ON ζ_{n}-WEYL ALGEBRA $W_{r}\left(\zeta_{n}, Z\right)$

HISASI MORIKAWA

0.

Weyl algebra is an associative algebra generated by two elements \hat{a} and a over \boldsymbol{R} such that the generating relation is given by

$$
\hat{a} a-a \hat{\alpha}=1,
$$

which is isomorphic to the algebra of differential operators

$$
R\left[z, \frac{d}{d z}\right]
$$

q analog of Weyl algebra $W_{1}(q, \boldsymbol{R})$ is an associative algebra with two generators \hat{a} and a such that the generating relations is

$$
\hat{a} a-q a \hat{a}=1 .
$$

If q is not a root of unity of finite degree, q-analog $W_{1}(q, \boldsymbol{R})$ is isomorphic to the algebra of q-Differential operators

$$
R\left[z, D_{q}\right],
$$

where

$$
D_{q}(f(z))=\frac{f(z)-f(q z)}{z(1-q)}
$$

q-analog of Weyl algebra is sometimes called q-quatisation by physisist ([2], [3]).

Exceptional case $q=a$ primitive n-th root of unity $\zeta_{n}, W_{1}\left(\zeta_{n}, Z\right)$ has quite beautiful properties; standard elements $\hat{a}^{n}, a^{n}, \hat{a} a-a \hat{a}$ play important part of role.
§ 1.
We mean by ζ_{n} a primitive n-th root of unity, and define ζ_{n}-analog of Weyl algebra $Z[z, d / d z]$ as follows;

Received October 12, 1987.
ζ_{n}-Weyl algebra $W_{1}\left(\zeta_{n}, Z\right)$ is a $Z\left[\zeta_{n}\right]$-algebra generated by two elements \hat{a} and a such that

$$
\begin{equation*}
\hat{a} a-\zeta_{n} a \hat{a}=1 \tag{1}
\end{equation*}
$$

is the generator of relations between $\hat{\alpha}$ and a.
Putting

$$
\begin{equation*}
\hat{u}=\hat{a}^{n}, \quad u=a^{n}, \quad c=\hat{a} a-a \hat{a} \tag{2}
\end{equation*}
$$

we shall show that i) $Z\left[\zeta_{n}, \hat{u}, u\right]$ is the center of $W_{1}\left(\zeta_{n}, Z\right)$, i.e. $W_{1}\left(\zeta_{n}, Z\right)$ is a central $Z\left[\zeta_{n}, \hat{u}, u\right]$-algebra generated by \hat{a} and a such that i) $\hat{a} a-$ $\zeta_{n} a \hat{a}=1, \hat{a}^{n}=\hat{u}, a^{n}=u$ and \hat{u} and u are independent variables, ii) $c^{n}=$ $1-\left(1-\zeta_{n}\right)^{n} u \hat{u}$, iii) $W_{1}\left(\zeta_{n}, \boldsymbol{Z}\right) \otimes_{\boldsymbol{Z}\left[\zeta_{n}, \hat{u}, u\right]} \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$ is a central division algebra over $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$, which is given by the factor system

$$
\left(\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u, c\right) / \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right), a^{-1} c a=\zeta_{n} c, a^{n}=u\right)
$$

We shall also generalize these results to the $Z\left[\zeta_{n}\right]$-algebra $W_{r}\left(\zeta_{n}, Z\right)$ generated $\hat{a}_{1}, \cdots, \hat{a}_{r}, a_{1}, \cdots, a_{r}$ such that the generators of relations are given by

$$
\begin{array}{ll}
\hat{a}_{i} a_{i}-\zeta_{n} a_{i} \hat{a}_{i}=1 & (1 \leqq i \leqq r) \\
\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}=\hat{a}_{i} a_{j}-a_{j} \hat{a}_{i}=a_{i} a_{j}-a_{j} a_{i} & (i \neq j) .
\end{array}
$$

§ 2.
Let us prove some lemmas.
Lemma 1.

