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COMPLEXES OF COUSIN TYPE AND MODULES OF
GENERALIZED FRACTIONS
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0. Introduction

Let R be a commutative (Noetherian) ring, M an R-module and let ¥ =
(F),s, be a filtration of Spec(R) which admits M.

A complex of R-modules is said to be of Cousin type if it satisfies the four
conditions of ((GO], 3.2) which are reproduced below (Definition (1.5)). In ([RSZ],
3.4), Riley, Sharp and Zakeri proved that the complex, which is constructed from a
chain of special triangular subsets defined in terms of ¥ (Example (1.3)(3)), is of
Cousin type for M with respect to & (Corollary (3.5)(2)). Gibson and O’carroll
(|GOJ, 3.6) showed that the complex, which is obtained by means of a chain
U = (U,);s, of saturated triangular subsets and the filtration 4 = (G,);s , in-
duced by U and M, is of Cousin type for M with respect to 4 (Corollary (3.5)(3)).

The purpose of this paper is to show that, when the complex is defined by a
chain of triangular subsets, one can give a simpler criterion, consisting of only
two conditions, for being of Cousin type (Theorem (3.1) and Corollary (3.2)). In
fact, we prove that, for every complex induced by a chain of triangular subsets,
the first and the second conditions of the definition of Cousin type hold (Remark
(2.5)).

In ([RSZ], 3.3), Riley, Sharp and Zakeri proved that every complex of Cousin
type for M with respect to & is isomorphic to the Cousin complex. Hence when we
investigate the structure of a complex of Cousin type, it is useful to study the
complex C(U, M) of Cousin type which is constructed from special modules of
generalized fractions (Corollary (3.5)) whose properties are well known.

We also get a refinement of the Exactness theorem ([SZ2], 3.3 and [O], 3.1) in
our Proposition (2.13).

We wish to thank Prof. H. Matsumura for his continual and stimulating
interest in this work.
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18 SANG-CHO CHUNG

1. Preliminaries

Throughout this paper, R is a commutative ring with identity and M is an
R-module. We use ” to denote matrix transpose and D, (R) to denote the set of all
n X n lower triangular matrices over R. For H € D,(R), | H| denotes the deter-
minant of H. N denotes the set of positive integers.

DermviTION (1.1) ([SZ1], 2.1). Let # be a positive integer. A non-empty subset

U, of R is said to be triangular if

(i) whenever (a,...,a,) € U, then (a,...,a,") € U, for all choices of posi-
tive integers a,,..., &, ; and

(i1) whenever (a,,...,a,) and (b,,...,b,) € U,, then there exist (c,...,c,) €U,
and H, K € D,(R) such that Hla, ... a,]" = [¢; ... ¢]]" = K[b, ... b,]".

DerFINITION (1.2) ([S4], 1.1 and 1.2). Let R be a ring and M an R-module. A
filtration of Spec(R) is a descending sequence ¥ = (F;);,» , of subsets of
Spec(R), so that

SpecR) DF,2F,>:---D>F,OoF,, D> -,

with the property that, for each ¢ = 0, each member of F,\ F,,, is a minimal mem-
ber of F, with respect to inclusion. We then set 0F, = F,\F,,,. We say that the
filtration # admits an R-module M if Supp(M) C F. Let %,, = (Fy;,),>, be the
M-height filtration of Spec(R), i.e., Fy; = {p € Supp(M) : htyp = 7}.

We say that a sequence of elements ay,..., @, of R is a poor M-sequence if a;
is not a zerodivisor on M/(a,,...,a;_) )M for each ¢=1,...,#; it is an
M-sequence if, in addition, M # (a,,...,a,) M.

ExampLE (1.3). Let R be a Noetherian ring. Then the following five
non-empty sets are triangular subsets of R”.
(1) ([SZ1], 3.10) Let M be a finitely generated R-module.
w,,={a,...,a,) €ER":a,...,a, forms a poor M-sequence}.
(2) (cf. [SZ2], 5.2) Suppose that M is a finitely generated R-module.
W), = a,...,a,) ER :htyla,...,a)R=2i (1 =<:i<n)l.
(3) ([RSZ], 2.3) Assume that M is an R-module such that Ass(M) contains only
finitely many minimal members.
U7, =a,...,a) ER":foreachi=1,...,n, (a,...,a)R Zp for all
p € 0F,_;, N Supp(M)}.
(4) (IC], 1.1) Suppose that M is a finitely generated R-module of dimension d.
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y, = a,...,a,) eR":dmM/(a,,...,a)M=d—1i (1 <i<n)}.
(5) ([C], 1.2) Suppose that (R, m) is a local ring and M is a finitely generated

R-module.

w),={(a,...,a) €R":a,...,a, is an f-regular sequence (See [SV],
p. 252) with respect to M}.

