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We investigate the global Cauchy problem for a two–phase flow model consisting of
the pressureless Euler equations coupled with the isentropic compressible
Navier–Stokes equations through a drag forcing term. This model was first derived
by Choi–Kwon [J. Differential Equations, 261(1) (2016), pp. 654–711] by taking the
hydrodynamic limit of the Vlasov/compressible Navier–Stokes equations. Under
the assumption that the initial perturbation is sufficiently small, Choi–Kwon
[J. Differential Equations, 261(1) (2016), pp. 654–711] established the global
well–posedness and large time behaviour for the three dimensional periodic domain
T

3. However, up to now, the global well–posedness and large time behaviour for the
three dimensional Cauchy problem still remain unsolved. In this paper, we resolve
this problem by proving the global existence and optimal decay rates of classic
solutions for the three dimensional Cauchy problem when the initial data is near its
equilibrium. One of key observations here is that to overcome the difficulties arising
from the absence of pressure in the Euler equations, we make full use of the drag
forcing term and the dissipative structure of the Navier–Stokes equations to closure
the energy estimates of the variables for the pressureless Euler equations.

Keywords: Pressureless Euler equations; compressible Navier–Stokes equations;
Cauchy problem; global existence; large time behaviour
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1. Introduction

In this paper, we are interested in a two–phase flow model consisting of the pres-
sureless Euler equations coupled with the isentropic compressible Navier–Stokes
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Global existence and large time behaviour for the pressureless ENS system 329

equations through a drag forcing term in the whole space R3. The coupled
hydrodynamic system takes the following form (see [12]):⎧⎪⎪⎨⎪⎪⎩

∂tρ+ div (ρu) = 0,
∂t(ρu) + div (ρu⊗ u) = −ρ(u− v),
∂tn+ div (nv) = 0,
∂t(nv) + div (nv ⊗ v) + ∇P (n) − μΔv − (μ+ λ)∇div v = ρ(u− v).

(1.1)

Here ρ = ρ(x, t) and u = u(x, t) represent the particle density and velocity for the
pressureless flow at a domain (x, t) ∈ R3 × R+, and n = n(x, t) and v = v(x, t)
represent the fluid density and velocity for the compressible flow. P (n) = anγ (a >
0, γ � 1) represents the pressure. The symbol ⊗ is the Kronecker tensor product.
μ and λ stand for the shear and the bulk viscosity coefficients of the fluid satisfying
the following physical conditions:

μ > 0, and
2
3
μ+ λ � 0.

We consider the initial value problem of (1.1) in the whole space with the initial
data

(ρ, u, n, v)|t=0 = (ρ0(x), u0(x), n0(x), v0(x)), x ∈ R3, (1.2)

satisfying

(ρ0(x), u0(x), n0(x), v0(x)) −→ (ρ̄,
−→
0 , n̄,

−→
0 ), as |x| −→ ∞,

where the positive constants ρ̄ and n̄ are the reference densities.
The coupled hydrodynamic system (1.1) is closely related to the kinetic–fluid

models, which are used to describe the interactions between particles and fluid.
Recently, these types of the kinetic–fluid models have received growing attention due
to a very large range of applications, for example, sedimentation, sprays, aerosols,
biotechnology, and atmospheric pollution, etc. [1–6, 11–13, 16–22, 27, 29–31,
33]. More specifically, Choi–Kwon [12] first addressed the formal derivation of the
coupled hydrodynamic system (1.1) from the Vlasov/compressible Navier–Stokes
equations, under the assumption that the particle distribution is mono–kinetic. For
the sake of completeness, we recall the details in the process. To begin with, let
us denote the distribution of particles at the position–velocity (x, ω) ∈ R3 × R3

and at time t ∈ R+ by f(x, ω, t), and the isentropic compressible fluid density and
velocity by n(x, t) and v(x, t), respectively. Then the motion of the particles and
fluid is governed by the following kinetic–fluid equations:⎧⎪⎪⎨⎪⎪⎩
ft + ω · ∇xf + ∇ω · ((v − ω)f) = 0,
nt + ∇x · (nv) = 0,

(nv)t + ∇x · (nv ⊗ v) + ∇xP (n) − μΔxv − (μ+ λ)∇x∇x · v =
∫

R3
(ω − v)fdω,

(1.3)
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for (x, ω, t) ∈ R3 × R3 × R+. Next, we define the macroscopic variables of the local
mass ρ and momentum ρu for the distribution function f as follows:

ρ(x, t) :=
∫

R3
f(x, ω, t)dω and

(ρu)(x, t) :=
∫

R3
ωf(x, ω, t)dω for (x, t) ∈ R3 × R+,

and denote the energy–flux q̂, the pressure tensor σ̂, and the temperature θ by the
fluctuation terms:

q̂(x, t) :=
1
2

∫
R3

|ω − u(x, t)|2(ω − u(x, t))f(x, ω, t)dω

σ̂(x, t) :=
∫

R3
(ω − u(x, t)) ⊗ (ω − u(x, t))f(x, ω, t)dω

and

(ρθ)(x, t) :=
1
2

∫
R3

|ω − u(x, t)|2f(x, ω, t)dω

First, integrating the equation (1.3)1 with respect to ω over R3, one can easily get
the continuity equation:

dρ

dt
+ ∇x · (ρu) = 0.

Second, multiplying (1.3)1 by ω, and then integrating the resultant equation with
respect to ω over R3, we can deduce the momentum equation:

d(ρu)
dt

+ ∇x · (ρu⊗ u) + ∇x · σ̂ = −ρ(u− v).

Third, multiplying (1.3)1 by |ω|2
2 , and then integrating the resultant equation with

respect to ω over R3, we have from the definitions of the energy–flux q̂, the pressure
tensor σ̂, and the temperature θ that

d

dt

(
ρ

( |u|2
2

+ θ

))
+ ∇x · ((ρ (|u|2 + θ

)
+ σ̂

)
u+ q̂

)
= 2ρθ − ρu · (u− v).

Finally, by combining all the equations of macroscopic variables with ones of the
compressible fluid variables (n, v), we deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ+ ∇x · (ρu) = 0,

∂t

(
ρ

( |u|2
2

+ θ

))
+ ∇x · ((ρ (|u|2 + θ

)
+ σ̂

)
u+ q̂

)
= 2ρθ − ρu · (u− v),

∂tn+ ∇x · (nv) = 0,

∂t(nv) + ∇x · (nv ⊗ v) + ∇xp(n) − μΔxv − (μ+ λ)∇x(∇x · v) =
∫

R3
(ω − v)fdω,

(1.4)
for (x, t) ∈ R3 × R+. Noticing that the energy–flux q̂ is involved in (1.4)2, the sys-
tem (1.4) is not closed. In order to close the system (1.4), we make the assumptions
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that the fluctuations are negligible and the velocity distribution is mono–kinetic,
i.e., f(x, ω, t) = ρ(x, t)δ(ω − u(x, t)), where δ is the standard Dirac delta function.
Then, it is clear that the system (1.4)2 reduces to the model (1.1). It should be men-
tioned that the drag forcing term in the Navier–Stokes equations doesn’t involve
the Navier–Stokes density n. We remark that this phenomenon is natural. Indeed,
if the density n of Navier–Stokes fluid disappears, then it is obvious that there is
no particle, i.e., the distribution of particles f(x, ω, t) = 0. Therefore, the density
ρ of the Euler equations is zero since ρ =

∫
R3 f(x, ω, t)dw = 0. Consequently, the

drag forcing term ρ(u− v) in the Navier–Stokes equations disappears.
The global existence and large time behaviour of classical solutions to

the pressureless Euler equations coupled with the incompressible/compressible
Navier–Stokes equations in the periodic domain T3 were established by [12, 20].
Recently, Choi–Jung [14] proved the global well–posedness and large time behaviour
for the pressureless Euler equations coupled with the incompressible Navier–Stokes
equations in the whole space R3.