$$
\begin{align*}
& c=1-\left(1-\zeta_{n}\right) a \hat{a} \tag{3}\\
& \hat{a} c=\zeta_{n} c \hat{\alpha}, \quad c a=\zeta_{n} a c . \tag{4}
\end{align*}
$$

Proof. (3) is a direct consequence of (1) and (2). (3) implies (4) as follows,

$$
\begin{aligned}
c a-\zeta_{n} a c & =\left(1-\left(1-\zeta_{n}\right) a \hat{a}\right) a-\zeta_{n} a\left(1-\left(1-\zeta_{n}\right) a \hat{a}\right) \\
& =a-\left(1-\zeta_{n}\right) a\left(1+\zeta_{n} a \hat{a}\right)-\zeta_{n} a+\zeta_{n}\left(1-\zeta_{n}\right) a^{2} \hat{a}=0, \\
\hat{a} c-\zeta_{n} c \hat{a} & =\hat{a}\left(1-\left(1-\zeta_{n}\right) a \hat{a}\right)-\zeta_{n}\left(1-\left(1-\zeta_{n}\right) a \hat{a}\right) \hat{a} \\
& =\hat{a}-\left(1-\zeta_{n}\right)\left(1+\zeta_{n} a \hat{a}\right) \hat{a}-\zeta_{n} \hat{a}+\zeta_{n}\left(1-\zeta_{n}\right) a \hat{a}^{2}=0 .
\end{aligned}
$$

Lemma 2.

$$
\begin{align*}
& \hat{a} a^{\ell}=\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) a^{\ell-1}+\zeta_{n}^{\ell} a^{\ell} \hat{a}, \tag{5}\\
& \hat{a}^{\ell} a=\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) \hat{a}^{\ell-1}+\zeta_{n}^{\ell} a \hat{a}^{\ell} . \tag{6}
\end{align*}
$$

Proof. For $\ell=1$, (5) and (6) are nothing else than (1). Assuming (5) for ℓ, we have

$$
\begin{aligned}
\hat{a} a^{\ell+1} & =\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) a^{\ell}+\zeta_{n}^{\ell} a^{\ell} \hat{a} a \\
& =\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) a^{\ell}+\zeta_{n}^{\ell} a^{\ell}\left(1+\zeta_{n} a \hat{a}\right) \\
& =\left(\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right)+\zeta_{n}^{\ell}\right) a^{\ell}+\zeta_{n}^{\ell+1} a^{\ell+1} \hat{a} \\
& =\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell+1}\right) a^{\ell}+\zeta_{n}^{\ell+1} a^{\ell+1} \hat{u} .
\end{aligned}
$$

Similarly (6) can be proved.
Lemma 3. \hat{u} and \hat{u} belong to the center of $W_{1}\left(\zeta_{n}, Z\right)$.
Proof. From $\zeta_{n}^{n}=1$, it follows

$$
\begin{aligned}
\hat{u} a & =\hat{a}^{n} a \\
& =\left(1-\zeta_{n}^{-1}\right)\left(1-\zeta_{n}^{n}\right) \hat{a}^{n-1}-\zeta_{n}^{n} a \hat{a}^{n} \\
& =a \hat{u}, \\
\hat{a} u & =\hat{a} a^{n}=\left(1-\zeta_{n}^{-1}\right)\left(1-\zeta_{n}^{n}\right) a^{n-1}+\zeta_{n}^{n} a^{n} \hat{a} \\
& =a^{n} \hat{a}=u \hat{a} .
\end{aligned}
$$

