS-configuration. Appl. Phys. A, 32:2 (1983), 7985.Google Scholar
Patil, V. R. S., Campbell, C. J., Yun, Y. H., Slack, S. M., and Goetz, D. J. Particle diameter influences adhesion under flow. Biophys. J., 80:4 (2001), 1733–43.Google Scholar
Mackley, M. R. and Sherman, N. E., Cross-flow cake filtration mechanisms and kinetics. Chem. Eng. Sci., 47:12 (1992), 3067–84.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×