However, up to now, the global well–posedness and large time behaviour for
the three dimensional Cauchy problem of the pressureless Euler equations coupled
with the compressible Navier–Stokes equations (1.1) still remain unsolved. Due to
absence of the pressure term in the Euler equations, the main difficulty lies in the
closure of the energy estimates of the particle density ρ. In fact, it is well–known
that the pressureless Euler equations may develop the δ−shock in finite-time even
with smooth initial data [7–9, 15, 20, 24]. The main purpose of this paper is to
develop a global well–posedness theory for the Cauchy problem of the pressure-
less Euler system coupled with the compressible Navier–Stokes system (1.1). We
first deduce the uniform bound of (u, n− n̄, v) by properly combining the drag
forcing effect with the viscous effect in the compressible Navier–Stokes equations
under a priori assumption that ‖
(t)‖H2 + ‖(u, n− n̄, v)(t)‖H3 is sufficiently small.
Then, the uniform bound of particle density ρ can be obtained by making a priori
decay–in–time estimates on (u, n− n̄, v), which is based on linear decay estimates
together with high–order energy estimates. Our methods mainly involve Hodge
decomposition, low–frequency and high–frequency decomposition, delicate spectral
analysis, and energy methods.

Before stating the main result, let us introduce several notations and conventions
used throughout this paper. For m � 0 and q � 1, we use ‖ · ‖m and ‖ · ‖m,q to
denote the norms in the Sobolev spacesHm(R3) andWm,q(R3) respectively. For the
sake of conciseness, we do not distinguish in functional space names when they are
concerned with scalar–valued or vector–valued functions; ‖(f, g)‖X denotes ‖f‖X +
‖g‖X . We use 〈·, ·〉 to denote the inner product in L2(R2). We employ the notation
a � b to mean that a � Cb for a universal constant C > 0 which only depends
on the parameters coming from the problem. We denote ∇ = ∂x = (∂1, ∂2, ∂3),
where ∂i = ∂xi

, ∇i = ∂i, and put ∂l
xf = ∇lf = ∇(∇l−1f). For r ∈ R, let Λr be the

pseudo–differential operator defined by

Λrf = F−1(|ξ|rf̂(ξ)),

where f̂ are the Fourier transform of f . Let η be positive constant defined in § 3.
For a radial function φ ∈ C∞

0 (R3) such that φ(ξ) = 1 where |ξ| � η
2 and φ(ξ) = 0
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where |ξ| � η, we define the low–frequency part of f by

f l = F−1[φ(ξ)f̂ ]

and the high–frequency part of f by

fh = F−1[(1 − φ(ξ))f̂ ].

It is direct to check that f = f l + fh, if the Fourier transform of f exists.
The main novelty of this paper is to establish the global existence and large time

behaviour of classical solutions to the Cauchy problem (1.1)–(1.2), and our main
results are stated in the following theorem.

Theorem 1.1. Assume that ρ0 − ρ̄ ∈ H2(R3) and (u0, n0 − n̄, v0) ∈ H3(R3) ∩
L1(R3). Then there exists a small constant δ0 > 0 such that if

‖ρ0 − ρ̄‖H2 + ‖(u0, n0 − n̄, v0)‖H3∩L1 � δ0, (1.5)

the Cauchy problem (1.1)–(1.2) admits a unique solution (ρ, u, n, v)(x, t) such that
for any t ∈ [0, ∞),

‖(u, n− n̄, v)(t)‖2
H3 +

∫ t

0

(‖∇(n− n̄)(τ)‖2
H2 + ‖(u− v,∇v,∇u)(τ)‖2

H3) dτ

� C‖(u0, n0 − n̄, v0)‖2
H3 ,

(1.6)

‖ρ(t) − ρ̄‖H2 � C (‖ρ0 − ρ̄‖H2 + ‖(u0, n0 − n̄, v0)‖H3∩L1) . (1.7)

Moreover, the solution (ρ− ρ̄, u, n− n̄, v) has the following decay estimates:

‖∇(u, n− n̄, v)(t)‖H2 + ‖(u− v)‖L2 � C(1 + t)−5/4, (1.8)

‖(u, n− n̄, v)(t)‖L2 � C(1 + t)−3/4, (1.9)

‖∂t(ρ− ρ̄, u, n− n̄, v)(t)‖L2 � C(1 + t)−5/4. (1.10)

Remark 1.2. Compared to Wu–Zhang-Zou [32] where a two–phase model consist-
ing of the isothermal Euler equations coupled with the compressible Navier–Stokes
equations through a drag forcing term was investigated, we can not obtain the
decay–in–time estimate of the particle density ρ due to the absence of the pres-
sure in the Euler equations. However, all time derivatives ∂t(ρ− ρ̄, u, n− n̄, v) in
L2–norm decay in time.

Remark 1.3. It is interesting to make a comparison between Theorem 1.1 and that
of Choi–Jung [14], where the authors studied the global well–posedness and large
time behaviour for the pressureless Euler equations coupled with the incompress-
ible Navier–Stokes equations (n ≡ 1 in (1.1)) by combining energy estimates with
the standard bootstrapping arguments. The main differences can be outlined as
follows: Assume that ρ0 ∈ H3(R3) ∩ L1(R3), u0 ∈ H5(R3), v0 ∈ H4(R3) ∩ L1(R3),
and ‖ρ0‖H3 + ‖u0‖H5 + ‖v0‖H4∩L1 is sufficiently small, the authors in [14] showed
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that the pressureless Euler equations coupled with the incompressible Navier–Stokes
equations has a small smooth solutions satisfying the following decay estimate:

‖u(t)‖H4 + ‖v(t)‖H3 � (1 + t)−ϑ, for 0 < ϑ <
3
4
. (1.11)

In this paper, we only need the smallness assumption on ‖ρ0 − ρ̄‖H2 + ‖(u0, n0 −
n̄, v0)‖H3 , but ‖ρ0 − ρ̄‖H3 + ‖u0‖H5 + ‖v0‖H4 may be arbitrarily large. It should
be mentioned that our methods rely on ρ̄ > 0 heavily, and particularly can not
deal with the case ρ̄ = 0 as in [14]. Notice that the dissipation term −α2(u− v) in
the fourth equation of (2.1) will disappear if ρ̄ = 0. Therefore, it seems impossible
for us to make full use of the drag forcing term and the dissipative structure of
the Navier–Stokes equations to closure the energy estimates of the variables for the
pressureless Euler equations. On the other hand, the decay rates in (1.8)–(1.9) imply
that L2 decay rates of (u, v) and its all–order spatial derivatives are (1 + t)−3/4

and (1 + t)−5/4 respectively, which are faster that the L2 decay rate (1 + t)−ϑ with
0 < ϑ < 3

4 in (1.11). In addition, the decay rate in (1.8) shows that the optimal
L2 decay rate of the difference u− v between the velocities u and v is (1 + t)−5/4,
which is particularly faster than ones of two velocities themselves, and is totally
new as compared to [14].