Proposition 1. $Z\left[\zeta_{n}, \hat{u}, u\right]$ is the center of $W_{1}\left(\zeta_{n}, Z\right)$.
Proof. Since (1) is the generator of the relations between $\hat{\alpha}$ and a, the set $\left\{a^{\ell} \hat{a}^{h}, 0 \leqq \ell, h \leqq n-1\right\}$ is a basis of $W_{1}\left(\zeta_{n}, Z\right)$ over $Z\left[\zeta_{n}, \hat{u}, u\right]$. From $\hat{a} c=\zeta_{n} c \hat{a}$ and $c a=\zeta_{n} a c$, it follows

$$
c a^{e} \hat{a}^{h}=\zeta_{n}^{\iota-h} a^{e} \hat{a}^{h} c .
$$

This means that any element in the center must be written as follows,

$$
\alpha_{0}+\sum_{\ell=1}^{n-1} \alpha_{\ell} a^{\ell} \hat{a}^{\ell} \quad\left(\alpha_{\ell} \in \boldsymbol{Z}\left[\zeta_{n}, \hat{u}, u\right]\right) .
$$

It is sufficient to prove $\alpha_{\ell}=0(1 \leqq \ell \leqq n-1)$. Assume $\alpha_{\ell_{0}}$ be the first non-zero one in $\left\{\alpha_{1}, \cdots, \alpha_{n-1}\right\}$, Then we have

$$
\begin{aligned}
0 & =a\left(\sum_{\ell=1}^{n-1} \alpha_{\ell} a^{\ell} \hat{a}^{\ell}\right)-\left(\sum_{\ell=1}^{n-1} \alpha_{\ell} a^{\ell} \hat{a}^{\ell}\right) a \\
& =\sum_{\ell=1}^{n-1} \alpha_{\ell} a^{\ell+1} \hat{a}-\sum_{\ell=1}^{n-1} \alpha_{\ell}\left\{\begin{array}{ll}
1 & \left.\zeta_{n}\right)^{-1}(1 \\
& \left.=-\zeta_{n}^{\ell}\right) a^{\ell} \hat{a}^{\ell-1} \zeta_{n}^{\ell} a^{\ell+1} \hat{a}^{\ell} \\
& \left.1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) a^{\ell} \hat{a}^{\ell_{0}-1}
\end{array}+\sum_{\ell=\ell_{0}-1}^{n-1} \beta_{\ell} a^{\ell-1} \hat{a}^{\ell}+\beta_{n-1} u \hat{a}^{n-1}\right.
\end{aligned}
$$

with $\beta_{1}, \cdots, \beta_{n-1} \in Z\left[\zeta_{n}, \hat{u}, u\right]$. This means $\alpha_{\ell_{0}}=0$, therefore $\alpha_{\ell}=0(1 \leqq \ell$ $\leqq n-1$).

Lemma 4.

$$
\begin{equation*}
(a \hat{a})^{\ell}=\zeta_{n}^{\ell(\ell-1) / 2} a^{\ell} \hat{a}^{\ell}+\sum_{n=1}^{\ell-1} \alpha_{\ell, h} a^{h} \hat{a}^{h} \tag{7}
\end{equation*}
$$

with $\alpha_{\ell, n} \in Z\left[\zeta_{n}, \hat{u}, u\right]$.
Proof. For $\ell=1$ (7) is the identity $a \hat{a}=a \hat{a}$. Assuming (7) for ℓ, we have

$$
\begin{aligned}
(a \hat{a})^{\ell+1}= & \zeta_{n}^{\ell(\ell-1) / 2} a^{\ell} \hat{a}^{\ell} a \hat{a}+\sum_{h=1}^{\ell-1} \alpha_{\ell, h} a^{h} \hat{a}^{h} a \hat{a} \\
= & \zeta^{\ell(\ell-1) / 2} a^{\ell}\left\{\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{\ell}\right) \hat{a}^{\ell-1}+\zeta_{n}^{\ell} a \hat{a}^{\ell}\right\} \hat{a} \\
& +\sum_{n=1}^{\ell-1} \alpha_{\ell, h} a^{h}\left\{\left(1-\zeta_{n}\right)^{-1}\left(1-\zeta_{n}^{h}\right) \hat{a}^{h-1}+\zeta_{n}^{h} a \hat{a}^{h}\right\} \hat{a} \\
= & \left(\zeta_{n}^{\ell(\ell-1) / 2} \zeta_{n}^{\ell}\right) a^{\ell+1} \hat{a}^{\ell+1}+\sum_{n=1}^{\ell} \alpha_{\ell+1, h} a^{h} \hat{a}^{h} \\
= & \zeta_{n}^{\ell(\ell-1) / 2} a^{\ell+1} \hat{a}^{\ell+1}+\sum_{n=1}^{\ell} \alpha_{\ell+1, h} a^{h} \hat{a}^{h}
\end{aligned}
$$