= {(a,,...,a,) €ER": % e % in R, forms an M,-sequence for all
p € Supp(MD\ {m} such that (a,,...,a,)R C p}.

For a given triangular subset U, of R”, let U, = {(a,,...,a;,1,...,1) €R":
for all 1(0<i<w), 3 a,.,,...,a,€R st (a,...,a, a,,,,...,a,) €U}
This is a triangular subset of R” and is called the expansion of U, (SZ1], p. 38).
Then, by ([SZ1], 3.2), we may assume without loss of the generality that U, is
expanded, i.e., U, = I_Jn, when we consider the module of generalized fractions for
M with respect to U,. So, from now on, we assume that every triangular subset is
expanded by means of the expansion of itself.

For a fixed non-negative integer #, U;ZIIM denotes the module of general-
ized fractions of M with respect to U, ([SZ1]). The other notation and terminolo-
gy about the module of generalized fractions follow ([SZ1]).

Dervition (1.4) ([RSZ], p. 52). Let R be a ring. A family U = (U, , is
called a chain of triangular subsets on R if the following conditions are satisfied:
(1) U, is a triangular subset of R foralli EN;

(i) (1) €Uy,
(iii) whenever (a,,...,a;) € U, with i € N, then (a,,...,a;, 1) € U,,,; and
(iv) whenever (a,,...,a;) € U, with 1 < i € N, then (a,,...,a,_;) € U,_,.

Each U, leads to a module of generalized fractions U]’ M and we can obtain a

complex

e—l

0—~M—U, ' M—U,"M— - —=U;M—U;['M— -,
denoted by C(A, M), for which ¢’ (m) = (mT) for all m € M and

ei<(a1,.‘%ﬂ.,a,)) ~ (a,. .‘.r,a,», D

foralli €N, x €M and (a,,...,a,) € U,
H;,(M) denotes the i-th cohomology group of C(U, M). That is H,(M) =
Kere'/Ime'™".
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DerINITION (1.5) ([GOJ, 3.2). Let R be a Noetherian ring and M an R-module.
Let F = (F,),, be a filtration of Spec(R) that admits M. A complex X' = {X':
1 = — 2} of R-modules and R-homomorphisms is said to be of Cousin type for M
with vespect to F if it has the form
0oME X DX o X
and satisfies the following, for each # € N U {0},
(i) Supp(X") C F,;
(ii) Supp(Coker d" %) C F,;
(iii) Supp(Kerd"'/Imd"® C F,,,; and
(iv) The natural R-homomorphism §(X") : X" — D, eor, (X")p, such that, for x €
X" and p € 0F,, the component of £(X*) (x) in the summand (Xn)p isx/1,is
an isomorphism.

Lemma (1.6). Let R be a ring and M an R-module. Let U, be an expanded
triangular subset of R”. Let (ay,. . .,a,) and (by,...,b,) be elements of U, such that
Hia,...a) =1b,...b]" for some H € D,(R). Then we have

H "
(1) (SZ1], 2.8 and 3.3() (al,.’f“.,a) = <b'1,..'.f'2,,> and w——(al,‘f"f o=
m . —n
(a,..a,, D™ U," M.
(2) (SZ1, 3.3(i)] and [SY, 2.2) If m € (a,,...,a,_ )M then G——m—a)z 0 in
A

U," M. In particular, if each element of U, is a poor M-sequence, then the con-
verse holds.

(3) (S22}, 5.1 and [SZ3), 2.1) AnnR<———~——*(al’.1?1”an)> = Anng (—————Wlh ﬁzn_l, 1)).

Lemma (1.7) ([Cl, 2.4). Let (R, m) be a Noetherian local ving and let M be a
finitely genevated R-module of dimension d. Let (Uy),,, be the expansion of the
triangular subset {(a,,...,a, 1) € R"":dmM/a,,...,a)M = 0}. Let {x,,. ..,
Z,} be a fixed system of parameters for M. Then we have

U); ;' M=Uw,11™" M= H;, M),

where Ux),[1]1 = {(z,..., 2% 1) € R*™': there is i (0 <i<d) such that
Ayyoo oy & ENandaiH: e :ad:O}
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LEMMA (1.8) (JGOJ, 3.4). Let R be a ring. For a positive integer n, suppose that
(71’.—;.%’—%”—17 =0 in U;fl_l M. Then there exist (by,...,b,,) € U,,, and
H e D,(R) such that Hla,...a,) = 1[b,...5]" and b,,,|H|me @,...,
b,)M.