The rest of the paper is organized as follows. In § 2, we reformulate the Cauchy
problem (1.1)–(1.2). Then, we derive the linear decay estimates by employing Hodge
decomposition technique and making careful spectral analysis. In § 3, by properly
combining the drag forcing effect with the smooth effect of the viscosity in the
compressible Navier–Stokes equations, we deduce the nonlinear energy estimates
to get a key Lyapunov–type energy inequality. Then, this crucial Lyapunov–type
energy inequality together with linear decay estimates obtained in § 2 gives the
proof of Theorem 1.1.

2. Reformulated system

Setting


 = ln ρ− ln ρ̄, σ = n− n̄, α1 =
P ′(n̄)
n̄

, α2 =
ρ̄

n̄
, μ̄ =

μ

n̄
, and λ̄ =

λ

n̄
,

then the Cauchy problem (1.1)–(1.2) can be reformulated as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t
 = −divu− u∇
,
∂tu+ (u− v) = F1,

∂tσ + n̄ div v = F2,

∂tv + α1∇σ − μ̄Δv − (μ̄+ λ̄)∇div v − α2(u− v) = F3,

(
, u, σ, v)|t=0 := (
(x), u0(x), σ0(x), v0(x)) → (0,
−→
0 , 0,

−→
0 ), as |x| → ∞,

(2.1)
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where

F1 = −u · ∇u,
F2 = −v · ∇σ − σ div v,

F3 = −v · ∇v +
(
α1 − P ′(n)

n

)
∇σ +

(μ
n
− μ̄

)
Δv +

(
μ+ λ

n
− (μ̄+ λ̄)

)
∇div v

+
( ρ
n
− α2

)
(u− v).

The local existence and uniqueness of the classical solution for the Cauchy problem
(2.1) can be established by the methods of Kato [23] or Majda [25].

Proposition 2.1 Local existence. Assume that the initial data (
0, u0, σ0, v0) ∈
H2(R3) ×H3(R3) ×H3(R3) ×H3(R3), and satisfies

min
x∈R3

e�0(x) > 0, min
x∈R3

{σ0(x) + n̄} > 0. (2.2)

Then there exists a positive constant T0 depending only on ‖
0‖H2 + ‖u0‖H3 +
‖σ0‖H3 + ‖v0‖H3 such that the Cauchy problem (2.1) has a unique solution
(
, u, σ, v) satisfying


 ∈ C0(0, T0;H2(R3)) ∩ C1(0, T0;H1(R3)),

u ∈ C0(0, T0;H3(R3)) ∩ C1(0, T0;H2(R3)),

σ ∈ C0(0, T0;H3(R3)) ∩ C1(0, T0;H2(R3)) and

v ∈ C0(0, T0;H3(R3)) ∩ C1(0, T0;H1(R3)).

Moreover, the following estimates hold,

‖
(t)‖2
H2 + ‖(u, σ, v)(t)‖2

H3 +
∫ T0

0

(‖∇(u, σ)(τ)‖2
H2 + ‖(u− v,∇v)(τ)‖2

H3) dτ

� C(‖ρ0‖2
H2 + ‖(u0, σ0, v0)‖2

H3), (2.3)

and

min
x∈R3,0�t�T0

e�(x) > 0, min
x∈R3,0�t�T0

{σ(x) + n̄} > 0. (2.4)

To prove global existence of smooth solutions, it suffices to establish the following
a priori estimates.

Proposition 2.2 A priori estimate. Let 
0 ∈ H2(R3), (u0, σ0, v0) ∈ H3(R3) ∩
L1(R3). Assume the Cauchy problem (2.1) admits a solution (
, u, σ, v)(x, t) on
R3 × [0, T ] for some T > 0 in the same function class as in Proposition 2.1. Then
there exist a small constant ε > 0 and a constant C, which are independent of T,
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such that if

sup
0�t�T

{‖
(t)‖H2 + ‖(u, σ, v)(t)‖H3} � ε, (2.5)

then for any t ∈ [0, T ], it holds that

‖(u, σ, v)(t)‖2
H3 +

∫ t

0

‖∇(u, σ)(τ)‖2
H2 + ‖(u− v,∇v)(τ)‖2

H3 dτ

� C‖(u0, σ0, v0)‖2
H3 ,

(2.6)

‖
(t)‖H2 � C (‖
0‖H2 + ‖(u0, σ0, v0)‖H3∩L1) . (2.7)

Moreover, (
, u, σ, v) has the following decay proposities

‖∇(u, σ, v)‖H2 + ‖(u− v)‖L2 � C(1 + t)−5/4, (2.8)

‖(u, σ, v)‖L2 � C(1 + t)−3/4, (2.9)

‖∂t(
, u, σ, v)‖L2 � C(1 + t)−5/4. (2.10)

Theorem 1.1 follows from proposition 2.1 and proposition 2.2 by standard
continuity argument.

3. Spectral analysis and linear L2 estimates

Define U = (u, σ, v)t, by semigroup theory for evolutionary equation, we focus on
the following linearized dissipative system for Eq. (2.1)2 to Eq. (2.1)4:{

Ut = BU,
U |t=0 = U0,

(3.1)

where the operator B has the form as

B =

⎛⎝−I3×3 0 I3×3

0 0 −n̄ div
α2I3×3 −α1∇ (μ̄Δ − α2)I3×3 + (μ̄+ λ̄)∇⊗∇

⎞⎠ .

Applying the Fourier transform to the system (3.1), we have{
Ût = A(ξ)Û ,
Û |t=0 = Û0,

(3.2)

where Û(ξ, t) = F(U(x, t)), ξ = (ξ1, ξ2, ξ3)t, and A(ξ) can be written as

A =

⎛⎝−I3×3 0 I3×3

0 0 −in̄ξt

α2I3×3 −α1iξ −(μ̄|ξ|2 + α2)I3×3 − (μ̄+ λ̄)ξ ⊗ ξ

⎞⎠ .

In order to obtain the linear time-decay estimates for the Cauchy problem (3.1),
we need to analysis the properties of the semigroup, as in [26]. Unfortunately, it
seems untractable, since the system (3.1) has seven equations. To overcome this

https://doi.org/10.1017/prm.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.16


336 S. Guo, G. Wu and Y. Zhang

difficulty, we employ the Hodge decomposition of the linear system as in [32], and
then the system (3.1) can be decoupled into two systems, which enables us to obtain
the optimal linear time–decay estimates.

Set ⎧⎪⎪⎨⎪⎪⎩
ϕ = Λ−1 div u,
ψ = Λ−1 div v,
Φ = Λ−1 curlu,
Ψ = Λ−1 curl v.