with $\alpha_{\ell+1,1}, \cdots, \alpha_{\ell+1, \ell}$ in $Z\left[\zeta_{n}, \hat{u}, u\right]$.
Proposition 2.

$$
\begin{equation*}
c^{n}=1-\left(1-\zeta_{n}\right)^{n} u \hat{u} \tag{8}
\end{equation*}
$$

Proof. From $\zeta_{n}^{n}=1$ it follows $\hat{a} c^{n}=c^{n} \hat{a}$ and $a c^{n}=c^{n} a$, i.e. c^{n} belongs to the center $Z\left[\zeta_{n}, \hat{u}, u\right]$. By virtue of (3) and (7)

$$
\begin{aligned}
c^{n}= & \left(1-\left(1-\zeta_{n}\right) \alpha \hat{a}\right)^{n}=1+(-1)^{n}\left(1-\zeta_{n}\right)^{n}(a \hat{a})^{n} \\
& +\sum_{\ell=1}^{n-1}(-1)^{\ell}\binom{n}{\ell}\left(1-\zeta_{n}\right)^{\ell}(a \hat{a})^{\ell} \\
= & 1+(-1)^{n}\left(1-\zeta_{n}\right)^{n \zeta_{n}^{n}(n-1) / 2} a^{n} \hat{a}^{n}+\sum_{\ell=1}^{n-1} \gamma_{\ell} a^{\ell} \hat{a}^{\ell} .
\end{aligned}
$$

Since c^{n} belongs to $Z\left[\zeta_{n}, \hat{u}, u\right]$,

$$
c^{n}=1+\left(1-\zeta_{n}\right)^{n}(-1)^{n} \zeta_{n}^{n(n-1) / 2} u \hat{u}=1-\left(1-\zeta_{n}\right)^{n} u \hat{u} .
$$

$\$_{1} 3$.
We mean by $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$ and $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u, c\right)$ the quotient fields of $Z\left[\zeta_{n}, \hat{u}, u\right]$ and $Z\left[\zeta_{n}, \hat{u}, u, c\right]$, respectively.

Theorem 1. $W_{1}\left(\zeta_{n}, \boldsymbol{Z}\right) \otimes_{Z\left[\zeta_{n}, \hat{u}, u\right]} \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$ is a central division algebra over $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$, which is given by the n-cyclic factor system.

$$
\begin{equation*}
\left(\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u, c\right) / \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right), a c a^{-1}=c^{\sigma}, a^{n}=u\right) \tag{9}
\end{equation*}
$$

where $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u, c\right) / \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$ is the Kummer extension with galois group $\left\langle\sigma \mid \sigma^{n}=1\right\rangle$ such that $c^{\sigma}=\zeta_{n} c$.

Proof. From (4) and (8)

$$
W_{1}\left(\zeta_{n}, Z\right) \otimes_{\boldsymbol{Z}\left[\zeta_{n}, \hat{u}, u\right]} \boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)
$$

is given by the factor system (9), and thus it is a central simple $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, n\right)$-algebra. On the other hand \hat{u} and u are independent variables over $\boldsymbol{Q}\left(\zeta_{n}\right)$, and thus u is not a norm from any subfield of $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right.$, $\sqrt[n]{\left.1-\left(1-\zeta_{n}\right)^{n} u \hat{u}\right)}$ to $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}, u\right)$. This means that the algebra is a division algebra.