Lemma (1.9) (JGOJ, 3.3 and [SY], 2.7). Let R be a ring and M an R-module.
Let U = (U,);s, be a chain of triangular subsets on R. Then in C(U, M), for all
n€N

Coker "' = U,"M/Im " = U, [117"' M,

where U, (1] = {(a,,...,a, 1) €ER" : (a,...,a,) € U,.
2. Associated prime ideals of modules of generalized fractions

Lemma (2.1). Let R be a ving and M an R-module. Fix a positive integer
m -
n. Let U, be a triangular subsets of R”. Let 0 # [CTTA) € U,"M. Then we
by

have, for all (b,,...,b,) € U,

,,....b)R & (0 : —(a—l,.m,—d,,)>

Proof.  Suppose that for some (b,..., b, € U,

(by...,b)R C (OGT—’”T))

Then by the definition of triangular subset there are (cj,...,¢,) € U, and H,
K € D,(R) such that Hla, ... a,]" = [¢;...c,]" = KIb, ... b,]". Hence we get
(¢),...,c)RC(b,...,0)R.

On the other hand, by Lemma (1.6)(1)(3) we have

(05 ) = (0: i) = (0: 7 2y)

> (b,...,b)R D (c,...,c)R.

Therefore we have the following contradiction.
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¢, | H|m _ |H | m
(¢, 06 (e isCyoyy 1)

= 0.

From now on, we suppose that Ug[11 "M =M, UUM =M and # is a
non-negative integer.

LemMa (2.2). Let R and M be as above. Then in C(U, M) we have
Supp(U, 7' M) < Supp(U,[117""' M) < Supp(U," M).

Proof. For the first half, this follows from the following short exact sequence

0—Kere"/Ime" ' > U,"M/Ime" ' — U,"M/Ker ¢"— 0,

I I
U,[117"'M Im ¢

since Supp(U;Zl_1 M) = Supp(Im ¢”) by Lemma (1.6)(3).
For the second inclusion, it follows from Lemma (1.9) that

Supp(U,[117"'M) = Supp(U,” M /Im ¢"*) < Supp(U,"M).

Exampie (2.3). In general, Supp(U,7;'M) # Supp(U,[117""'M). Let
(R, m) be a Noetherian local ring. Suppose that M is an f-module (see [SZ4],
1.8(ii)) of dimension d. Then Supp((U,),[117*7* M) = Supp((Uy;1;' M) = {m}.
But Supp((Up 75 M) = @ by (C], 2.3).

LemMMA (2.4). Let R and M be as above. Then in C(U, M) we have
Supp(U,77* M) < Supp(U,[1]17""'M) € F,, C F,.

Proof. This follows from Lemma (2.2), ((HS], 3.1) and ([C]|, 2.7).

Remark (2.5). Lemma (2.4) shows that, for every complex C(2, M), the first
and the second conditions of the definiton of Cousin type hold by Lemma (1.9).

LemMa (2.6). Let R and M be as above. Then in C@U, M) we have the follow-
mg.
(1) 8F, N SuppM) = (U’_,Fy,) N 9F,.
(2) (cf. [ST), 2.7) 8F, N Supp(U,77' M) < aF, N Supp(U,[117""'M) < oF, N
oF,,,. |
(3) OF, N 0Fy, = U cop,_ nopye_r, (V@ N OF, N 0Fy,).
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Proof. (1) Let p € 0F, N Supp(M)\ U’_, 0F,;. Hence htyp > n. Therefore
there is g € 0F,,(C F,) such that q & p. That is, p is not minimal in F,.
(2) Since Supp(U,%;* M) € Supp(U,[117"* M) C F,,, we have

oF, N Supp(U, 7' M) < F, N Supp(U,[117""'M) < 9F, N Supp(M) N Fy,
< (U 8F,) N 3F, N F,, = F, N 3F,,
i=0

by (1).

(3) Let p € 0F, and htyp = n. Suppose that q € dF,_, for some q €
Supp (M) such that htyq =7 — 1 and q & p. Hence q € F,, since dF,_, = F,_,; \
F, and Fy,_,, © F,_,. This contradicts that p is a minimal element in F,,.

LEmMA (2.7). Let R be a ving and M an R-molule. Then in C(U, M), for each
m
(ay,...,a,)
such that Hla, ... a,)" = (b, ... 5,17 and

+1Ime"™' € Hy(M), there are (b,,. .., b,,,) €U,,, and HE D,(R)

(by,..., b, )R C <Im G ﬁ>

m

vy Gy 1
Hence by Lemma (1.8) there are (b,,..., b,,;) € U,,,; and H € D,(R) such that
Hla, ...a,]" =[b, ... b,]" and by | H|m € (by,..., b,)M. Therefore we have

. m
Proof. Since ———~ € Ker ¢”, we have
(a ) (a
y §73 1s°

19+ o«

y =0 in UM

(b,..., b, )RC (Im i %) = <Im &t :ﬁ).