(3.3)

Then, we can rewrite the system (3.1) as follows:⎧⎪⎪⎨⎪⎪⎩
∂tϕ+ ϕ− ψ = 0,
∂tσ + n̄Λψ = 0,
∂tψ − α1Λσ + (2μ̄+ λ̄)Λ2ψ − α2(ϕ− ψ) = 0,
(ϕ, σ, ψ)|t=0 = (Λ−1 div u0(x), σ0(x),Λ−1 div v0(x)),

(3.4)

and ⎧⎨⎩∂tΦ + Φ − Ψ = 0,
∂tΨ + μ̄Λ2Ψ − α2(Φ − Ψ) = 0,
(Φ,Ψ)|t=0 = (Λ−1 curlu0(x),Λ−1 curl v0(x)).

(3.5)

3.1. Spectral analysis for IVP (3.4)

By virtue of the semigroup theory for evolutionary equations, we may express
the IVP (3.4) for U = (ϕ, σ, ψ)t as{Ut = B1U ,

U|t=0 = U0,
(3.6)

where the operator B1 is given by

B1 =

⎛⎝−1 0 1
0 0 −n̄Λ
α2 α1Λ −(2μ̄+ λ̄)Λ2 − α2

⎞⎠ .

Taking the Fourier transform to the system (3.6), we have{
Ût = A1Û ,
Û |t=0 = Û0,

(3.7)

where A1(ξ) is defined by

A1(ξ) =

⎛⎝−1 0 1
0 0 −n̄|ξ|
α2 α1|ξ| −(2μ̄+ λ̄)|ξ|2 − α2

⎞⎠ .
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To get the eigenvalues of the matrix A1(ξ), we need to compute the determinant

det(rI −A1(ξ))

=

∣∣∣∣∣∣
r + 1 0 −1

0 r n̄|ξ|
−α2 −α1|ξ| r + (2μ̄+ λ̄)|ξ|2 + α2

∣∣∣∣∣∣
= (r + 1)[r(r + (2μ̄+ λ̄)|ξ|2 + α2) + n̄α1|ξ|2] − α2r

= r3 + [(2μ̄+ λ̄)|ξ|2 + 1 + α2]r2 + [(2μ̄+ λ̄) + n̄α1]|ξ|2r + n̄α1|ξ|2
= 0, (3.8)

which implies that the matrix A(ξ) has three different eigenvalues which can be
expressed as

r1 = r1(|ξ|), r2 = r2(|ξ|), r3 = r3(|ξ|).
By careful computation, we get the following Lemma.

Lemma 3.1. There exists a positive constant η1 � 1 such that, for |ξ| � η1, the
spectral has the following Taylor series expansion:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 = −1 − α2 +
−α2(α2 + 1)(2μ̄+ λ̄) + α1α2n̄

(1 + α2)2
|ξ|2 + O(|ξ|3),

r2 = − (2μ̄+ λ̄)(1 + α2) + α1α2n̄

2(1 + α2)2
|ξ|2 + O(|ξ|3) +

[√
n̄α1

1 + α2
|ξ| + O(|ξ|2)

]
i,

r3 = − (2μ̄+ λ̄)(1 + α2) + α1α2n̄

2(1 + α2)2
|ξ|2 + O(|ξ|3) −

[√
n̄α1

1 + α2
|ξ| + O(|ξ|2)

]
i.

(3.9)

Lemma 3.2. Let

ν1 =
(2μ̄+ λ̄)(1 + α2) + α1α2n̄

2(1 + α2)2
,

for any |ξ| � η1, we have

|ϕ̂|, |σ̂|, |ψ̂| � e−ν1|ξ|2t(|ϕ̂0| + |σ̂0| + |ψ̂0|). (3.10)

Proof. The semigroup etA is expressed as

etA1(ξ) =
3∑

i=1

eritPi(ξ),

where the project operators Pi(ξ) can be computed as

Pi(ξ) =
∏
j �=i

A1(ξ) − rjI

ri − rj
, i, j = 1, 2, 3.

https://doi.org/10.1017/prm.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.16


338 S. Guo, G. Wu and Y. Zhang

thus, we have

P1(|ξ|) =
1

1 + α2

⎛⎝ 1 0 −1
0 0 0

−α2 0 α2

⎞⎠+ O(|ξ|), (3.11)

P2(|ξ|) =
1

2(1 + α2)

⎛⎜⎜⎜⎜⎜⎜⎝
α2 −iα1

√
1 + α2

n̄α1
1

iα2n̄

√
1 + α2

n̄α1
1 + α2 in̄

√
1 + α2

n̄α1

α2 −iα1

√
1 + α2

n̄α1
1

⎞⎟⎟⎟⎟⎟⎟⎠+ O(|ξ|),

(3.12)

P3(|ξ|) =
1

2(1 + α2)

⎛⎜⎜⎜⎜⎜⎜⎝
α2 iα1

√
1 + α2

n̄α1
1

−iα2n̄

√
1 + α2

n̄α1
1 + α2 −in̄

√
1 + α2

n̄α1

α2 iα1

√
1 + α2

n̄α1
1

⎞⎟⎟⎟⎟⎟⎟⎠+ O(|ξ|),

(3.13)

for any |ξ| � η1. The solution of IVP (3.4) can be expressed as

Û(ξ, t) = eA1(ξ)tÛ0(ξ) =

(
3∑

i=1

eritPi(ξ)

)
Û0(ξ). (3.14)

Therefore, by combining lemma 3.1 with (3.11)–(3.14), one has (3.10)
immediately. �

With the key estimate (3.10) in hand, we are able to establish the L2–convergence
rate on the low–frequency part of the solution, which is stated in the following
proposition.

Proposition 3.3 L2–theory. For any k > − 3
2 , there exists a positive constant C

which is independent of t such that

‖∇kU l‖L2 � C(1 + t)−
k
2− 3

4 ‖Û l(0)‖L∞ .

Proof. Using the Plancherel theorem, together with (3.10), we have

‖∇kU l‖2
L2 = ‖∇̂kU l‖2

L2 = ‖|ξ|kÛ l‖2
L2

= ‖|ξ|keA1(ξ)tÛ l(0)‖2
L2

� C(1 + t)−k− 3
2 ‖Û l(0)‖2

L∞ .

(3.15)

�
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3.2. Spectral analysis for IVP (3.5)

Set V = (Φ, Ψ)t, the IVP (3.5) can be expressed as{Vt = B2V,
V|t=0 = V0,

(3.16)

where

B2 =
(−1 1
α2 α2 − μ̄Λ2

)
.

Similar to the derivation of Lemma (3.1), the spectral of (3.16) has the following
Taylor series expansion:⎧⎪⎨⎪⎩

s1 = −α2 − 1 − α2μ̄

α2 + 1
|ξ|2 + O(|ξ|4),

s2 = − μ̄

α2 + 1
|ξ|2 + O(|ξ|4),

for |ξ| � η2, where η2 � 1 is a given positive constant.
From the results of Wu–Zhang–Zou [32], the L2–converge rate on the low–

frequency part of the solution of V can be given by following proposition.

Proposition 3.4. For any k > − 3
2 , there exists a positive constant C which is

independent of t such that

‖∇kV l‖L2 � C(1 + t)−
k
2− 3

4 ‖V̂ l(0)‖L∞ .

Combining the definitions of φ, ψ, Φ and Ψ, with the relations

u = −Λ−1∇ϕ− Λ−1 div Φ, and v = −Λ−1∇ψ − Λ−1 div Ψ,

the estimates in space Hk(R3) for (u, v) are the same as (φ, ψ, Φ, Ψ).

Proposition 3.5. For any k > − 3
2 , 2 � r <∞, and any t � 0, assume the initial

data U0 ∈ L1(R3), then the global solution U = (u, σ, v)t of the IVP (3.1) satisfies

‖∇kU l‖L2 � C(1 + t)−
k
2− 3

4 ‖Û l(0)‖L∞ � C(1 + t)−
k
2− 3

4 ‖U(0)‖L1 .

In the following two lemmas, we recall Sobolev’s inequality and the
Galiardo–Nirenberg inequality.

Lemma 3.6. Let f ∈ H2(R3). Then it holds that

(i) ‖f‖L∞ � C‖∇f‖1/2
L2 ‖∇f‖1/2

H1 � C‖∇f‖H1 ;

(ii) ‖f‖L6 � C‖∇f‖L2 ;

(iii) ‖f‖Lp � C‖f‖H1 , 2 � p � 6.
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Lemma 3.7. For 0 � i, j � k, if

a ∈ [
i

k
, 1] and

i

3
− 1
p

=
(
j

3
− 1
q

)
(1 − a) +

(
k

3
− 1
r

)
a

hold, then we have

‖∇if‖Lp � C‖∇if‖1−a
Lq ‖∇kf‖a

Lr .

Especially, when p = q = r = 2, it holds that

‖∇if‖L2 � C‖∇if‖
k−j
k−i

L2 ‖∇kf‖
i−j
k−j

L2 .

Proof. This is a special case of [28]. �

We also record the following lemma, which is used to deal with the L2−norm of
the spatial derivatives of the product of two functions.

Lemma 3.8. If f, g ∈ Hk(R3) ⊂ L∞(R3) for any integer k � 1, then we have

‖∇k(fg)‖L2 � C(‖f‖L∞‖∇kg‖L2 + ‖g‖L∞‖∇kf‖L2)

and

‖∇k(fg)‖L1 � C(‖f‖L2‖∇kg‖L2 + ‖g‖L2‖∇kf‖L2).

Proof. See [10] �

4. A priori estimates

We suppose that the inequality (2.5) in proposition 2.2 holds throughout this section
and the next section. We will deduce a series of lemmas about the energy estimates
in what follows. The first lemma is concerned with the lower order energy estimate
of (u, σ, v).

Lemma 4.1. There exists a suitably large constant D1 > 0 which is independent of
ε such that

d
dt

{
D1‖(u, σ, v)(t)‖2

L2 + 〈∇σ, v〉 (t)
}

+ C
(‖∇(σ, v)‖2

L2 + ‖u− v‖2
L2

)
� ε(‖∇u‖2

L2 + ‖∇2v‖2
L2), (4.1)

for any 0 � t � T .
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Proof. Multiplying (2.1)2 – (2.1)4 by u, σ, v respectively, and then integrating the
resultant equations over R3, we have

1
2

d
dt

‖u(t)‖2
L2 + ‖u− v‖2

L2 + 〈u− v, v〉 = 〈F1, u〉 , (4.2)

1
2

d
dt

‖σ(t)‖2
L2 + n̄ 〈div v, σ〉 = 〈F2, σ〉 , (4.3)

and

1
2

d
dt

‖v(t)‖2
L2 − α1 〈div v, σ〉 + μ̄‖∇v‖2

L2

+ (μ̄+ λ̄)‖div v‖2
L2 − α2 〈u− v, v〉 = 〈F3, v〉 . (4.4)

Multiplying (4.2) by α2n̄, (4.3) by α1, (4.4) by n̄, and adding them together, it
follows that

1
2

d
dt

(
α2n̄‖u(t)‖2

L2 + α1‖σ(t)‖2
L2 + n̄‖v(t)‖2

L2

)
+ α2n̄‖u− v‖2

L2 + μ̄n̄‖∇v‖2
L2

+ (μ̄+ λ̄)n̄‖div v‖2
L2

�
∣∣ 〈F1, u〉

∣∣+ ∣∣ 〈F2, σ〉
∣∣+ ∣∣ 〈F3, v〉

∣∣. (4.5)

The three terms on the right hand side of the above inequality can be estimated as
follows.

Firstly, for the first term, by virtue of (2.5), lemma 3.6 and Hölder inequality, we
obtain

| 〈F1, u〉 | = | 〈−u · ∇u, u〉 | � ‖u‖L3‖u‖L6‖∇u‖L2 � ‖u‖H1‖∇u‖2
L2 � ε‖∇u‖2

L2 .
(4.6)

For the second term, by using integration by parts and performing the similar way
to the proof of (4.6), one has

| 〈F2, σ〉 | = | 〈−v · ∇σ, σ〉 + 〈−σ div v, σ〉 |
� | 〈σ div v, σ〉 |
� ‖σ‖L3‖σ‖L6‖∇v‖L2

� ε(‖∇σ‖2
L2 + ‖∇v‖2

L2).

(4.7)

Using the fact that

α1 − P ′(n)
n

∼ σ,
μ

n
− μ̄ ∼ σ, and

μ+ λ

n
− (μ̄+ λ̄) ∼ σ, (4.8)
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the third term can be estimated as

| 〈F3, v〉 | � | 〈−v · ∇v, v〉 | +
∣∣∣∣〈(α1 − P ′(n)

n

)
∇σ, v

〉∣∣∣∣+ ∣∣∣〈(μ
n
− μ̄

)
Δv, v

〉∣∣∣
+
∣∣∣∣〈(μ+ λ

n
− (μ̄+ λ̄)

)
∇div v, v

〉∣∣∣∣+ ∣∣∣〈( ρ
n
− α2

)
(u− v), v

〉∣∣∣
� ‖v‖L3‖v‖L6‖∇v‖L2 + ‖σ‖L3‖∇σ‖L2‖v‖L6

+ ‖(σ, v)‖H1‖∇v‖L2‖∇(σ, v)‖L2

+ ‖(ρ, σ)‖H1‖u− v‖L2‖∇v‖L2

� ε(‖∇v‖2
L2 + ‖∇σ‖2

L2 + ‖u− v‖2
L2). (4.9)

Substituting (4.6), (4.7), and (4.9) into (4.5) yields

d
dt

‖(u, σ, v)(t)‖2
L2 + C

(‖u− v‖2
L2 + ‖∇v‖2

L2 + ‖div v‖2
L2

)
� ε(‖∇σ‖2

L2 + ‖∇u‖2
L2).

(4.10)

Next, we shall derive the energy dissipation for ‖∇σ‖2
L2 . Multiplying (2.1)4 by

∇σ, integrating them over R3, we obtain

α1‖∇σ‖2
L2 = 〈−vt,∇σ〉 +

〈
μ̄Δv + (μ̄+ λ̄)∇div v,∇σ〉

+ α2 〈u− v,∇σ〉 + 〈F3,∇σ〉 . (4.11)

From (2.1)3, the first term on the right hand side can be written as

〈−vt,∇σ〉 = − d
dt

〈v,∇σ〉 + 〈∇σt, u〉

= − d
dt

〈v,∇σ〉 + n̄‖div v‖2
L2 + 〈−F2,div v〉 .

(4.12)

By the definition of F2, we obtain

| 〈−F2,div v〉 | � | 〈v · ∇σ,div v〉 | + | 〈σ div v,div v〉 |
� ‖∇σ‖L3‖v‖L6‖div v‖L2 + ‖σ‖L∞‖div v‖2

L2

� ‖∇σ‖H1‖∇v‖2
L2 + ‖∇σ‖H1‖div v‖2

L2 � K0‖∇v‖2
L2 .

(4.13)
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Taking the same argument to the term 〈F3, ∇σ〉, it is easy to get

| 〈F3,∇σ〉 | � |〈−v · ∇v,∇σ〉| +
∣∣∣∣〈(α1 − P ′(n)

n

)
∇σ,∇σ

〉∣∣∣∣
+
∣∣∣〈(μ

n
− μ̄

)
K0v,∇σ

〉∣∣∣
+
∣∣∣∣〈(μ+ λ

n
− (μ̄+ λ̄)

)
∇div v,∇σ

〉∣∣∣∣+ ∣∣∣〈( ρ
n
− α2

)
(u− v),∇σ

〉∣∣∣
� ‖∇v‖L3‖v‖L6‖∇σ‖L2 + ‖σ‖L∞‖∇σ‖2 + ‖σ‖L∞‖∇2v‖L2‖∇σ‖L2

+ ‖(ρ, σ)‖H1‖u− v‖L2‖∇σ‖L2

� ‖∇v‖2
H1 + ‖∇σ‖2

L2 + ‖u− v‖2
L2 .

(4.14)
Substituting (4.12)–(4.14) into (4.11) gives

d
dt

〈v,∇σ〉 + C‖∇σ‖2
L2 � ‖∇v‖2

H1 + ‖u− v‖2
L2 . (4.15)

Multiplying (4.10) by D1 suitably large and adding it to (4.15), one has (4.1) since
ε > 0 is sufficiently small. This completes the proof of lemma 4.1 �

For the higher order energy estimate for (u, σ, v), we have following lemma.

Lemma 4.2. For any 0 � t � T, there exists a suitably large constant D2 > 0 which
is independent of ε such that

d
dt

⎧⎨⎩D2H1(u(t), σ(t), v(t)) +
∑

1�|k|�2

〈∇kv,∇∇kσ
〉
(t)

⎫⎬⎭+ C
(‖∇2σ‖2

H1

+ ‖(∇(u− v),∇2v)‖2
H2 + ‖∇2u‖2

H1

)
� ε‖∇(u, σ, v)‖2

L2 ,

(4.16)

where H1(u, σ, v) is equivalent to ‖∇(u, σ, v)‖2
H2 .

Proof. For each multi–index k with 1 � |k| � 3, by applying the operator ∇k to
(2.1)2–(2.1)4 and multiplying them by ∇ku, ∇kσ, ∇kv respectively, and then
integrating them over R3, we obtain

1
2

d
dt

‖∇ku(t)‖2
L2 + ‖∇k(u− v)‖2

L2 +
〈∇k(u− v),∇ku

〉
=
〈∇kF1,∇ku

〉
, (4.17)

1
2

d
dt

‖∇kσ(t)‖2
L2 + n̄

〈∇k div v,∇kσ
〉

=
〈∇kF2,∇kσ

〉
, (4.18)

and

1
2

d
dt

‖∇kv(t)‖2
L2 − α1

〈∇k div v,∇kσ
〉

+ μ̄‖∇k+1v‖2
L2 + (μ̄+ λ̄)‖∇k div v‖2

L2

− α2

〈∇k(u− v),∇ku
〉

=
〈∇kF3,∇kv

〉
. (4.19)
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Computing ∑
1�k�3

(α2n̄× (4.17) + α1 × (4.18) + n̄4.19),

we have

1
2

d
dt

∑
1�k�3

(α2n̄‖∇ku(t)‖2
L2 + α1‖∇kσ(t)‖2

L2 + n̄‖∇kv(t)‖2
L2)

+ C

⎛⎝ ∑
1�k�3

‖∇k(u− v)‖2
L2 +

∑
1�k�3

‖∇k+1v‖2
L2

⎞⎠
�

∑
1�k�3

∣∣∣ 〈∇kF1,∇ku
〉

+
〈∇kF2,∇kσ

〉
+
〈∇kF3,∇kv

〉 ∣∣∣.
(4.20)

In what follows, we shall give the estimates of the three terms on the right hand
side of the above equation one by one.

Firstly, for the term
〈∇kF1, ∇ku

〉
, making use of integration by parts, (2.5),

lemma 3.6, we obtain∣∣〈∇kF1,∇ku
〉∣∣

�
∣∣∣∣∫

R3
div u|∇ku|2 dx

∣∣∣∣
+
∣∣∣∣∫

R3
∇u|∇ku|2 dx

∣∣∣∣+ H(k − 2)
k−1∑
m=2

∣∣∣∣∫
R3

∇k−m+1u∇mu∇ku dx
∣∣∣∣

� ‖∇u‖L∞‖∇ku‖2
L2 + H(k − 2)

k−1∑
m=2

‖∇mu‖L4‖∇k−m+1u‖L4‖∇ku‖L2

� ε‖∇ku‖2
L2 ,

(4.21)

where H = X (0, ∞) is the Heaviside function, and in the last inequality, we have
used lemma 3.7 to get

‖∇mu‖L4 � C‖∇5/2u‖
4(k−m)−3

4k−10

L2 ‖∇ku‖
4m−7
4k−10

L2 ,

‖∇k−m+1u‖L4 � C‖∇5/2u‖
4m−7
4k−10

L2 ‖∇ku‖
4(k−m)−3

4k−10

L2 .

Using the similar argument as (4.21),
〈∇kF2, ∇kσ

〉
can be estimated as

∣∣〈∇kF2,∇kσ
〉∣∣ �

∣∣〈∇k(v · ∇σ),∇kσ
〉∣∣+ ∣∣〈∇k(σ div v),∇kσ

〉∣∣
� ε(‖∇kσ‖2

L2 + ‖∇kv‖2
L2 + ‖∇k+1v‖2

L2).
(4.22)
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From the definition of F3, we have from a direct computation that∣∣〈∇kF3,∇kv
〉∣∣

�
∣∣〈∇k(v · ∇v),∇kv

〉∣∣
+
∣∣∣∣〈∇k[(α1 − P ′(n)

n
)∇σ],∇kv

〉∣∣∣∣+ ∣∣∣〈∇k[(
μ

n
− μ̄)Δv],∇kv

〉∣∣∣
+
∣∣∣∣〈∇k[(

μ+ λ

n
− (μ̄+ λ̄))∇div v],∇kv

〉∣∣∣∣+ ∣∣∣〈∇k((
ρ

n
− α2)(u− v)),∇kv

〉∣∣∣
= I11 + I12 + I13 + I14 + I15. (4.23)

Similar to the proof of (4.21), we have from (4.8) that

I11 + I12 + I13 + I14 � ε(‖∇kσ‖2
L2 + ‖∇kv‖2

L2 + ‖∇k+1v‖2
L2). (4.24)

For the term I15, it follows from (2.5) and lemma 3.7 that

I15 =
∣∣∣〈∇k−1

(( ρ
n
− α2

)
(u− v)

)
,∇k+1v

〉∣∣∣
� ‖(ρ, σ)‖L∞‖∇k(u− v)‖L2‖∇kv‖L2

+ H(k − 1)
k−1∑
m=1

‖∇m(u− v)‖L4‖∇k−1−m(ρ, σ)‖L4‖∇k+1v‖L2

� ε(‖∇k(u− v)‖2
L2 + ‖∇k−1σ‖2

L2 + ‖∇k+1v‖2
L2 + ‖∇kv‖2

L2),

(4.25)

where in the last inequality, we have used the fact that

‖∇m(u− v)‖L4 � C‖∇3/2(u− v)‖
4(k−m)−3

4k−6

L2 ‖∇k(u− v)‖
4m−3
4k−6

L2 .

Putting (4.24) and (4.25) into (4.23), one has∣∣〈∇kF3,∇kv
〉∣∣ � ε(‖∇k(u− v)‖2

L2 + ‖∇kσ‖2
L2 + ‖∇kv‖2

L2 + ‖∇k+1v‖2
L2). (4.26)

Substituting (4.21), (4.22) and (4.26) into (4.20) gives

1
2

d
dt

∑
1�k�3

(
α2n̄‖∇ku(t)‖2

L2 + α1‖∇kσ(t)‖2
L2

+ n̄‖∇kv(t)‖2
L2

)
+ C

∑
1�k�3

(‖∇k(u− v)‖2
L2

+
∑

1�k�3

‖∇k+1v‖2
L2

)
� ε

∑
1�k�3

‖∇k(u, v, σ)‖2
L2 .

(4.27)

On the other hand, for the estimates of ∇ku (1 � k � 3), we also have the form as

‖∇ku‖2
L2 � ‖∇k(u− v)‖2

L2 + ‖∇kv‖2
L2 . (4.28)

https://doi.org/10.1017/prm.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.16


346 S. Guo, G. Wu and Y. Zhang

Combining (4.27) with (4.28), we find that there exists a function H1(u, σ, v) which
is equivalent to ‖∇(u, σ, v)‖2

H2 and satisfies

d
dt
H1(u(t), σ(t), v(t)) + C

(‖(∇(u− v),∇2v)‖2
H2 + ‖∇2u‖2

H1

)
� ε(‖∇σ‖2

H2 + ‖∇(u, v)‖2
L2). (4.29)

Next, we shall derive the energy dissipation for ‖∇k∇σ‖2
L2 for 1 � |k| � 2.

Applying the operator ∇k to (2.1)4, multiplying the resulting equation by ∇∇kσ,
summing up and integrating it over R3, we get

α1‖∇2σ‖2
H1 =

∑
1�|k|�2

(
− 〈∇kvt,∇∇kσ

〉
+ μ̄

〈∇k(Δv),∇∇kσ
〉

+ (μ̄+ λ̄)
〈∇k∇div v,∇∇kσ

〉
+ α2

〈∇k(u− v),∇∇kσ
〉

+
〈∇kF3,∇∇kσ

〉 )
= I21 + I22 + I23 + I24 + I25.

(4.30)

For the term I21, by virtue of (2.1)3, we can apply integration by parts, Hölder
inequality, Lemma (3.7) and lemma 3.2 to deduce that

I21 = − d
dt

∑
1�|k|�2

〈∇kv,∇∇kσ
〉
(t) − 〈∇k div v,∇kσt

〉
= − d

dt

∑
1�|k|�2

〈∇kv,∇∇kσ
〉
(t) + n̄‖∇k div v‖2

L2 +
〈∇k(v · ∇σ),∇k div v

〉
+
〈∇k(σ · div v),∇k div v

〉
� − d

dt

∑
1�|k|�2

〈∇kv,∇∇kσ
〉
(t) + C

(
ε‖∇k+1σ‖2

L2 + ‖∇k+1v‖2
L2

)
. (4.31)

For the terms I22, I23 and I24, by the similar argument, we have

|I22| + |I23| + |I24| � ε(‖∇k+1σ‖2
L2 + ‖∇k+2v‖2

L2 + ‖∇k(u− v)‖2
L2). (4.32)

For the term I25, we write it as

I25 = − 〈∇k(v · ∇v),∇∇kσ
〉

+
〈
∇k[(α1 − P ′(n)

n
)∇σ],∇∇kσ

〉
+
〈
∇k[(

μ

n
− μ̄)K0v],∇∇kσ

〉
+
〈
∇k[

μ+ λ

n
− (μ̄+ λ̄)∇div v],∇∇kσ

〉
+
〈
∇k[(

ρ

n
− α2)(u− v)],∇∇kσ

〉
= I251 + I252 + I253 + I254 + I255. (4.33)
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For the terms I251–I254, using (4.8) and making a direct computation, we have

|I251| + |I252| + |I253| + |I254| � ε(‖∇k+1σ‖2
L2 + ‖∇k+1v‖2

L2 + ‖∇k+2v‖2
L2).

(4.34)

For the term I255, employing the similar argument used in the proof of (4.25), we
get that

|I255| � ‖ ρ
n
− α2‖L∞‖∇k(u− v)‖L2‖∇∇kσ‖L2

+ H(k − 1)
k−1∑
m=1

‖∇m(u− v)‖L4‖∇k−1−m(ρ, σ)‖L4‖∇∇kσ‖L2

� ε(‖∇k(u− v)‖2
L2 + ‖∇k+1σ‖2

L2 + ‖∇k−1σ‖2
L2).

(4.35)

Substituting (4.35) and (4.34) into (4.33) yields

|I25| � K0(‖∇k(u− v)‖2
L2 + ‖∇k+1σ‖2

L2 + ‖∇k+1v‖2
L2 + ‖∇k+2v‖2

L2 + ‖∇kσ‖2
L2).

(4.36)

Adding (4.31), (4.32) and (4.36) into (4.30), we obtain

d
dt

∑
1�|k|�2

〈∇kv,∇∇kσ
〉
(t) + C

∑
1�k�2

‖∇k∇σ‖2
L2

� ε(‖∇σ‖2
L2 + ‖∇(u− v)‖2

H1 + ‖∇2v‖2
H2).

(4.37)

Since K0 is sufficiently small, multiplying (4.29) by D2 suitably large and adding
it to (4.37), we have (4.16). Thus, we complete the proof of the lemma. �

5. The proof of global well–posedness

In this section, we are devoted to proving proposition 2.2. We will do it by three
steps.

Step 1: Combining lemma 4.1 with lemma 4.2, there exists a function H2(u, σ, v)
which is equivalent to ‖(u, σ, v)‖H3 and satisfies

d
dt
H2(u, σ, v) + ‖∇(u, σ)‖2

H2 + ‖(u− v,∇v)‖2
H3 � 0, (5.1)

for any 0 � t � T , which implies (2.6).

Step 2: From (2.1)2 and (2.1)4, we see that

∂t(u− v) + (1 + α2)(u− v) = F1 + F3 − α1∇σ + μ̄Δv − (μ̄+ λ̄)∇divv.

Performing the similar procedure as in lemma 4.1, we have

d
dt

‖(u− v)(t)‖2
L2 + (1 + α2)‖(u− v)‖2

L2 � ‖∇(u, σ, v)‖2
H1 . (5.2)
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Now we define the temporal energy functional

H3(t) = D3H1(u(t), σ(t), v(t)) +
∑

1�k�2

〈∇kv,∇∇kσ
〉

+ ‖(u− v)(t)‖2
L2 ,

for any 0 � t � T , where it is noticed that H3(t) is equivalent to ‖∇(u, σ, v)‖2
H2

since D3 is large enough.
Using lemma 4.2, we obtain

d
dt
H3(t) + C(‖∇2σ‖2

H1 + ‖∇2v‖2
H2 + ‖∇2u‖2

H1)

� ε‖∇(u, σ, v)‖2
L2 + ‖∇(ul, σl, vl)‖2

L2 . (5.3)

Adding ‖∇(ul, σl, vl)‖2 to both side of (5.3), we deduce that there exists a suitably
large constant D4 > 0 which is independent of ε, such that

d
dt
H3(t) +

1
D4

H3(t) � ‖∇(ul, σl, vl)‖2
L2 , (5.4)

where we have used the fact that ‖∇(uh, σh, vh)‖L2 � ‖∇2(u, σ, v)‖L2 . If we define

M(t) = sup
0�τ�t

(1 + τ)
5
2H3(τ), (5.5)

then

‖∇(u, σ, v)‖H2 � C
√
H3(t) � C(1 + τ)−5/4

√
M(t), 0 � τ � t � T. (5.6)

To close the estimate (5.4), we will derive the time–decay estimate of
‖∇(u, σ, v)‖2

L2 .
From Duhamel’s principle, the solutions of system (2.1) have the form as

U = e−tBU(0) +
∫ t

0

e−(t−τ)BF(τ) dτ. (5.7)

By virtue of proposition 3.5, Plancherel theorem, Hölder inequality, and the
Hausdorff-Young inequality, we have

‖∇(ul(t), σl(t), vl(t))‖L2

� C(1 + t)−
5
4 ‖(u, σ, v)(0)‖L1 +

∫ t

0

(1 + t− τ)−
5
4 ‖(F1, F2, F3)(τ)‖L1∩H1 dτ

� C

(
δ0(1 + t)−5/4 + ε

∫ t

0

(1 + t− τ)−5/4(1 + τ)−5/4
√
M(t)dτ

)
� C(1 + t)−5/4(δ0 + ε

√
M(t)), (5.8)

where we have used the fact that

‖(F1, F2, F3)‖L1 � Cε‖∇(u, σ, v)‖H1 � Cε‖∇(u, σ, v)‖H2 . (5.9)

‖(F1, F2, F3)‖H1 � Cε‖∇(u, σ, v)‖H2 . (5.10)
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Hence, by using Gronwall’s inequality and putting (5.8) into (5.4), we have

H3(t) � e−
1

D4
tH3(0) + C

∫ t

0

e−
1

D4
(t−τ)‖∇(u(τ), σ(τ), v(τ))‖2

L2 dτ

� e−
1

D4
tH3(0) + C

∫ t

0

e−
1

D4
(t−τ)(1 + τ)−

5
2 (δ20 + ε2M(t)) dτ

� C(1 + t)−
5
2 (δ20 + ε2M(t)).

(5.11)

Since M(t) is non–decreasing, we have from (5.5) and (5.11) that

M(t) � C(N2
0 +K2

0M(t)),

for any 0 � t � T , which implies that

M(t) � CN2
0 ,

since K0 > 0 is small enough. Thus we obtain (2.8).
Next, by making use of proposition 3.5, (5.9) and (5.10), from Duhamel’s

principle, we obtain

‖(ul, σl, vl)(t)‖L2

� C(1 + t)−
3
4 ‖(u, σ, v)(0)‖L1 +

∫ t

0

(1 + t− τ)−
3
4 ‖(F1, F2, F3)(τ)‖L1∩L2 dτ

� Cδ0

(
(1 + t)−3/4 +

∫ t

0

(1 + t− τ)−3/4(1 + τ)−5/4dτ
)

� Cδ0(1 + t)−3/4, (5.12)

for any 0 � t � T . Thus, this together with the fact that ‖(uh, σh, vh)‖L2 �
‖∇(u, σ, v)‖L2 , we get

‖(u, σ, v)(t)‖L2 � ‖(ul, σl, vl)(t)‖L2 + ‖∇(u, σ, v)(t)‖L2 � Cδ0(1 + t)−3/4 (5.13)

which implies (2.9).

Step 3: Multiplying (2.1)1 by 
, integrating over R3 and using Cauchy-Schwarz
inequality, we have

d
dt

‖
(t)‖2
L2 = −〈div u, 
〉 − 〈u · ∇
, 
〉 � ‖∇u‖H2‖
‖L2 . (5.14)

Next, applying the operator ∇k to (2.1)1, Multiplying it by ∇k
, and integrating
over R3, for 1 � |k| � 2, we get

1
2

d
dt

‖∇k
(t)‖2
L2 = − 〈∇k div u,∇k


〉− 〈∇k(u · ∇
),∇k

〉
. (5.15)

It is easy to obtain ∣∣〈∇k div u,∇k

〉∣∣ � ‖∇k+1u‖L2‖∇k
‖L2 , (5.16)

https://doi.org/10.1017/prm.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.16


350 S. Guo, G. Wu and Y. Zhang

and

∣∣〈∇k(u · ∇ρ),∇kρ
〉∣∣ �

∣∣〈(u · ∇∇kρ),∇kρ
〉∣∣+ |k|−1∑

|m|=0

∣∣〈(∇k−mu) · ∇∇mρ),∇kρ
〉∣∣

� ‖∇u‖H2‖∇
‖H1 .

Thus, for 1 � |k| � 2, we have

d
dt

‖∇kρ(t)‖2
L2 � ‖∇u‖H2‖∇
‖H1 . (5.17)

Combining (5.14) with (5.17), we arrive at

d
dt

‖ρ(t)‖H2 � ‖∇u‖H2 � (1 + t)−5/4δ0.

Integrating the above inequality from 0 to t, we obtain (2.7). For (2.10), making
use of the above estimates and (2.1), we have

‖∂t(ρ, u, σ, v)‖L2 � C(‖∇u‖L2 + ‖∇σ‖L2 + ‖∇v‖H1)

� CN0(1 + t)−5/4.

for any 0 � t � T . Thus, we get (2.10).
Therefore, we have complete the proof of proposition 2.2.
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