Example. - 1-Weyl algebra $W_{1}(-1, Z)$ is a $Z[\hat{u}, u]$-algebra generated by two elements \hat{a} and a such that

$$
\begin{equation*}
\hat{a} a+a \hat{a}=1, \quad \hat{a}^{2}=\hat{u}, \quad a^{2}=u \tag{10}
\end{equation*}
$$

where \hat{u} and u are independent commutative variables over \boldsymbol{Z}.
Proposition 3. $W_{1}(-1, \boldsymbol{Z})$ is isomorphic to the \boldsymbol{Z}-algebra generated by two 2×2-matrices

$$
\rho(\hat{a})=\left(\begin{array}{cc}
0 & \frac{1+\sqrt{1-4 u \hat{u}}}{2} \tag{11}\\
\frac{1-\sqrt{1-4 u \hat{u}}}{2 u} & 0
\end{array}\right), \quad \rho(a)=\left(\begin{array}{ll}
0 & u \\
1 & 0
\end{array}\right),
$$

where \hat{u} and u are independent commutative variables over \boldsymbol{Z}.
Proof. By calculation we have

$$
\begin{aligned}
& \rho(\hat{a}) \rho(a)+\rho(a) \rho(\hat{a})=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \rho(\hat{a})^{2}=\left(\begin{array}{ll}
\hat{u} & 0 \\
0 & \hat{u}
\end{array}\right), \quad \rho(a)^{2}=\left(\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right) .
\end{aligned}
$$

From $(\hat{a} a-a \hat{a})^{2}=1-4 u \hat{u}$, it follows that

$$
W_{1}(-1, \boldsymbol{Z}) \otimes_{\boldsymbol{Z}[\hat{u}, u]} \boldsymbol{Q}(\hat{u}, u)
$$

is given by the factor system

$$
\left.\boldsymbol{Q}(\hat{u}, u \sqrt{1-4 u \hat{u}}) / \boldsymbol{Q}(\hat{u}, u), a^{-1} \sqrt{1-4 u \hat{u}} a=-\sqrt{1-4 u \hat{u}}, a^{2}=u\right) .
$$

$\S 4$.
For a natural number r, ζ_{n}-Weyl algebra $W_{r}\left(\zeta_{n}, Z\right)$ is defined as a $Z\left[\zeta_{n}\right]$-algebra generated by $\hat{a}_{1}, \cdots, \hat{a}_{r}, a_{1}, \cdots, a_{r}$ such that

$$
\begin{gather*}
\hat{a}_{i} a_{i}-\zeta_{n} a_{i} \hat{a}_{i}=1 \quad(1 \leqq i \leqq r) \tag{12}\\
\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}=\hat{a}_{i} a_{j}-a_{j} \hat{a}_{i}=a_{i} a_{j}-a_{j} a_{i}=0 \quad(i \neq j) \tag{13}
\end{gather*}
$$

are the generators of relations between $\hat{a}_{1}, \cdots, \hat{a}_{r}, a_{1}, \cdots, a_{r}$.
Proposition 4. Put $\hat{a}_{i}^{n}=\hat{u}_{i}, a_{i}^{n}=u_{i}(1 \leqq i \leqq r)$. Then $Z\left[\zeta_{n}, \hat{u}_{1}, \cdots\right.$, $\left.\hat{u}_{r}, u_{1}, \cdots, u_{r}\right]$ is the center of $W_{r}\left(\zeta_{n}, \boldsymbol{Z}\right)$.