LemMa (2.8). Let R be a ving and M an R-module. Let U = (U);», be a
chain of triangular subsets on R. Then in C(U, M), for a fixed non-negative integer
n, we have the following.

(1) Ass(U;27'"M) N Supp(U, 555" M) = 0 foralli 2 0.

(2) Ass(U,77* M) N Supp(U,,,,;,[117"7°7"M) = @ foralli > 0.

3) Ass(U,”T'M) = Ass(Im ¢") = Ass(Ker ¢"™).

4y Ass(U;2' M) N Supp(H;7 (M) = 0 for all i > 0.

5) Ass(H, (M) C Ass(U,[117"7' M) C Ass(H,;(M)) U Ass(U, ;' M).
6) If R is Noetherian, then

oF, N Ass(U,[117"'M) = (3F, N Ass(Hp(M)) U (OF, N Ass(U,%; " M)).
(7) Ass(U,[117"7'M) N Ass(U,,,[117"7*M) < Ass(H,(M)).

(
(
(
(
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Proof. (1) and (2) follow from Lemma (2.1) and Lemma (1.6)(2).

(3) Since Im ¢" € Ker """ < U7 M, this follows from Lemma (1.6)(3).
(4) This follows from Lemma (2.1), Lemma (2.7) and Lemma. (1.6)(2).

(5) The following short exact sequence and (3) complete the proof.

0—Kere"/Ime" ' = U,"M/Ime" ' — U,"M/Ker ¢"— 0.
(%) I I l
H} (M) U,[117"'M Im ¢"

(6) By Lemma (2.4), we have
oF, N Supp(U,77'M) = 9F, N Ass(U,77' M) C 0F, N Ass(U,[1]17"' M).

Hence the assertion follows from (5).
(7) This follows from (1), (4) and (5).

Remark (2.9). If we also change associated prime to weakly associated in the
sense of ([B], p. 289 ex. 17), then we can omit the Noetherian condition of Proposi-
tion (2.8)(6).

ProposiTION (2.10). Let R and M be as above. Assume that p € Spec(R). In
CU, M), consider the following statements :
(i)  Foral (a,,...,a,,) € U,,, (a,...,a,, )R Zp;
(i) (Ui M, = (U117 M),
(i) Hy(MD), = 0 and (U,,[117"* M), = 0;
(i) (U,r; M), = (me"),;
(i) (U, [117"7*M), = 0;
(i) (Hy"' WMD), = 0 and (U,};°M), = 0;
(iv) (Ker e"“)p = (me"),;
(iv) (U, [117"7*M), = m ")
Then we have the following.

P

(1) (i) < (i)

(2) (iii) © (iii") © (iii").

(3) (iv) & (iv").

(4) ()= (ii) = (iii) = (iv). That is, if (i) holds, then

w, M), = w, 117! M), = (Ime"), = (Ker &

o
(5) Ifp € Ass(U, "' M), then the above four modules are isomorphic.
(6) If p & Supp(U,; 7, M), then (iv) = (iii).
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Proof. (1) Using the short exact exact sequence (%), we prove as follows.
—-n-1

(=) Assume that (U,,; M), = w, 1" M),. Then, from the following short
exact sequence

0—Ime" ' > U,"M—=U,"M/Ime" ' — 0,
[
U, 117"'M

we have a commutative diagram with exact rows.

0— (Ime"™), = (UM, — @U,I117"7"M), —0
I I I

0— (me™™, — "W, S U W, —o.

n—l)

p

Therefore we get

(Ker "), = (Im e"-l)p.

Hence, from the following short exact sequence

0— (Hy WD), — (0,117 M), —~ Ime"),— 0
I I
0 U5 M),

induced from the short exact sequence (%), we have
w, M), = (U,[117"7"M), = (me"),.
Therefore from the following short exact sequence
(% %) 0—Ime"— U,/ ' M— U, 117" M—0
we have

U, [117"7°M), = 0.

p
(&) By the assumption and the short exact sequences (%) (% %), we have
U7, = (Im "), = (U] M),.

(2) The first equivalence follows immediately from the above short exact
sequence (% *). For the second half, this follows from

Supp(U,,,,[117"*M) = Supp(H}™*(M)) U Supp(U,; M)

induced by the short exact sequence (%) with # + 1 instead of # and Lemma (2.8)

(3).
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(3) This follows similarly from the short exact sequence (3 ) with # replaced
by # + 1.

(4) Suppose that (i) holds. By the hypothesis and Lemma (1.6)(2) we have
U,,,[117"* M), = 0. On the other hand, from the assumption and Lemma (2.7),
we have (Hy(M)), = 0.

The other assertions are obvious.

(5) This follows from the hypothesis, Lemma (2.1) and (4).

(6) This follows easily from (2), since (H(’;H(M))p =0.

ExampLE (2.11). (1) In Proposition (2.10), (ii) dose not imply (i). Let R =
k[[X, Y1l. Let M be the quotient field of R. Let U; = R\(X) and p = (X, V).
Then (U;' M), =M = (U, (117 M), = Ime’), but U, N p # 0.

(2) ((iii) = (i1)) is not the case. See Example (2.3) and note that (U,)dﬂ[l]—d_zM
= (. When p € Supp(U,7;' M), we don’t know whether this holds or not.

3 Ifpe Supp(U;fz—2 M), then ((iv) = (iii)) does not hold. Let (R, m) be a
Buchsbaum ring of dimension d = 3 such that H, (R) # 0 and H.(R) = 0 for
n#1,d Let U, = ((U),),;>, be the chain of triangular subsets on R in the
following Proposition (2.15) (when M = R). Then by Proposition (2.15) we have
Ker f'/Imf°=H,(R) # 0 and Kerf"/Imf" ' =H.,(R) =0 for n# 1, d.

Hence by the short exact sequence (%) we have
(U)n[117"*R = Im f "

forn #0,d— 1. Letp € Spec(R) such thathtp=n+1forn=1,...,d — 2.
Then (Imf™"),# 0 since Supp(Imf"*") = Supp((U)),2;*R) = Freuy by
Lemma (2.8)(3) and ((C], 2.15). Therefore p € Supp((U,),,,[117"*R).

(4) In general, the converse of Proposition (2.10)(5) is not true. Let R =
KX, Y, Z11/(X) N (Y, Z) = kllx, y, z1]. Then Ass(R) = {(x), (y, 2)}. Put
p=(z,y,2 and U =R\p. Hence Ass(R) = {(2), (y, 2)}. Let q= (z, 9.
Then (U;'R), = R),=R,= (U117 R), = (Ime"),#0 and U, Nqg= 0.
But g € Ass(R,).

CoroLLARY (2.12). Let R be a Noetherian ring and M an R-module. Then we
have the following.
(1) Ass(U;77' M) € Ass(U,[117"7' M).
(2) Ass(U,[117"7'M) = Ass(H; (M) U Ass(U, 11" M).

Proof. (1) Let p € Assg(U,7;" M). Then pR, € Assp (U,}7" M), by (M],
p. 38 Corollary). Hence PR, € Assg (Un[l]_"_lM)p by Proposition (2.10)5).
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Therefore p € Assg(U,[117""' M) again by ([M], p. 38 Corollary).
(2) This follows from (1) and Lemma (2.8)(5).

ProposiTioN (2.13). Let R be a rving and M an R-module. Fix a non-negative
integer t. Then in C(U, M), the following four conditions are equivalent.
(1) HyM) =0 foralln=0,...,¢
2 U1 ' M=Ime" frain=0,...,t
m -

— = —n—1
(3) Forallm=20,..., 1t for each IR ) U.,. M

o m N _ (.M o m -n-1
<0' (a,..., an+1)) (0' (a,..., a, 1)) where (; — 2 1) € U, M.

(4) Foralln = 0,..., t each element of U, forms a poor M-sequence.

In particular, let R be a Noetherian local ring and let M be a finitely generated
R-module of dimension d. Assume that the above conditions hold for t = d — 1 and
U,[117"M # 0. Then M is a Cohen- Macaulay module.

Proof. (1) < (2) From the short exact sequence () this is clear.

(2)=(3) By Lemma (1.6)(3) this is obvious.

(3)=(4) We proceed by induction on #. In the case # = 0, assume that
am =0 for some 0 #m €M and (g,) € U,. Then we have a, € (0:m) =

m m -

(O: (b)) for some ) € UllM by the hypothesis. This contradicts Lemma
1 1

(2.1).

Now suppose that each element of U, is a poor M-sequence. Assume that
a,.meE (a,...,a,)M for some (a,...,a,,) €U, and m € M. Then by

Ay M :
Lemma (1.6)(2) we have 7—m——————— = 0. That is, by ([SZ3], 2.1), we have
(a,,...,a,.)
m

. —n-1
——————=0inU,.; M.
(ay,...,a,.,) ntl

Hence by the hypothesis we have

m

=3 H —n-1
@ o, - 0nGOITM.

Then, by the definition of module of generalized fractions, there are (b,,..., b,, 1)
€ U,[1] and HED,,,(R) such that Hla, ...a,11" =106 ...5,11" and
[H|lme (&,..., b)M.
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On the other hand, since A,y =1 — (B @+ - - -+ by, ,a,), by
([SZ1], 2.2) we have

hy - hym € (by, ..., b)M.

Note that by the inductive hypothesis b,,. .., b, is a poor M-sequence and H'[a,
an]T =[b ... b,,]T where H’ is the top left # X # submatrix of H. Hence by
(0], 3.2) we get

mE (a,,...,a,)M.

m no__. m m
== —_— e —_— = _— =
(4) (1) Let (al, L an) Ker ¢ with (ao) m. Then (al, .., a, 1)

0 in U,77" M. Hence by Lemma (1.6)(2), we have
m € (a,...,a,)M.

1

Therefore we have @ €Ime" .
1r-

co @)
For the last assertion, since U,[117°7"M # 0, there is (a,,...,qa,) € U,
such that ay,...,a, is an M-sequence.

Remark (2.14). In Proposition (2.13), if R is Noetherian, then we can change
the condition (3) for Ass(U, 77" M) = Ass(U,[1]7"7'M) forall z =0,..., ¢

Let (R, m) be a Noetherian local ring and let M be a finitely generated
R-module of dimension d. Let %, = ((Up),);», be the chain of the expansions of
triangular subsets (Example (1.3)(5)) on R. Then we have the following complex

d-1

e iy -2 S —ang O
0—=M— (U);'M— (U);*M— -+ — (U T7'M— (U);M— 0,
since (U) ;57 M = 0 for all i =1 by ((C], 2.3).

ProrosiTioN (2.15). Let R, M and U, be as above. Then the following four con-
ditions are equivalent.
(1) M is an f-module (see [SZ4], 1.8 (ii)).
(2) Ker f"/Imf" ' = HL.(M) foralin =0,...,d.
(3) Ass((U),[117"7'M) < {m} U Ass((U),;7'M) foralln=0,...,d.
(4) SuppKer f*/Imf"™) € {m} fowalin=0,...,d.
In particulay, if M is a Cohen-Macauly module, then

{Ass((U,),,m‘”‘1 M) = Ass((U),70'M) =F,, foralln<d,
Ass((U),[1177'M) = {m}.
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Proof. (1)=(2) In the case n =20,...,d — 1, this follows from (|SZ4], 2.4),
since (Uy), = (Uy),. In the case # = d, we have

Ker f*/Imf* ' = U"M/Imf ' = U,[117'M = (U);5I'M = H, M

by Lemma (1.9) and Lemma (1.7).
(2)= (3) © (4) These follow from Corollary (2.12)(2) and Lemma (2.8)(4).
(4)= (1)This follows from ([SZ4], 2.3).
The last assertion follows from (2), Corollary (2.12)(2) and ([C], 2.15).

3. Modules of generalized fractions and complexes of Cousin type

In this section, suppose that R is a Noetherian ring.

THEOREM (3.1). Let R be a Noetherian ving and M an R-module. Let U =
(U,));>, be a chain of triangular subsets on R. Let F = (F,),~, be a filtration of
Spec(R) which admits M. Then

the complex C(U, M) is of Cousin type for M with vespect to F
)
Ass(U,[117"'M) N OF, = Ass(U,51' M) foralln = 0 and

UM & W M), for alln 2 0.

pEIF,

Proof. (1) We must verify the properties (i)-(iii) of the definition of Cousin
type (see (1.4)).

(i) and (ii) By Remark (2.5) these always hold for arbitrary complexes
Cu, M.

(ii) We must show that Supp(H,(M)) C F,,,. Note that Ass(U,7;' M) =

Ass( ) (U;ZIIM)p) C 0F, by Lemma (2.4). By Lemma (2.8)(5) and Lemma
pedF,

(2.4), we have Supp(H;(M)) € Supp(U,[117""' M) C F,. But it follows from the
hypothesis and Lemma (2.8)(4)(6) that 0F, N Supp(H,(M)) = @.

(1) It is enough to show that the first condition of Theorem holds. By the
third and the fourth conditions of the definition of Cousin type, we have F, N
Supp (H;y(M)) = @ and Ass(U,7;' M) C 3F,. Hence Lemma (2.8)(6) completes
the proof of Theorem.
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COROLLARY (3.2). With the same notation and assumption as in Theorvem (3.1),
we have the following.
(1) Suppose that dFy, N OF, = Ass(U,*,' M) for alln > 0 and

UMz © (UM, foralln 2 0.

pEdF,

Then the complex C(AU, M) is of Cousin type for M with respect to F.
(2) In particular, assume that 0F,, N OF,  Supp(U,[117""'M) for ail n = 0.
Then the converse of (1) is true.

Proof. (1) This follows from Theorem (3.1), since Ass(U, ;' M) C
Ass(U,[117"'M) N 3F, € 9F,, N dF, by Corollary (2.12)(1) and Lemma
(2.6)(2).

(2) It is sufficient to show that F,, N @F, = Ass(U,7;' M), since the second
isomorphisms hold by the definition of Cousin type.

(®) Since Ass(U,7;'M) C 0F,, it follows from Lemma (2.6)(2) that
Ass(U,2T'M) C 6Fy, N 9F,. i

(C) We proceed by induction on #. In the case # = 0, let p € 0F,, N 0F,.
Consider the following complex

0—-M—-U; ' M—U,’M—---

Then by the definition of Cousin type, we have the following exact sequence

0—M,= (U;' M), — 0.
Since p € Ass(M), we have p € Ass(U;' M) by (M], p. 38 Corollary).
Suppose that # = 1. Let p € dF,,, N 0F,. Consider the following complex
U S U MU M-

It follows from the definition of Cousin type that we have the following exact
sequence

0— (Ime"™,— (U,"M),— (U} M), —0,

since (Ker e”)‘g = (Im e"_l)p. Hence by the inductive hypothesis and Lemma (2.6)
(3), we have (U,” M), # 0. On the other hand, by Proposition (2.10)(2) and the
assumption 0Fy, N 0F, € Supp(U,[117" " M), we get

(Ime"™, 2 (U,"M,.
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That is (U5 M), # 0. Hence we conclude that p € Ass(U,77'M) by Lemma
(2.4).

Remark (3.3). Using Lemma (2.6)(2), Lemma (2.8)(6), the third and the fourth
conditions of the definition of Cousin type, we have another proof of Corollary
(3.2)(2) as follows:

Fy, N 0F, = 0F, N Supp(U,[117"" M) = aF, N Ass(U,[1]7"" M)
= (9F, N (H;(M))) U (9F, N Ass(U,7" M)
= aFn N ASS(U;_:Zl—l M) = ASS(U;:I—I M).

Remark (3.4). If M is a finitely generated R-module and a complex
C(a, M) is of Cousin type for M with respect to %,,, then Ass(U,' M) = {p €
Supp (M) : htyp = #} by (RSZ], 3.3), (C], 2.11) and the following Corollary (3.5)
(1).

COROLLARY (3.5). Let M be a finitely generated R-module of dimension d. Let
F = (F)) =, be a filtration of Spec(R) which admits M. Let Fpy = (Fyy,) 5, be the
M- height filtration.
(1) (cf. [SY], 3.9 C@,, M) is of Cousin type for M w. r. t. Fy, where U, =
(U )i=0 »
(2) ([RSZ], 3.4) C(Uz;, M) is of Cousin type for M w. v. t. F, wheve Uz = ((U3) ) ;>0
(3) ([GOJ, 3.6) Let U = (U,);~, be a chain of saturated triangular subsets on R. Put
G, = SuppM) and for i €N, define G, = {p € Supp(M) : there exists
(ay,...,a) €U, with (a,,...,a)R C p}. Assume that 9 = (G,) ;> ,, nduced
by U and M, is a filtration of Spec(R) which admits M. Then
CU, M) is of Cousin type for M w. 7. t. 4.
(4) If dim M = htyq + dim M /qM for all ¢ € Supp(M), then
C(U,, M) is of Cousin type for M w. r. t. Fy, wheve U, = (U, ;.
(5) Let U, = ((U,),) ;5o Then we have the following equivalent conditions.

M is a Cohen-Macaulay module
& C(U,, M) is of Cousin type for M w. 7. t. Fy
e U), T M= @ (U)5M), foralln > 0.

htyp=n
(6) Let R be a Noetherian local ving. Then

M is a Gorenstein module
C,, M) is of Cousin type for M w. r. t. F and
(U) ;5 M is an injective R-module
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U)'M= & ), M), foralin = 0, and

(=4 htyp=n
(U) 75 M is an injective R-module.

Proof. (1) This follows from ([C], 2.11 and 3.3(2)) and Corollary (3.2).
(2) By ([RSZ], 2.6 or [C], 3.3(1)), we have for all # € N U {0}

U, I’ M= & ((Up,1; M,

pedF,

Hence by Lemma (2.4) we get

Ass(U;7 M) = Ass( @ (WU WD,

pedF,
U Ass((WUp;I W, < OF,
pedF,

By Lemma (2.7) and the definition of (Ug),,;, we have, for all p € 0F, N
Supp (M),

(Hy (M), = 0.
Therefore we have 0F, N Ass(Hy(M)) = 0, since Ass(H,;(M)) C Supp(M).

Hence we obtain
aF, N Ass((Up,[117"7'M) = oF, N Ass((Uyp) 17 M) = Ass((Up), 7' M),

by Lemma (2.8) (6). Then Theorem (3.1) completes the proof.
(3) By (IGOJ, 3.6), we have for all # € N U {0}

U,n'M= @& UM,
pEIG,
Hence we get Ass (U7 M) € 9G,,
Next for all p € 0G,, we have

(HAOD), = 0.

In fact, if (H,;'(M)),D # 0, then there is x € H,;(M) such that (0:x) C p. But by
Lemma (2.7), we have (a,,...,a,,)R C (0:x2) Cp for some (a,,...,a,,,) €
U, ... Hence from the definition of G,,,; we have p € G,,. This contradicts p € 0G,,
Therefore we have G, N Ass(Hy;(M)) = 0.
Then by Lemma (2.8)(6) we get

9G, N Ass(U,[117"7'M) = (3G, N Ass(Hy(M))) U (3G, N Ass(U, 7' M)
= Ass (U, M),
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The result follows from Theorem (3.1).

(4) This follows from ([C], 2.12 and 3.3(3)) and Corollary (3.2).

(5) Since C(U,, M) is an exact sequence by Proposition (2.13), the first
equivalence follows from ([S2], 2.4). From Proposition (2.13)(3) and Theorem (3.1),
we have the second equivalence.

(6) This follows from (5) and ([S2], 3.11).

Remark (3.6). Let (R, m) be a Noetherian ring and let M be a finitely gener-
ated f-module of dimension d. Then C(2;, M) is of Cousin type for M with re-
spect to Fy (Corollary (3.5)(4)) but C(%U,, M) is not, even though (U,);ZI_IM =
D neggp=n (U ot M), for all # =0 ([C], 3.3(5). For, by ([C], 2.15), we have
Ass((UD7i'M) = 0 but Ass((U),[1177'M) N 9Fy, = Ass((U);11 M) N

0F,, = {m}. Hence we have
Ass((U),[117"M) N 9F,, # Ass((U) ;57 M).

Therefore the result follows from Theorem (3.1).

ExampLe (3.7). Let R = kllx, y, 2z1]. Let U, = {(tz") €ER': 0 # t € k and
a € NU{0}}. Let U, =U,_,[1] for i= 2, 3,.... Then U = (U,),>, is a chain
of saturated triangular subsets on R. Put G, = Spec(R), G, = {p € Spec(R) : x
€ p} and G, = @ for i = 2. Then 9 = (G,),>, is induced by U and M as in (3)
of Corollary (3.5), but is not a filtration of Spec(R). For, 8G, = G,\ G, 2 {(»),
(y, 2)}.

ExampLe (3.8). Let R=FK[[X,Y, Z11/(X) n (Y, Z2) = kllx, y, z1]1. Then
R is not equidimensional and {(x), (y, 2} = 0Fg, N Spec((Us)o[l]_lR) Z
Ass((U);'R) = {(x)}. Hence C(U,, R) is not of Cousin type for R w. r. t. Fg.
In fact, k(y, 2) ¥ k(@) = (U);' R (U, R = k(y, 2) (cf. Corollary (3.5)(1)
(4)).

ExampLe  (3.9). Let R =Fkllx, yll. Let ={& eR:aeNU
{0}) and U, = {(z",1,...,1) €R":a €N U {0}} for »=>2. Then we have
Ass(U{'R) = {(0)} = 0Fg, N Supp(U,[117' R), Ass(U;*R) = {(x)} = 0F,
N Supp(U;°R) = 0Fg, N Ass(U,[11°R) and U;"R =0 for all i=3. But
U;°R 2 (U;°R),,

ExampLE (3.10). Let R=k[[X,Y,Z]] and M= k[[X, Y, ZN /(X) N (X*, V)
= kllx, y, z1]. Let U, = {(Y") €R': % > 0}. Let F, = {p € Spec(R) :htp >
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for 1>0. Then Ass(U'M) = {(X)} =9F, N Ass(M) = 9F, N

Ass(Uy[117'™M) but M, = U;'M 2 (U;' M), = My,
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