This is proved similarly as for $W_{1}\left(\zeta_{n}, \boldsymbol{Z}\right)$.
Proposition 5. Denoting $c_{i}=\hat{a}_{i} a_{i}-a_{i} \hat{a}_{i}(1 \leqq i \leqq r)$, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
c_{i}=1-\left(1-\zeta_{n}\right) a_{i} \hat{a}_{i} \\
\hat{a}_{i} c_{i}=\zeta_{n} c_{i} \hat{a}_{i}, \quad c_{i} a_{i}=\zeta_{n} a_{i} c_{i} \\
c_{i}^{n}=1-\left(1-\zeta_{n}\right)^{n} u_{i} \hat{u}_{i}
\end{array}\right. \tag{14}\\
& c_{i} \hat{a}_{j}=\hat{a}_{j} c_{i}, \quad c_{i} a_{j}=a_{j} c_{i} \quad(i \neq j) . \tag{15}
\end{align*}
$$

Proof. (14) is proved similarly as for $W_{1}\left(\zeta_{n}, \boldsymbol{Z}\right)$ and (15) is a direct consequence of the relation (13).

Similarly as $W_{1}\left(\zeta_{n}, Z\right)$, we have
Proposition 6. $\quad W_{r}\left(\zeta_{n}, \boldsymbol{Z}\right)$ is a central $\boldsymbol{Z}\left[\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}\right]-$ algebra generated by $\hat{a}_{1}, \cdots, \hat{a}_{r}, a_{1}, \cdots, a_{r}$ such that

$$
\begin{array}{ll}
\hat{a}_{i} a_{i}-\zeta_{n} a_{i} \hat{a}_{i}=1 & (1 \leqq i \leqq r), \\
\hat{a}_{i} \hat{a}_{j}-\hat{a}_{j} \hat{a}_{i}=\hat{a}_{i} a_{j}-a_{j} \hat{a}_{i}=a_{i} a_{j}-a_{j} a_{i}=0 & (i \neq j), \\
\hat{a}_{i}^{n}=\hat{u}_{i}, \quad a_{i}^{n}=u_{i} & (1 \leqq i \leqq r),
\end{array}
$$

where $\hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}$ are independent commutative variables over \boldsymbol{Z}.
Similarly as $W_{1}\left(\zeta_{n}, \boldsymbol{Z}\right)$, we have
Theorem 2. $\quad W_{r}\left(\zeta_{n}, \boldsymbol{Z}\right) \otimes_{\boldsymbol{Z}\left[\zeta_{n}, \hat{u}_{1}, \ldots, \hat{u}_{r}, u_{1}, \cdots, u_{r}\right]} \boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}\right)$ is a central division algebra over $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}\right)$, which is given by the factor system

$$
\begin{aligned}
& \left(\boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}, c_{1}, \cdots, c_{r}\right) / \boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1} \cdots, u_{r}\right) ;\right. \\
& \left.a_{1}^{-1} c_{1} a_{1}=c_{1}^{\sigma_{1}}, \cdots, a_{r}^{-1} c_{r} a_{r}=c_{r}^{o_{r}} ; a_{1}^{n}=u_{1}, \cdots, a_{r}^{n}=u_{r}\right)
\end{aligned}
$$

where $\boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}, c_{1}, \cdots, c_{r}\right) / \boldsymbol{Q}\left(\zeta_{n}, \hat{u}_{1}, \cdots, \hat{u}_{r}, u_{1}, \cdots, u_{r}\right)$ is the Kummer extension with galois group $\left\langle\sigma_{1}, \cdots, \sigma_{r} \mid \sigma_{1}^{n}=\cdots=\sigma_{r}^{n}=1\right\rangle$ such that $c_{1}^{\sigma_{1}}=\zeta_{n} c_{1}, \cdots, c_{r}^{o_{r}}=\zeta_{n} c_{r}, c_{i}^{\sigma_{j}}=c_{i}(i \neq j)$.

References

[1] M. Deuring, Algebren, Springer, 1968.
[2] A. Jannussis, G. Brodinas, D. Sourlas, Remarks on q-Quantisation, Lett. Nuovo Cimento, 30, 123-127.
[3] A. Jannussis, L. C. Papaloucas, P. D. Siafarkas, Eigenfunctions and Eigenvalues of the q-Differential operators Hadronic J. vol 3. 1622-1632.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan

