
Canad. J. Math. Vol. 70 (6), 2018 pp. 1339–1372
http://dx.doi.org/10.4153/CJM-2017-047-7
©Canadian Mathematical Society 2018

Relative Discrete Series Representations for
Two Quotients of p-adic GLn

JerrodManford Smith

Abstract. We provide an explicit construction of representations in the discrete spectrum of two
p-adic symmetric spaces. We consider GLn(F) ×GLn(F)/GL2n(F) and GLn(F)/GLn(E), where
E is a quadratic Galois extension of a nonarchimedean local ûeld F of characteristic zero and odd
residual characteristic. _e proof of the main result involves an application of a symmetric space
version of Casselman’s Criterion for square integrability due to Kato and Takano.

1 Introduction

Let F be a nonarchimedean local ûeld of characteristic zero and odd residual charac-
teristic. Let G = G(F) be the F-points of a connected reductive group deûned over
F. Let θ be an F-involution (order two F-automorphism) of G and let H = Gθ(F)
be the group of θ-ûxed points in G. _e quotient H/G is a p-adic symmetric space.
An irreducible representation of G that occurs in the discrete spectrum of H/G (an
irreducible subrepresentation of L2(ZGH/G), where ZG is the centre of G) is called
a relative discrete series (RDS) representation. In this paper, we construct an inûnite
family of RDS representations for H/G that do not appear in the discrete spectrum
of G. We consider the following two cases. (1) _e linear case: G = GL2n(F) and
H = GLn(F) × GLn(F). (2) _e Galois case: G = GLn(E) and H = GLn(F), where
E/F is a quadratic extension. In amore general setting,Murnaghan has constructed
relatively supercuspidal (Deûnition 4.4) representations that are not supercuspidal
[32, 33]. Her construction is also via parabolic induction from representations of θ-
elliptic Levi subgroups (Deûnition 3.6) and provided the initial motivation for this
work. We obtain a special case ofMurnaghan’s results in our setting (Corollary 6.7);
however, we apply completely diòerent methods.

_e study of harmonic analysis on H/G is of interest due to connections with the
non-vanishing of global period integrals, functoriality, and poles of L-functions. See,
for instance, theworks [9,22,24]. For example, o�enGLn(F)×GLn(F)-distinction of
a representation ofGL2n(F) is equivalent to the existence of a nonzero Shalikamodel
(Remark 7.4). In addition, H/G is a spherical variety and its study ûts into the gen-
eral framework of [39]. In a broad sense, the work of Sakellaridis–Venkatesh lays the
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formalism and foundations of a relative Langlands program [37]. _e aim of such a
program is to fully understand the link between global automorphic period integrals
and local harmonic analysis. For certain p-adic spherical varieties X, Sakellaridis and
Venkatesh give an explicit Plancherel formula describing L2(X) up to a description of
the discrete spectrum [39,_eorem 6.2.1]. In addition, their results include a descrip-
tion of the discrete spectrum of p-adic symmetric spaces in terms of toric families of
RDS. In fact, they showed that [39, Conjecture 9.4.6] is true for strongly factorizable
spherical varieties. _e decomposition of the normon the discrete spectrum L2

disc(X)

provided by this result is not necessarily a direct integral; the images of certain inter-
twining operators packaged with the toric families of RDS may be non-orthogonal.
On the other hand, Sakellaridis and Venkatesh believe that their conjectures on X-
distinguished Arthur parameters may give a canonical choice ofmutually orthogonal
toric families of RDS that span L2

disc(X) [39, Conjectures 1.3.1, 16.2.2]. However, they
have not given an explicit description of the RDS required to build the toric families.
For this reason, an explicit construction of RDS for p-adic symmetric spaces is a step
towards completing the picture of the discrete spectrum of H/G. Kato and Takano
showed that any H-distinguished discrete series representation of G is an RDS [26].
_us, we are interested in constructing RDS representations ofG that are in the com-
plement of the discrete spectrum of G.

We state ourmain theorem below, a�er giving the necessary deûnitions. A θ-stable
Levi subgroup L of G is θ-elliptic if it is not contained in any proper θ-split parabolic
subgroup,where a parabolic subgroup P is θ-split if θ(P) is opposite to P. An element
g ∈ G is said to be θ-split if θ(g) = g−1. An F-torus S is (θ , F)-split if it is F-split and
every element s ∈ S is θ-split. A representation τ of a Levi subgroup L ofG is regular if
for every non-trivial element w ∈ NG(L)/L we have that the twist wτ = τ(w−1( ⋅ )w)

is not equivalent to τ.
Let n ≥ 2 (respectively, n ≥ 4) and letG be equal toGL2n(F) (respectively,GLn(E))

and let H be equal to GLn(F)×GLn(F) (respectively,GLn(F)). Let A0 be a θ-stable
maximal F-split torus of G containing a ûxed maximal (θ , F)-split torus S0. Let
L0 = CG((Aθ

0)
○) be aminimal θ-elliptic Levi subgroup ofG containing A0. Wemake

a particular choice ∆ell of simple roots for the root system Φ(G ,A0) (Section 5.2).
_e F-split component of the centre of L0 is determined by a proper nonempty subset
∆ellmin of ∆ell. A Levi subgroup L is a standard-θ-elliptic Levi subgroup if L is standard
with respect to ∆ell and contains L0. _emain result of this paper is the following.

_eorem (_eorem 6.3) Let Ωell ⊂ ∆ell be a proper subset such that Ωell con-
tains ∆ellmin. Let Q = QΩell be the proper ∆ell-standard parabolic subgroup associated
with the subset Ωell. _e parabolic subgroup Q is θ-stable and has θ-stable standard
θ-elliptic Levi subgroup L = LΩell . Let τ be a regular Lθ -distinguished discrete series
representation of L. _e parabolically induced representation π = ιGQτ is an irreducible
H-distinguished relative discrete series representation of G. Moreover, π is in the com-
plement of the discrete series of G.

Remark 1.1 _e representations constructed in _eorem 6.3 are induced from dis-
crete series, and are therefore tempered (generic) representations of G. In particular,
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one observes that L2(ZGH/G) contains theH-distinguished discrete series represen-
tations of G [26], as well as certain tempered representations that do not appear in
L2(ZG/G).

Outside of two low-rank examples considered by Kato and Takano [26, §5.1–5.2],
_eorem 6.3 provides the ûrst construction of a family of non-discrete relative dis-
crete series representations. In Corollary 7.17, we show that there are inûnitely many
equivalence classes of representations of the form constructed in _eorem 6.3. How-
ever, we do not prove that our construction exhausts the discrete spectrum in these
two cases (Remark 6.6). It appears that the major obstruction to showing that an ir-
reducibleH-distinguished representation ofG is not relatively discrete is establishing
non-vanishing of the invariant forms rPλ deûned by Kato and Takano [25] and by
Lagier [28] (Section 4.5).

_e author carried out a similar, more restricted, construction for the case G =

GL2n(E) and H = UE/F , a quasi-split unitary group [41,_eorem 5.2.22]. It is a work
in progress to extend the construction to arbitrary symmetric quotients of the general
linear group. Somemodiûcationwill be required for this generalization; the represen-
tations constructed in_eorem 6.3 are generic and no such representation can be dis-
tinguished by the symplectic group [20]. It is expected that the Speh representations
form the discrete spectrum of Sp2n(F)/GL2n(F) [34,39].

We now give an outline of the content of the paper. In Section 2,we establish nota-
tion and our conventions in the linear and Galois cases. In Section 3 we review basic
results on tori and parabolic subgroups relevant to the study of harmonic analysis on
H/G. Here we introduce the notion of a θ-elliptic Levi subgroup. Section 4 contains
a review of Kato and Takano’s generalization of Casselman’s Criterion, preliminaries
on distinguished representations, and some results on the exponents of induced rep-
resentations. _emost important results in this section are Proposition 4.22, Lemma
4.16, and Proposition 4.23. In Section 5 we give explicit descriptions of the tori, para-
bolic subgroups, and simple roots needed for our work in the linear and Galois cases
(Propositions 5.4 and 5.12). _e main result, _eorem 6.3, is stated and proved in
Section 6; however, several preliminary results required for the proof are deferred
until Section 8. In Section 7 we brie�y survey the literature on distinguished discrete
series representations in the linear and Galois cases. In addition, we establish the ex-
istence of inûnite families of inducing representations in Lemma 7.15 from which we
can deduce Corollary 7.17. Finally, in Section 8 we assemble the technical results on
the exponents and distinction of Jacquetmodules required to prove_eorem 6.3. _e
main results of the ûnal section are Propositions 8.5 and 8.7.

2 Notation and Conventions

Let F be a nonarchimedean local ûeld of characteristic zero and odd residual charac-
teristic. Let OF be the ring of integers of F with prime ideal pF . Let E be a quadratic
Galois extension of F. Fix a generator ε of the extension E/F such that E = F(ε). Let
σ ∈ Gal(E/F) be a generator of the Galois group of E over F.

Let G be a connected reductive group deûned over F and let G = G(F) denote the
group of F-points. Let e be the identity element of G. We let ZG denote the centre of
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G while AG denotes the F-split component of the centre of G. As is the custom, we
will o�en abuse notation and identify an algebraic group deûned over F with its group
of F-points. When the distinction is to be made, we will use boldface to denote the
algebraic group and regular typeface to denote the group of F-points. For any F-torus
A of G, we let A1 denote the group of OF-points A1 = A(OF).

Let P be a parabolic subgroup of G and let N be the unipotent radical of P. _e
modular character of P is given by δP(p) = ∣detAdn(p)∣, for all p ∈ P, where Adn
denotes the adjoint action of P on the Lie algebra n of N [7].

Let θ be an F-involution of G, that is, an order-two automorphism of G deûned
over F. DeûneH = Gθ to be the closed subgroup of θ-ûxed points ofG. _e quotient
H/G is a p-adic symmetric space.

Deûnition 2.1 We say that an involution θ1 of G is G-conjugate (or G-equivalent)
to another involution θ2 if there exists g ∈ G such that θ1 = Int g−1 ○ θ2 ○ Int g, where
Int g denotes the inner F-automorphismofG given by Int g(x) = gxg−1, for all x ∈ G.
We write g ⋅ θ to denote the involution Int g−1 ○ θ ○ Int g.

Let GLn denote the general linear group of n×n invertiblematrices. As is custom-
ary,we denote the block-upper-triangular parabolic subgroup ofGLn , corresponding
to a partition (m) = (m1 , . . . ,mk) of n, by P(m), with block-diagonal Levi subgroup
M(m) ≅ ∏

k
i=1 GLm i and unipotent radical N(m). We use diag(a1 , a2 , . . . , an) to de-

note an n × n diagonal matrix with entries a1 , . . . , an .
For any g , x ∈ G, we write gx = gxg−1. For any subset Y of G, we write gY =

{g y ∶ y ∈ Y}. Let CG(Y) denote the centralizer of Y in G and let NG(Y) be the nor-
malizer of Y in G. Given a real number r, we let ⌊r⌋ denote the greatest integer that
is less than or equal to r. We use (̂⋅) to denote that a symbol is omitted. For instance,
diag(â1 , a2 , . . . , an) may be used to denote the diagonal matrix diag(a2 , . . . , an).

2.1 The Linear Case

In the linear case, we set G = GLn(F), where n ≥ 4 is an even integer. Let θ denote
the inner involution of G given by conjugation by thematrix

wℓ =

⎛
⎜
⎜
⎝

1

. . .

1

⎞
⎟
⎟
⎠

,

that is, for any g ∈ G, we have θ(g) = Intwℓ(g) = wℓ gw−1
ℓ . _e element wℓ is diago-

nalizable over F; in particular, there exists xℓ ∈ GLn(F) such that

xℓwℓx−1
ℓ = diag(1n/2 ,−1n/2),

where 1n/2 denotes the n/2×n/2 identitymatrix. It follows that H = x−1
ℓ M(n/2,n/2)xℓ ,

where M(n/2,n/2) is the standard Levi subgroup of G of type (n/2, n/2). _us, in the
linear case, H = Gθ(F) is isomorphic to GLn/2(F) ×GLn/2(F).
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2.2 The Galois Case

In the Galois case, for n ≥ 4, we let G = RE/FGLn be the restriction of scalars of GLn
with respect to E/F. We identify the group G of F-points with GLn(E). _e non-
trivial element σ of the Galois group of E over F gives rise to an F-involution θ of G
given by coordinate-wise Galois conjugation θ((a i j)) = (σ(a i j)), where (a i j) ∈ G.
In the Galois case, we have that H = Gθ(F) is equal to GLn(F).

2.3 Choices of Particular Group Elements and Supplementary Involutions

For a positive integer r, we will write Gr for GLr with F-points Gr in the linear case,
and similarly for RE/FGLr with F-points Gr ≃ GLr(E) in theGalois case. Write Jr for
the r × r-matrix in Gr with unit anti-diagonal

Jr =
⎛
⎜
⎜
⎝

1

. . .

1

⎞
⎟
⎟
⎠

.

Note that wℓ = Jn . In the linear case, θr will denote the inner involution Int Jr of Gr
with ûxed points Hr . In theGalois case,we let θr denote the F-involution ofGr given
by coordinate-wise Galois conjugation. _en Hr = GLr(F) is the group of F-points
of the θr-ûxed subgroup of Gr . In the Galois case, for any positive integer r, there
exists γr ∈ Gr such that γ−1

r θr(γr) = Jr ∈ Hr . For instance, if r is even, then we may
take

γr =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
. . . . . .

1 1
−ε ε

. . . . . .
−ε ε

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where E = F(ε), and if r is odd, then we set

γr =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
. . . . . .

1 0 1
0 1 0
−ε 0 ε

. . . . . .
−ε ε

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Deûne γ = γn ∈ G and note that wℓ = Jn = γ−1θ(γ) is an order-two element of H.
In the Galois case, we deûne a second involution ϑ of G that is G-conjugate to θ

by declaring that ϑ = γ ⋅ θ (Deûnition 2.1). Explicitly,

ϑ(g) = γ−1θ(γgγ−1
)γ,(2.1)

https://doi.org/10.4153/CJM-2017-047-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-047-7


1344 J. M. Smith

for any g ∈ G. Since wℓ = γ−1θ(γ) is θ-ûxed, we have that

(2.2) ϑ = Intwℓ ○ θ = θ ○ Intwℓ .

Similarly, for any positive integer r, we deûne

(2.3) ϑr = γr ⋅ θr = Int Jr ○ θr = θr ○ Int Jr .

In both cases, deûnew+ ∈ GLn(F) ⊂ GLn(E) to be the permutation matrix corre-
sponding to the permutation of {1, . . . , n} given by

2i − 1↦ i for 1 ≤ i ≤ ⌊n/2⌋ + 1,
2i ↦ n + 1 − i for 1 ≤ i ≤ ⌊n/2⌋,

when n is odd, and by

2i − 1↦ i for 1 ≤ i ≤ n/2,
2i ↦ n + 1 − i for 1 ≤ i ≤ n/2

when n is even. Remember that in the linear casewewill always assume that n is even.
Finally, deûne

(2.4) w0 =

⎧⎪⎪
⎨
⎪⎪⎩

w+ in the linear case: G = GLn(F), n ≥ 4 even,
γw+ = γw+γ−1 in the Galois case: G = GLn(E), any n ≥ 4.

3 Symmetric Spaces and Associated Parabolic Subgroups

For now,wework in general and letG be an arbitrary connected reductive group over
F, with θ and H as in Section 2. An element g ∈ G is said to be θ-split if θ(g) = g−1.
A subtorus S of G is θ-split if every element of S is θ-split.

3.1 Tori and Root Systems Relative to Involutions

An F-torus S contained in G is (θ , F)-split if S is both F-split and θ-split. Let S0
be a maximal (θ , F)-split torus of G. By [18, Lemma 4.5(iii)], there exists a θ-stable
maximal F-split torusA0 ofG that contains S0. LetΦ0 = Φ(G ,A0) be the root system
ofG with respect to A0. LetW0 be theWeyl group ofG with respect to A0. Since A0 is
θ-stable, there is an action of θ on the F-rational characters X∗(A0) of A0. Explicitly,
given χ ∈ X∗(A0),we have (θ χ)(a) = χ(θ(a)), for all a ∈ A0. Moreover,Φ0 is stable
under the action of θ on X∗(A0). Let Φθ

0 denote the subset of θ-ûxed roots in Φ0.

Deûnition 3.1 A base ∆0 of Φ0 is called a θ-base if, for every positive root α ∈ Φ+

0
with respect to ∆0 that is not ûxed by θ, we have that θ(α) ∈ Φ−

0 .

As shown in [15], a θ-base ofΦ0 exists. Let ∆0 be a θ-base ofΦ0. Let p∶X∗(A0)→

X∗(S0) be the surjective homomorphism deûned by restricting the F-rational char-
acters on A0 to the subtorus S0. _e kernel of themap p is the submodule X∗(A0)

θ

of X∗(A0) consisting of θ-ûxed F-rational characters. _e restricted root system of
H/G (relative to our choice of (A0 , S0 , ∆0)) is deûned to be

Φ0 = p(Φ0) ∖ {0} = p(Φ0 ∖Φθ
0).
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_e set Φ0 coincides with the set Φ(G , S0) of roots with respect to S0 and this is a
(not necessarily reduced) root system by [18, Proposition 5.9]. _e set

∆0 = p(∆0) ∖ {0} = p(∆0 ∖ ∆θ
0)

is a base for the restricted root system Φ0. Indeed, the linear independence of ∆0
follows from the fact that ∆0 is a θ-base and that ker p = X∗(A0)

θ . Given a subset
Θ ⊂ ∆0, deûne the subset [Θ] = p−1(Θ) ∪ ∆θ

0 of ∆0. Subsets of ∆0 of the form [Θ],
for Θ ⊂ ∆0, are said to be θ-split. _e maximal θ-split subsets of ∆0 are of the form
[∆0 ∖ {ᾱ}], where ᾱ ∈ ∆0.

3.2 Parabolic Subgroups Relative to Involutions

Given a subset Θ of ∆0, one may canonically associate a ∆0-standard parabolic sub-
group PΘ of G and a standard choice of Levi subgroup. Let ΦΘ be the subsystem of
Φ0 generated by the simple roots Θ. Let Φ+

Θ be the set of positive roots determined
by Θ. _e unipotent radical NΘ of PΘ is generated by the root groups Nα , where
α ∈ Φ+

0 ∖ Φ+

Θ . _e parabolic subgroup PΘ admits a Levi factorization PΘ = MΘNΘ ,
where MΘ is the centralizer in G of the F-split torus AΘ = (⋂α∈Θ ker α)○. Here ( ⋅ )○
indicates the Zariski-connected component of the identity. In fact, AΘ is the F-split
component of the centre ofMΘ , andΦΘ is the root system Φ(MΘ ,A0) of A0 in MΘ .

Remark 3.2 When considering standard parabolic subgroups PΘ associated with
Θ ⊂ ∆0, we will always work with the Levi factorization PΘ = MΘNΘ , where MΘ =

CG(AΘ) is the standard Levi subgroup of PΘ .

Let M be any Levi subgroup of G. _e (θ , F)-split component of M is the largest
(θ , F)-split torus SM contained in the centre ofM. In fact,we have that SM is the con-
nected component (of the identity) of the subgroup of θ-split elements in the F-split
component AM , that is,

(3.1) SM = ({x ∈ AM ∶ θ(x) = x−1
})

○ .

A parabolic subgroup P of G is called θ-split if θ(P) is opposite to P. In this case,
M = P ∩ θ(P) is a θ-stable Levi subgroup of both P and θ(P) = Pop. Given a θ-split
subset Θ ⊂ ∆0, the ∆0-standard parabolic subgroup PΘ = MΘNΘ is θ-split. Any
∆0-standard θ-split parabolic subgroup arises from a θ-split subset of ∆0 [25, Lem-
ma 2.5(1)]. Let SΘ denote the (θ , F)-split component of MΘ . We have that

SΘ = ({s ∈ AΘ ∶ θ(s) = s−1
})

○
= ( ⋂

ᾱ∈p(Θ)

ker(ᾱ∶ S0 → F×))○ .(3.2)

For the second equality in (3.2), see [26, §1.5]. For any 0 < є ≤ 1, deûne

S−Θ(є) = {s ∈ SΘ ∶ ∣α(s)∣F ≤ є, for all α ∈ ∆0 ∖Θ}.(3.3)

We write S−Θ for S−Θ(1) and refer to S−Θ as the dominant part of SΘ .
By [17,_eorem 2.9], the subset ∆θ

0 of θ-ûxed roots in ∆0 determines the ∆0-stan-
dard minimal θ-split parabolic subgroup P0 = P∆θ

0
. By [18, Proposition 4.7(iv)], the

minimal θ-split parabolic subgroup P0 has standard θ-stable Levi M0 = CG(S0). Let
P0 = M0N0 be the standard Levi factorization of P0.
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Lemma 3.3 Let P be a θ-split parabolic subgroup with θ-stable Levi M = P ∩ θ(P).
_e Levi subgroup M is equal to the centralizer in G of its (θ , F)-split component SM .

Proof _e lemma follows immediately from [18, Lemma 4.6].

Lemma 3.4 IfM is the centralizer in G of a non-central (θ , F)-split torus S, then M
is the Levi subgroup of a proper θ-split parabolic subgroup of G.

Proof Let S0 be a maximal (θ , F)-split torus of G containing S and A0 a θ-stable
maximal F-split torus of G containing S0. Let P0 = M0N0 be aminimal θ-split para-
bolic subgroup containing S0. _e subgroup M = CG(S) is a θ-stable Levi subgroup
of G since S is a θ-stable F-split torus. Since S is not central in G, M is a proper Levi
subgroup. Moreover, since S is contained in S0, we have that M0 is contained in M.
Let P = MN0. Note that P is a closed subgroup containing P0; therefore, P is a proper
parabolic subgroup of G with Levi subgroup M. It remains to show that P is θ-split.
Since P0 is θ-split, we have that θ(N0) = N op

0 is the opposite unipotent radical of N0.
SinceM is θ-stable, it follows that θ(P) = MN op

0 and this is the parabolic opposite to
P.

_eminimal θ-split parabolic subgroups of G are not always H-conjugate [18, Ex-
ample 4.12]. On the other hand, the following result holds.

Lemma 3.5 ([25, Lemma 2.5]) Let S0 ⊂ A0, ∆0, and P0 = M0N0 be as above.
(i) Any θ-split parabolic subgroup P of G is conjugate to a ∆0-standard θ-split para-

bolic subgroup by an element g ∈ (HM0)(F).
(ii) If the group of F-points of the product (HM0)(F) is equal to HM0, then any

θ-split parabolic subgroup of G is H-conjugate to a ∆0-standard θ-split parabolic
subgroup.

Let P = MN be a θ-split parabolic subgroup and choose g ∈ (HM0)(F) such
that P = gPΘ g−1 for some ∆0-standard θ-split parabolic subgroup PΘ . Since g ∈

(HM0)(F), we have that g−1θ(g) ∈ M0(F). _us, we may take SM = gSΘ g−1. For a
given є > 0, one may extend the deûnition (3.3) of S−Θ to the non-∆0-standard torus
SM . Indeed, we may set S−M(є) = gS−Θ(є)g−1 and we deûne S−M = S−M(1) with S1

M =

SM(OF), as above.
We have the following deûnition, following the terminology of Murnaghan [33],

in analogy with the notion of an elliptic Levi subgroup.

Deûnition 3.6 A θ-stable Levi subgroup L of G is θ-elliptic if and only if L is not
contained in any proper θ-split parabolic subgroup of G.

We note the following simple lemma, which follows immediately from Deûni-
tion 3.6.

Lemma 3.7 If a θ-stable Levi subgroup L of G contains a θ-elliptic Levi subgroup,
then L is θ-elliptic.
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_e following characterization of the θ-elliptic property is also useful.

Lemma 3.8 A θ-stable Levi subgroup L is θ-elliptic if and only if SL = SG .

Proof If L = G, then there is nothing to do. Without loss of generality, L is a proper
subgroup of G. Suppose that L is θ-elliptic. We have that AG is contained in AL and
it follows that SG is contained in SL . If SL properly contains SG , then L is contained
in the Levi subgroup M = CG(SL). By Lemma 3.4, M is a Levi subgroup of a proper
θ-split parabolic subgroup. It follows that L ⊂ M is contained in a proper θ-split
parabolic subgroup. _is contradicts the fact that L is θ-elliptic, so wemust have that
SL = SG .

On the other hand, suppose that SL is equal to SG . Argue by contradiction and
suppose that L is contained in a proper θ-split parabolic P = MN with θ-stable Levi
subgroup M = P ∩ θ(P). We have that L = θ(L) is contained in M and SM ⊂ SL . By
Lemma 3.3,M is the centralizer of its (θ , F)-split component SM . SinceM is a proper
Levi subgroup of G, we have that SM properly contains SG . However, by assumption
SL = SG , which implies that M = G, and this is impossible. We conclude that L must
be θ-elliptic.

_e next proposition ûrst appeared in [33].

Proposition 3.9 Let Q be a parabolic subgroup of G. If Q admits a θ-elliptic Levi
factor L, then Q is θ-stable.

Proof _e subgroup L is θ-stable by deûnition. For any root α of AL in G, one
can show that θα = α. It follows that the unipotent radical of Q, hence Q, must be
θ-stable.

4 Distinguished Representations and the Relative
Casselman Criterion

4.1 Distinguished Representations

All of the representations that we consider are on complex vector spaces. A repre-
sentation (π,V) of G is smooth if for every v ∈ V the stabilizer of v in G is an open
subgroup. A smooth representation (π,V) of G is admissible if, for every compact
open subgroup K of G, the subspace of K-invariant vectors VK is ûnite-dimensional.
A smooth one-dimensional representation ofG is a quasi-character ofG. A character
ofG is a unitary quasi-character. Let (π,V) be a smooth representation ofG. If ω is a
quasi-character of ZG , then (π,V) is an ω-representation if π has central character ω.

Let χ be a quasi-character of H. We also let π denote its restriction to H.

Deûnition 4.1 If the space HomH(π, χ) is nonzero, then the representation π is
called (H, χ)-distinguished. If χ is the trivial character of H, then we refer to (H, 1)-
distinguished representations simply as H-distinguished.
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Of course, in Deûnition 4.1, the subgroup H = Gθ may be replaced by any closed
subgroup ofG; however,we are only concernedwith the symmetric subgroup setting.
As a ûrst observation, we record the following lemma.

Lemma 4.2 Let (π,V) be a ûnitely generated admissible representation of G. If
(π,V) is H-distinguished, then there exists an (irreducible) H-distinguished sub-quo-
tient of (π,V).

_e next lemma shows that distinction, relative to an involution θ, depends only
on the equivalence class of θ under the right action of G on the set of involutions
(Deûnition 2.1).

Lemma 4.3 _e subgroup G g⋅θ of g ⋅ θ-ûxed points in G is G-conjugate to Gθ . Pre-
cisely, we have G g⋅θ = g−1(Gθ)g. Moreover, a smooth representation (π,V) of G is
Gθ -distinguished if and only if π is G g⋅θ -distinguished.

Proof Let h ∈ Gθ . _en we have that

g ⋅ θ(g−1hg) = g−1θ(g g−1hgg−1
)g = g−1θ(h)g = g−1hg ,

so g−1hg is g ⋅ θ-ûxed. It follows that g−1(Gθ)g ⊂ G g⋅θ . Since conjugation by g is an
automorphism of G, it follows that G g⋅θ = g−1(Gθ)g.

Let λ be a nonzero element ofHomGθ (π, 1). Deûne λ′ = λ○π(g) and observe that
λ′ is a nonzero G g⋅θ-invariant linear functional on V . It follows that themap λ ↦ λ ○
π(g) is a bijection fromHomGθ (π, 1) to HomG g⋅θ (π, 1)with inverse λ′ ↦ λ′ ○π(g−1).
In particular, π is Gθ-distinguished if and only if π is G g⋅θ-distinguished.

4.2 Relative Matrix Coefficients

Let (π,V) be a smooth H-distinguished representation of G. Let λ ∈ HomH(π, 1)
be a nonzero H-invariant linear form on V and let v be a nonzero vector in V . In
analogy with the usual matrix coeõcients, deûne a complex-valued function φλ ,v on
G by φλ ,v(g) = ⟨λ, π(g)v⟩. We refer to the functions φλ ,v as relative matrix coef-
ûcients (with respect to λ) or as λ-relative matrix coeõcients. Since π is a smooth
representation, the relative matrix coeõcient φλ ,v lies in C∞(G), for every v ∈ V .
In addition, since λ is H-invariant, the functions φλ ,v descend to well-deûned func-
tions on the quotient H/G. In analogy with the classical case, onemakes the following
deûnitions.

Deûnition 4.4 _e representation (π,V) is said to be
(i) (H, λ)-relatively supercuspidal, or relatively supercuspidalwith respect to λ, if and

only if all of the λ-relativematrix coeõcients are compactly supportedmodulo
ZGH;

(ii) H-relatively supercuspidal if and only if π is (H, λ)-relatively supercuspidal for
every λ ∈ HomH(π, 1).

Let ω be a unitary character of ZG and further suppose that π is an ω-representa-
tion.
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Deûnition 4.5 _e representation (π,V) is said to be
(i) (H, λ)-relatively square integrable, or relatively square integrable with respect to

λ, if and only if all of the λ-relative matrix coeõcients are square integrable
modulo ZGH;

(ii) H-relatively square integrable if and only if π is (H, λ)-relatively square inte-
grable for every λ ∈ HomH(π, 1).

Notice that we must also take the quotient of G by the (noncompact) centre ZG
in order tomake sense of compactly supported (respectively, square integrable) func-
tions on H/G. Moreover, to integrate relative matrix coeõcients over ZGH/G we
need a G-invariant measure on the quotient ZGH/G. _e centre ZG of G is unimod-
ular since it is abelian. _e ûxed point subgroup H is also reductive [8,_eorem 1.8]
and thus unimodular. It follows that there exists a G-invariant measure on the quo-
tient ZGH/G by [38, Proposition 12.8].

Note When H is understood, we refer to H-relatively supercuspidal (respectively,
H-relatively square integrable) representations simply as relatively supercuspidal (re-
spectively, relatively square integrable).

Deûnition 4.6 If (π,V) is an irreducible subrepresentation of L2(ZGH/G), then
we say that (π,V) occurs in the discrete spectrum of H/G. In this case, we say that
(π,V) is a relative discrete series (RDS) representation.

4.3 Parabolic Induction and Jacquet Restriction

Let P be a parabolic subgroup of G with Levi subgroup M and unipotent radical N .
Given a smooth representation (ρ,Vρ) ofM wemay in�ate ρ to a representation of P,
also denoted ρ, by declaring that N acts trivially. We deûne the representation ιGP ρ of
G to be the induced representation IndG

P (δ
1/2
P ⊗ρ). We refer to the functor ρ ↦ ιGP ρ as

(normalized) parabolic induction. When it is more convenient (see Observation 6.4
and Sections 7–8), we also use the Bernstein–Zelevinsky notation for parabolic in-
duction on general linear groups [4,42].

Let (π,V) be a smooth representation ofG. Let (πN ,VN) denote the Jacquetmod-
ule of π along P, normalized by δ−1/2

P . Explicitly, if

V(N) = span{π(n)v − v ∶ n ∈ N , v ∈ V},

then VN = V/V(N) and πN(p)(v + V(N)) = δ−1/2
P (p)π(p)v + V(N), for all p ∈ P,

v + V(N) ∈ VN . Since δP is trivial on N , we see that (πN ,VN) is a representation of
P on which N acts trivially. We will regard (πN ,VN) as a representation of the Levi
factor M ≅ P/N of P.

We will now give a statement of the Geometric Lemma [4, Lemma 2.12], which is
a fundamental tool in our work and the study of induced representations in general.
First, we recall two results on double-coset representatives.

Lemma 4.7 ([7, Proposition 1.3.1]) Let Θ and Ω be subsets of ∆0. _e set

[WΘ/W0/WΩ] = {w ∈W0 ∶ wΩ,w−1Θ ⊂ Φ+
}
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provides a choice ofWeyl group representatives for the double-coset space PΘ/G/PΩ .

Proposition 4.8 ([7, Proposition 1.3.3]) Let Θ,Ω ⊂ ∆0 and let w ∈ [WΘ/W0/WΩ].
(i) _e standard parabolic subgroup PΘ∩wΩ is equal to (PΘ ∩

wPΩ) wNΩ .
(ii) _e unipotent radical of PΘ∩wΩ is generated by wNΩ and NΘ ∩

wN∅, where N∅ is
the unipotent radical of theminimal parabolic subgroup corresponding to∅ ⊂ ∆0.

(iii) _e standard Levi subgroup of PΘ∩wΩ is MΘ∩wΩ = MΘ ∩wMΩw−1.
(iv) _e subgroup PΘ∩

wMΩ is awΩ-standard parabolic in MwΩ = wMΩ with unipo-
tent radical NΘ ∩

wMΩ and standard Levi subgroup MΘ∩wΩ = MΘ ∩
wMΩ .

When applying theGeometric Lemma along two standard parabolic subgroups PΘ
and PΩ , associated with Θ,Ω ⊂ ∆0, we will always use the choice of “nice” represen-
tatives [WΘ/W0/WΩ] for the double-coset space PΘ/G/PΩ .

Lemma 4.9 (_e Geometric Lemma) Let PΩ and PΘ be two ∆0-standard parabolic
subgroups ofG. Let ρ be a smooth representation ofMΩ . _ere is a ûltration of the space
of the representation (ιGPΩ

ρ)NΘ such that the associated graded object is isomorphic to
the direct sum

⊕
w∈[WΘ/W0/WΩ]

ιMΘ
MΘ∩wPΩ

((
wρ)NΘ∩wMΩ).

We write Fw
Θ(ρ) = Fw

NΘ
(ρ) to denote the representation ιMΘ

MΘ∩wPΩ
((wρ)NΘ∩wMΩ)

of MΘ .

4.4 Distinction of Induced Representations

Lemma 4.10 is well known and follows from an explicit version of Frobenius Reci-
procity due to Bernstein and Zelevinsky [3, Proposition 2.29]. Let Q = LU be a
θ-stable parabolic subgroupwith θ-stable Levi factor L and unipotent radicalU . Note
that the identity component of Qθ = LθU θ is a parabolic subgroup of H○, with the
expected Levi decomposition [18], [13, Lemma 3.1]. Let µ be a positive quasi-invariant
measure on the (compact) quotient Qθ/H [3,_eorem 1.21].

Lemma 4.10 Let ρ be a smooth representation of L and let π = ιGQρ. _emap λ ↦ λG

is an injection ofHomLθ (δ1/2Q ρ, δQ θ ) into HomH(π, 1), where λG is given explicitly by

⟨λG , ϕ⟩ = ∫
Q θ/H

⟨λ, ϕ(h)⟩ dµ(h)

for any function ϕ in the space of π.

Corollary 4.11 If δ1/2Q restricted to Lθ is equal to δQ θ , then the map λ ↦ λG is an
injection of HomLθ (ρ, 1) into HomH(π, 1). In particular, if ρ is Lθ -distinguished, then
π is H-distinguished.

Proof Observe that HomLθ (δ1/2Q ρ, δQ θ ) = HomLθ (ρ, δ−1/2
Q ∣Lθ δQ θ ).

https://doi.org/10.4153/CJM-2017-047-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-047-7


Relative Discrete Series Representations for Two Quotients of p-adic GLn 1351

Alternatively, the H-invariant linear form on π = ιGQρ may be understood to arise
from the closed orbit in Q/G/H via theMackey theory.

4.5 Invariant Linear Forms on Jacquet Modules

Let (π,V) be an admissible H-distinguished representation of G. Let λ be a nonzero
element of HomH(π, 1). Let P be a θ-split parabolic subgroup of G with unipotent
radical N and θ-stable Levi component M = P ∩ θ(P). One may associate with λ a
canonical Mθ-invariant linear form rPλ on the Jacquet module (πN ,VN). _e con-
struction of rPλ, via Casselman’s Canonical Li�ing [7, Proposition 4.1.4], was discov-
ered independently byKato–Takano and Lagier. We refer the reader to [25,28] for the
details of the construction. We record the following result [25, Proposition 5.6].

Proposition 4.12 Let (π,V) be an admissible H-distinguished representation of G.
Let λ ∈ HomH(π, 1) be nonzero and let P be a θ-split parabolic subgroup of G with
unipotent radical N and θ-stable Levi component M = P ∩ θ(P).
(i) _e linear functional rPλ∶VN → C is Mθ -invariant.
(ii) _emapping rP ∶HomH(π, 1)→ HomMθ (πN , 1), sending λ to rPλ, is linear.

Kato and Takano used the invariant forms rPλ to provide the following character-
ization of relatively supercuspidal representations [25,_eorem 6.2].

_eorem 4.13 Let (π,V) be an admissible H-distinguished representation of G and
let λ be a nonzero H-invariant linear form on V . _en (π,V) is (H, λ)-relatively su-
percuspidal if and only if rPλ = 0 for every proper θ-split parabolic subgroup P of G.

4.6 Exponents and the Relative Casselman Criterion

Let (π,V) be a ûnitely generated admissible representation of G. Recall that AG de-
notes the F-split component of the centre of G. Let χ be a quasi-character of AG . For
n ∈ N, n ≥ 1, deûne the subspace

Vχ,n = {v ∈ V ∶ (π(z) − χ(z))nv = 0 for all z ∈ AG},

and set Vχ,∞ = ⋃
∞

n=1 Vχ,n . Each Vχ,n is a G-stable subspace of V and Vχ,∞ is the
generalized eigenspace in V for the AG-action on V by the eigencharacter χ. By [7,
Proposition 2.1.9], we have that
● V is a direct sum V =⊕χ Vχ,∞, where χ ranges over quasi-characters of AG ;
● since V is ûnitely generated, there are only ûnitely many χ such that Vχ,∞ /= 0.

Moreover, there exists n ∈ N such that Vχ,∞ = Vχ,n , for each χ.
Let ExpAG

(π) be the (ûnite) set of quasi-characters of AG such that Vχ,∞ /= 0. _e
quasi-characters that appear in ExpAG

(π) are called the exponents of π. _e second
item above implies thatV has a ûnite ûltration such that the quotients are χ-represen-
tations, for χ ∈ ExpAG

(π). From this last observation,we obtain the following lemma.

Lemma 4.14 _e characters χ of AG that appear inExpAG
(π) are precisely the central

quasi-characters of the irreducible subquotients of π.
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Note that the same analysis as above can be carried out for any closed subgroup Z
of ZG , i.e., we can consider the generalized Z-eigenspaces in V . Moreover, we have
the following.

Lemma 4.15 Let Z1 ⊃ Z2 be two closed subgroups of the centre ZG of G. _emap of
exponentsExpZ1

(π)→ ExpZ2
(π) deûned by restriction of quasi-characters is surjective.

Proof Let χ ∈ ExpZ2
(π). By assumption, there exists a nonzero vector v ∈ Vχ,∞. In

particular, there is an irreducible subquotient of Vχ,∞, hence of (π,V),where Z2 acts
by the character χ. On this irreducible subquotient, by Schur’s Lemma, the subgroup
Z1 must act by some extension χ̂ of χ. By Lemma 4.14, χ̂must occur in ExpZ1

(π).

For our purposes, we are interested in the exponents of parabolically induced rep-
resentations.

Lemma 4.16 Let P = MN be a parabolic subgroup of G, let (ρ,Vρ) be a ûnitely
generated admissible representation of M, and let π = ιGP ρ. _e quasi-characters χ ∈
ExpAG

(π) are the restriction to AG of characters µ of AM appearing in ExpAM
(ρ).

Proof Without loss of generality, assume that P = MN is a proper parabolic sub-
group of G. Given a ∈ AG , we have that δP(a) = 1, since a is central in G. It follows
that for any f in the space V of π we have

(4.1) (π(a) f )(g) = f (ga) = f (ag) = δ1/2P (a)ρ(a) f (g) = ρ(a) f (g),

for all a ∈ AG and g ∈ G. Suppose that χ ∈ ExpAG
(π) and f ∈ Vχ,∞ is nonzero. Fix

g0 ∈ G such that w = f (g0) is nonzero. _ere exists n ∈ N, n ≥ 1 such that f ∈ Vχ,n .
More precisely, (π(a) − χ(a))n f = 0V , for all a ∈ AG , where 0V ∶G → Vρ is the zero
function. By induction and using (4.1), we see that

0 = [(π(a) − χ(a))n f ](g0) = ( ρ(a) − χ(a)) n
( f (g0)) = ( ρ(a) − χ(a)) nw ,

for any a ∈ AG . _at is, w ∈ (Vρ)χ,∞ and (Vρ)χ,∞ is nonzero; moreover, χ ∈

ExpAG
(ρ). By Lemma 4.15, themap ExpAM

(ρ)→ ExpAG
(ρ) deûned by restriction is

surjective. In particular, there exists µ ∈ ExpAM
(ρ) such that χ is equal to the restric-

tion of µ to AG .

Let (π,V) be a ûnitely generated admissible representation ofG. Let P = MN be a
parabolic subgroup of G with Levi factor M and unipotent radical N . It is a theorem
of Jacquet that (πN ,VN) is also ûnitely generated and admissible [7, _eorem 3.3.1].
Applying [7, Proposition 2.1.9], we obtain a direct sum decomposition

VN = ⊕
χ∈ExpAM

(πN)
(VN)χ,∞ ,

where the set ExpAM
(πN) of quasi-characters of AM , such that (VN)χ,∞ /= 0, is ûnite.

_e quasi-characters of AM appearing in ExpAM
(πN) are called the exponents of π

along P.
Suppose, in addition, that (π,V) is H-distinguished. Fix a nonzero H-invariant

form λ on V . For any closed subgroup Z of the centre of G, Kato and Takano [26]
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deûned

(4.2) ExpZ(π, λ) = {χ ∈ ExpZ(π) ∶ λ∣Vχ,∞ /= 0},

and refer to the set ExpZ(π, λ) as exponents of π relative to λ. _e next result, by
Kato and Takano [26,_eorem 4.7], is a key ingredient used in the proof of our main
theorem.

_eorem 4.17 (_e Relative Casselman Criterion) Let ω be a unitary character of
ZG . Let (π,V) be a ûnitely generated admissible H-distinguished ω-representation of
G. Fix a nonzero H-invariant linear form λ on V . _e representation (π,V) is (H, λ)-
relatively square integrable if and only if the condition

(4.3) ∣χ(s)∣ < 1 for all χ ∈ ExpSM
(πN , rPλ) and all s ∈ S−M ∖ SGS1

M

is satisûed for every proper θ-split parabolic subgroup P = MN of G.

Remark 4.18 Note that the Relative Casselman Criterion reduces to Casselman’s
Criterion in the group case: G = G′ ×G′ and H = ∆G ≅ G′ is the diagonal subgroup.

Corollary 4.19 (Kato–Takano) If (π,V) is an H-distinguished discrete series repre-
sentation of G, then π is H-relatively square integrable.

_e next two lemmas let us prove Proposition 4.22, which allows us to reduce to
checking theRelativeCasselmanCriterion alongmaximal∆0-standardparabolic sub-
groups (under an additional assumption).

Lemma 4.20 Let P = MN be a proper θ-split parabolic subgroup of G. Assume that
P is H-conjugate to a ∆0-standard θ-split parabolic subgroup PΘ . If P = hPΘh−1, where
h ∈ H, then there is a bijection

ExpSΘ(πNΘ , rPΘ λ)Ð→ ExpS(πN , rPλ) χ′ z→ h χ′ ,

with inverse given by χ z→ h−1
χ.

Proof _e bijection between ExpSΘ(πNΘ) and ExpS(πN) is automatic from the
equality S = hSΘh−1 (and holds for h ∈ (HM0)(F)). Using that h ∈ H and H-
invariance of λ, one can show that if rPΘ λ is nonzero on (VNΘ)χ′ ,∞, then rPλ is
nonzero on (VN)χ,∞, where χ = h χ′.

Lemma 4.21 Assume that any θ-split parabolic subgroup P of G is H-conjugate to
a ∆0-standard θ-split parabolic. If the condition (4.3) holds for all ∆0-standard θ-split
parabolic subgroups of G, then (4.3) holds for all θ-split parabolic subgroups of G.

Proof Let P = MN be a proper θ-split parabolic subgroup of G. By assumption,
there exists h ∈ H and a θ-split subset Θ ⊂ ∆0 such that P = hPΘh−1. In particular,
the (θ , F)-split component S of P is equal to hSΘh−1; moreover, S− = hS−Θh−1. Let
χ ∈ ExpS(πN , rPλ). ByLemma 4.20, χ′ = h−1

χ ∈ ExpSΘ(πNΘ , rPΘ λ). Let s ∈ S−∖S1S∆0 .
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_en s′ = h−1sh ∈ S−Θ ∖S1
ΘS∆0 . It follows that ∣χ(s)∣ = ∣χ(hs′h−1)∣ = ∣χ′(s′)∣ < 1,where

the ûnal inequality holds by the assumption that (4.3) holds for PΘ .

Proposition 4.22 Let π be an H-distinguished representation of G and let λ be a
nonzero H-invariant linear form on the space of π. Assume that any θ-split para-
bolic subgroup P of G is H-conjugate to a ∆0-standard θ-split parabolic. _en π is
(H, λ)-relatively square integrable if and only if the condition (4.3) holds for all ∆0-
standardmaximal θ-split parabolic subgroups of G.

Proof Apply Lemma 4.21, [26, Lemma 4.6], and_eorem 4.17.

_e next result is key in our application of _eorem 4.17. It allows us to ignore
“bad” exponents relative to λ, as long as the appropriate subquotients are not distin-
guished.

Proposition 4.23 Let (π,V) be a ûnitely generated admissible representation of G.
Let χ ∈ ExpZG

(π) and assume that none of the irreducible subquotients of (π,V) with
central character χ are H-distinguished. _en for any λ ∈ HomH(π, 1), the restriction
of λ to Vχ,∞ is equal to zero, i.e., λ∣Vχ,∞ ≡ 0.

Proof Suppose, by way of contradiction, that λ∣Vχ,∞ /= 0. _en (π∣Vχ,∞ ,Vχ,∞) is an
admissible ûnitely generated H-distinguished representation of G. By Lemma 4.2,
some irreducible subquotient (ρ,Vρ) of Vχ,∞ must be H-distinguished. However,
the representation (ρ,Vρ) is also an irreducible subquotient of (π,V) and has central
character χ. By assumption, no such (ρ,Vρ) can be H-distinguished; therefore, we
must have that λ∣Vχ,∞ is identically zero.

5 Tori and Parabolic Subgroups: The Linear and Galois Cases

For the remainder of the paper we work in the linear and Galois cases. Refer to Sec-
tions 2.1 and 2.2 for notation.

5.1 Tori and Root Systems Relative to θ

In the linear case, let A0 be the diagonal maximal F-split torus of G. Note that A0 is
θ-stable. Let S0 be the (θ , F)-split component of A0. It is straightforward to check
that

S0 = {diag(a1 , . . . , a n
2
, a−1

n
2
, . . . , a−1

1 ) ∶ a i ∈ F× , 1 ≤ i ≤ n
2 } .

Moreover, S0 is a maximal (θ , F)-split torus of G. Indeed, it is readily veriûed that
the upper-triangular Borel subgroup of G is a minimal θ-split parabolic subgroup
with Levi subgroup A0. It follows from [18, Proposition 4.7 (iv)] that S0 is amaximal
(θ , F)-split torus of G contained in A0. In the Galois case, the torus T, obtained as
the restriction of scalars of the diagonal torus of GLn , is amaximal non-split F-torus
of G. We identify T = T(F) with the diagonal matrices in GLn(E). Deûne T0 =

γT ,
where γ is described in Section 2.3. _en A0 =

γAT is the F-split component of T0.
_e tori T , AT , T0, and A0 are all θ-stable. As above, and using (2.2), it is readily
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veriûed that

S0 = { γ diag(a1 , . . . , a⌊ n
2 ⌋
, 1̂, a−1

⌊
n
2 ⌋
, . . . , a−1

1 ) ∶ a i ∈ F× , 1 ≤ i ≤ ⌊ n
2 ⌋} ,

is amaximal (θ , F)-split torus of G contained in A0.
In both cases, let Φ0 = Φ(G ,A0) be the set of roots of G relative to A0. Explicitly,

in the linear case, we have Φ0 = {є i − є j ∶ 1 ≤ i /= j ≤ n}, where є i ∈ X∗(A0) is the
i-th coordinate (F-rational) character of A0. Let ∆0 = {є i − є i+1 ∶ 1 ≤ i ≤ n − 1} be the
standard base of Φ0. _e set Φ+

0 of positive roots (determined by ∆0) is

Φ+

0 = {є i − є j ∶ 1 ≤ i < j ≤ n}.

In the Galois case, we relate Φ0 to another collection of roots, those relative to AT .
Let Φ = Φ(G ,AT) be the root system of G with respect to AT with standard base ∆.
We observe that Φ0 =

γΦ, where, given a root β ∈ Φ, we have

(
γβ)(a) = β(γ−1

a) = β(γ−1aγ),

for a ∈ A0. Moreover, ∆0 =
γ∆ is a base for Φ0 and it is clear that

Φ+

0 = {
γ
(є i − є j) ∶ 1 ≤ i < j ≤ n},

where, as above, є i is the i-th coordinate (F-rational) character of the diagonal F-split
torus AT . It is elementary to verify the following.

Lemma 5.1 _e set of simple roots ∆0 ofΦ0 is a θ-base forΦ0. In addition, the subset
of θ-ûxed roots in Φ0 is empty.

Corollary 5.2 _e Borel subgroup P∅ = P0 = M0N0 corresponding to ∅ ⊂ ∆0 is a
minimal θ-split parabolic subgroup of G.

Proof _e subset ∆θ
0 is aminimal θ-split subset of ∆0; therefore, the parabolic P∆θ

0
is a minimal standard θ-split parabolic subgroup [26]. Since ∆θ

0 = ∅, we have P∆θ
0
=

P∅ = P0. In the linear case M0 = A0, and in the Galois case M0 = CG(A0) = T0.

Following Section 3.1, since ∆θ
0 = ∅, the restricted root system is just the image of

Φ0 under the restriction map p∶X∗(A0) → X∗(S0). _at is, we have Φ0 = p(Φ0)

and ∆0 = p(∆0). Explicitly, in the linear case, ∆0 = {є̄ i − є̄ i+1 ∶ 1 ≤ i ≤ n
2 − 1}∪ {2є̄ n

2
},

where є̄ i ∈ X∗(S0) is the i-th coordinate character of S0 given by

є̄ i(diag(a1 , . . . , a n
2
, a−1

n
2
, . . . , a−1

1 )) = a i .

Similarly in the Galois case, we have that

∆0 = { γ є̄ i − γ є̄ i+1 ∶ 1 ≤ i ≤ ⌊ n
2 ⌋ − 1} ∪ {ᾱ},

where ᾱ = γ є̄⌊ n
2 ⌋
when n is odd, and ᾱ = 2γ є̄ n

2
when n is even. _e following result is

now an immediate consequence of Lemma 5.1.
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Lemma 5.3 For 1 ≤ k ≤ ⌊ n
2 ⌋, let Θk denote the ⌊ n

2 ⌋ maximal θ-split subsets of ∆0. In
the linear case, for 1 ≤ k ≤ n/2 − 1

Θk = [∆0 ∖ {є̄k − є̄k+1}] = ∆0 ∖ {єk − єk+1 , єn−k − єn−k+1},

Θ n
2
= [∆0 ∖ {2є̄ n

2
}] = ∆0 ∖ {є n

2
− є n

2 +1}.

Respectively, in the Galois case, for 1 ≤ k ≤ ⌊ n
2 ⌋ − 1

Θk = [∆0 ∖ {
γ є̄k − γ є̄k+1}] = ∆0 ∖ {

γ
(єk − єk+1), γ(єn−k − єn−k+1)},

Θ⌊
n
2 ⌋
= [∆0 ∖ {ᾱ}] = ∆0 ∖ p−1

{ᾱ},

where ᾱ = γ є̄⌊ n
2 ⌋
when n is odd, and ᾱ = 2γ є̄ n

2
when n is even.

Note When n is odd, Θ⌊
n
2 ⌋
= ∆0 ∖ {γ(є⌊ n

2 ⌋
− є⌊ n

2 ⌋+1), γ(є⌊ n
2 ⌋+1 − є⌊ n

2 ⌋+2)}, and when
n is even, Θ n

2
= ∆0 ∖ {γ(є n

2
− є n

2 +1)}.

_e next proposition follows immediately from Lemma 5.3.

Proposition 5.4 _e ∆0-standardmaximal θ-split parabolic subgroups of G are:

Pk ∶= PΘk =

⎧⎪⎪
⎨
⎪⎪⎩

P(k ,n−2k ,k) 1 ≤ k ≤ n
2 − 1 in the linear case,

γP(k ,n−2k ,k) 1 ≤ k ≤ ⌊ n
2 ⌋ − 1 in the Galois case.

and

P⌊ n
2 ⌋
∶= PΘ⌊ n

2 ⌋
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P( n
2 ,

n
2 )

in the linear case since n is even,
γP( n

2 ,
n
2 )

in the Galois case when n is even,
γP(⌊ n

2 ⌋,1,⌊
n
2 ⌋)

in the Galois case when n is odd.

Remark 5.5 In both cases, Pk = MkNk , where Mk = MΘk is the standard Levi
factor and Nk is the unipotent radical of Pk . We write Ak for the F-split component
and Sk for the (θ , F)-split component of Mk .

In preparation for our proof of Proposition 8.7,we determine the θ-ûxed points of
the Levi subgroups Mk , 1 ≤ k ≤ ⌊ n

2 ⌋. Recall from (2.1) that, in theGalois case, ϑ is the
involution γ ⋅ θ = Intwℓ ○ θ = θ ○ Intwℓ . _e following is a special case of Lemma 4.3
and also holds for θr and ϑr (see (2.3)).

Lemma 5.6 Assume that we are in the Galois case. An element of G of the form γx
is θ-ûxed (respectively, θ-split) if and only if x is ϑ-ûxed (respectively, ϑ-split).

Proposition 5.7 Let 1 ≤ k ≤ ⌊ n
2 ⌋. In the linear case, the group Mθ

k of θ-ûxed points
in Mk = M(k ,n−2k ,k) is equal to

H(k ,n−2k ,k) =

⎧⎪⎪
⎨
⎪⎪⎩

{diag(A, B, θk(A)) ∶ A ∈ Gk , B ∈ Hn−2k} if k /= n/2,
{diag(A, θk(A)) ∶ A ∈ Gk} if k = n/2.
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In theGalois case,Mk =
γM(k ,n−2k ,k) andMθ

k isG-conjugate to H(k ,n−2k ,k). Explicitly,
we have that H(k ,n−2k ,k) = γ(k ,n−2k ,k)Mϑ

(k ,n−2k ,k)γ
−1
(k ,n−2k ,k) and

Mθ
k = γMϑ

(k ,n−2k ,k)γ
−1
= γγ−1

(k ,n−2k ,k)H(k ,n−2k ,k)γ(k ,n−2k ,k)γ−1 ,

where γ(k ,n−2k ,k) = diag(γk , γn−2k , γk) ∈ M(k ,n−2k ,k).

Proof Let 1 ≤ k ≤ ⌊ n
2 ⌋ and let M● = M(k ,n−2k ,k), (respectively,M(n/2,n/2))when n is

even and k = n/2. In the linear case, Mk = M● while, in the Galois case, Mk =
γM●.

_e statement in the linear case follows from the proof in the Galois case (note the
relationship between θ and ϑ, (2.2)). Without loss of generality,wework in theGalois
case and assume that k < n/2. By Lemma 5.6, we have Mθ

k = γ(Mϑ
●
). Let γm ∈ Mk ,

where m ∈ M●. Explicitly, we have m = diag(A, B,C), where A,C ∈ Gk and B ∈

Gn−2k . Onemay verify that

ϑ(m) = Intwℓ ○ θ(m) = diag( ϑk(C), ϑn−2k(B), ϑk(A)) .

It follows that

Mϑ
●
= {diag(A, B, ϑk(A)) ∶ A ∈ Gk , B ∈ Gn−2k , B = ϑn−2k(B)} .

Conjugating Mϑ
●
by the element γ● = diag(γk , γn−2k , γk) in M● and applying Lem-

ma 5.6, we obtain that Mϑ
●
is M●-conjugate (and F-isomorphic to) the subgroup H●.

_e next result will allow us to apply Proposition 4.22.

Lemma 5.8 Any θ-split parabolic subgroup P of G is H-conjugate to a ∆0-standard
θ-split parabolic subgroup PΘ , for some Θ ⊂ ∆0.

Proof One can check that the degree-oneGalois cohomology ofA0∩H (respectively,
T0 ∩ H) over F is trivial. By a standard argument, we have that (HA0)(F) = HA0
(respectively, (HT0)(F) = HT0). _e proposition follows from Corollary 5.2 and
[25, Lemma 2.5 (2)].

5.2 A Class of θ-elliptic Levi Subgroups and θ-stable Parabolic Subgroups

_e next two lemmas may be readily veriûed by hand.

Lemma 5.9 _e Levi subgroup L0 = CG((Aθ
0)
○) of G is θ-elliptic and Aθ

0 = (Aθ
0)
○ =

AL0 . Moreover, L0 is minimal among θ-elliptic Levi subgroup of G that contain A0.

Proof First,we observe that since (Aθ
0)
○ is θ-stable, the Levi subgroup L0 is θ-stable.

It is immediate that the maximal F-split torus A0 is contained in L0 (since A0 is
abelian).

Now,we show that L0 is θ-elliptic. First, note that the (θ , F)-split component SG of
G is the trivial group. Indeed, in the linear case, θ is inner andwe have that AG ≅ F× is
pointwise θ-ûxed. It follows from (3.1) that SG = ({±e})○ = {e}. Again, in theGalois
case, θ acts trivially on the F-split component of the centre AG of G and SG = {e}. In
both the linear andGalois cases, it is readily veriûed that the F-split component of the
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centre of L0 is equal to (Aθ
0)
○, that is, AL0 = (Aθ

0)
○. Moreover, in both cases, we have

that (Aθ
0)
○ = Aθ

0. In particular, AL0 is contained in H and it follows that SL0 = {e}
[16, §1.3]. By Lemma 3.8, L0 is θ-elliptic.
Finally, we prove that L0 is minimal among θ-elliptic Levi subgroups containing

A0. Suppose that L ⊂ L0 is a proper Levi subgroup of L0 that contains A0. We argue
that L cannot be θ-elliptic. Since L is proper in L0, we have that AL0 = (Aθ

0)
○ is a

proper sub-torus of AL . Following [16, §1.3], we have an almost direct product AL =

(Aθ
L)
○SL . Observe that, since AL ⊂ A0, we have

(Aθ
L)
○
= (AL ∩ Aθ

0)
○
= (AL ∩ AL0)

○
= AL0 .

Since SG = SL0 = {e} ⊂ AL0 = (Aθ
L)
○ and AL = (Aθ

L)
○SL properly contains AL0 , it

must be the case that SG is a proper subtorus of SL ; in particular, SL is non-trivial. It
follows from Lemma 3.8 that L is not θ-elliptic and this completes the proof.

Lemma 5.10 In the Galois case, conjugation by γ maps NG(AT) to NG(A0) and
induces an explicit isomorphism of the Weyl group WT = W(G ,AT), with respect to
AT , with theWeyl group W0 = W(G ,A0), with respect to A0. Moreover, we identify
WT with the group of permutation matrices in G (isomorphic to the symmetric group
Sn) andW0 with the γ-conjugates of the permutation matrices.

In both the linear and Galois cases, deûne ∆ell = w0∆0, where w0 is deûned in
(2.4). Since ∆ell is aWeyl group translate of ∆0, we have that ∆ell is a base of Φ0. In
both cases, set ∆odd = {є i − є i+1 ∶ i is odd}, and in the Galois case further denote
∆0,odd =

γ∆odd ⊂ ∆0 =
γ∆. In the linear case, deûne the subset ∆ellmin of ∆ell by ∆ellmin =

w0∆odd and in theGalois case, deûne ∆ellmin = w0∆0,odd. In both cases, the subset ∆ellmin
is exactly the subset of ∆ell that cuts out the torus Aθ

0 from A0. In particular,

Aθ
0 = A∆ell

min
= ( ⋂

β∈∆ell
min

ker(β ∶ A0 → F×)) ○ ,(5.1)

and L0 = L∆ell
min

= CG(A∆ell
min

). Write ∆even = {є i − є i+1 ∶ 2 ≤ i ≤ n − 1, i is even}.

Deûnition 5.11 A Levi subgroup L of G is a standard-θ-elliptic Levi subgroup if
and only if L is ∆ell-standard and contains L0.

_e next proposition characterizes the inducing subgroups in _eorem 6.3.

Proposition 5.12 Let Ωell ⊂ ∆ell such that Ωell contains ∆ellmin.
(i) _e ∆ell-standard parabolic subgroup Q = QΩell associated with Ωell is θ-stable.
(ii) In particular, the unipotent radical U = UΩell is θ-stable.
(iii) _e Levi subgroup L = LΩell = CG(AΩell) is a standard-θ-elliptic Levi of G.
(iv) _emodular function δQ of Q satisûes

δ1/2Q ∣ Lθ = δQ θ .

(v) We have that

(5.2) L ≅
k
∏
i=1

Gm i and Lθ
≅

k
∏
i=1

Hm i
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where ∑k
i=1 m i = n, such that when n is odd, exactly one m i is odd, and when n

is even, all of the m i are even.

Proof Since ∆ellmin ⊂ Ωell, it follows from (5.1) that AL = AΩell is contained in AL0 =

Aθ
0. It follows that L0 is contained in L and L is a standard-θ-elliptic Levi subgroup

by Lemmas 3.7 and 5.9. By Proposition 3.9, Q is a θ-stable parabolic subgroup with
θ-stable unipotent radical U = UΩell .

In the Galois case, the statement about modular functions is [13, Lemma 5.5], a
proof is given in [29, Lemma 2.5.1]. In the linear case, one may compute the mod-
ular functions by hand to verify the desired equality. We omit the straightforward
computation.
Finally, we explicitly describe both L and Lθ . Note that, in the Galois case, γ cen-

tralizes Aϑ
T and by Lemma 5.6we see that Aθ

0 = γAϑ
Tγ−1 = Aϑ

T . In both cases, it follows
that Aθ

0 is equal to the w+-conjugate of the F-split torus

A
(2, . . . ,2 ,̂1) = {diag(a1 , a1 , a2 , a2 , . . . , a⌊ n

2 ⌋
, a⌊ n

2 ⌋
, â) ∶ a, a i ∈ F×},

corresponding to the partition (2, . . . , 2, 1̂) of n. Precisely, Aθ
0 = w+A(2, . . . ,2 ,̂1)w−1

+
;

moreover, it follows that L0 = w+M(2, . . . ,2 ,̂1)w−1
+

. Furthermore, we can realize Ωell =

w0Ω,whereΩ ⊂ ∆0 contains ∆odd, respectively ∆0,odd. In the linear case,Ωell = w+Ω
since w0 = w+, while in the Galois case, Ωell = w0Ω = w+γΩ, where Ω = γ−1

Ω ⊂

∆ contains ∆odd. It follows that L = LΩell is the w+-conjugate of a block diagonal
Levi subgroup M(m1 , . . . ,mk) that contains M

(2, . . . ,2 ,̂1). We have now established the
ûrst isomorphism in (5.2): L = w+M(m1 , . . . ,mk)w

−1
+

≅ ∏
k
i=1 Gm i , where the partition

(m1 , . . . ,mk) of n is reûned by (2, . . . , 2, 1̂). In particular, when n is even, each m i is
even and when n is odd, exactly one m j is odd.

Let l = w+mw−1
+

∈ L, where m ∈ M = M(m1 , . . . ,mk). To determine Lθ , we treat the
linear and Galois cases separately. Starting in the linear case, we see that l is θ-ûxed
if and only if m is ûxed by the involution θ+ = w+ ⋅ θ = Int(w−1

+
wℓw+). _e element

w−1
+
wℓw+ is the permutation matrix

w−1
+
wℓw+ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
1 0

. . .
0 1
1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which lies in M(2, . . . ,2) ⊂ M. We observe that, since each m i is even, θ+ acts on the
i-th block Gm i = GLm i (F) of M as conjugation by

wm i =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
1 0

. . .
0 1
1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Gm i .
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Moreover, wm i is Gm i -conjugate to Jm i (see §2.3). It follows that θ+ acting on M is
M-equivalent to the product involution θm1 × ⋅ ⋅ ⋅ × θmk ; therefore, by Lemma 4.3 we
have

Lθ
= w+Mθ+w−1

+
≅ Mθ+ ≅

k
∏
i=1

(Gm i )
θmi =

k
∏
i=1

Hm i ,

where the second isomorphism is given by conjugation by an element of M. In the
Galois case, note that w+ is θ-ûxed and M is θ-stable. _en l = w+mw−1

+
is θ-ûxed if

and only if m is θ-ûxed. It follows that Lθ = w+Mθw−1
+
and we have that

Lθ
= w+Mθw−1

+
≅ Mθ

=
k
∏
i=1

(Gm i )
θmi =

k
∏
i=1

Hm i ,

as claimed.

6 Construction of Relative Discrete Series: The Main Theorem

Deûnition 6.1 A smooth representation τ of a Levi subgroup L ofG is regular if for
every non-trivial element w ∈ NG(L)/L we have that wτ ≇ τ, where wτ = τ ○ Intw−1.

For general linear groups, we can immediately translate Deûnition 6.1 into the fol-
lowing result.

Lemma 6.2 Let (m1 , . . . ,mk) be a partition of n. Let τ i be an irreducible admissible
representation of Gm i , for 1 ≤ i ≤ k. _e representation τ1 ⊗ ⋅ ⋅ ⋅ ⊗ τk of M(m1 , . . . ,mk) is
regular if and only if τ i ≇ τ j , for all 1 ≤ i /= j ≤ k.

Now we come to themain result of the paper.

_eorem 6.3 Let Q = LU be a proper ∆ell-standard θ-stable parabolic subgroup of
G with standard-θ-elliptic Levi factor L and unipotent radical U . Let τ be a regular
Lθ -distinguished discrete series representation of L. _e parabolically induced represen-
tation π = ιGQτ is irreducible and H-relatively square integrable.

Proof By assumption, τ is unitary and regular; therefore, π is irreducible by a result
of Bruhat [5] (cf. [7,_eorem 6.6.1]). Since τ is Lθ-distinguished, π isH-distinguished
by Proposition 5.12(iv) and Corollary 4.11. Let λ denote a ûxed nonzero H-invariant
linear form on π. By Proposition 7.1, λ is unique up to scalar multiples. To complete
the proof, it remains to show that π satisûes the Relative Casselman Criterion.
By Lemma 5.8 and Proposition 4.22, it is suõcient to verify that (4.3) is satisûed for

every ∆0-standardmaximal θ-split parabolic subgroup. By assumption, Q = QΩell for
some proper subset Ωell = w0Ω of ∆ell containing ∆ellmin, where Ω ⊂ ∆0. Let PΘ be a
maximal ∆0-standard θ-split parabolic subgroup. It follows from Lemma 4.7 that the
set [WΘ/W0/WΩ]⋅w−1

0 provides a “nice” choice of representatives for the double-coset
space PΘ/G/Q.
By the Geometric Lemma 4.9 and Lemma 4.14, the exponents of π along PΘ are

given by the union

ExpAΘ
(πNΘ) = ⋃

y∈[WΘ/W0/WΩ]⋅w−1
0

ExpAΘ
(F

y
Θ(τ)),
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where the exponents on the right-hand side are the central characters of the irre-
ducible subquotients of Fy

Θ(τ). By Lemma 4.15, the map from ExpAΘ
(F

y
Θ(τ)) to

ExpSΘ(πNΘ , rPΘ λ) deûned by restriction of characters is surjective. Set y = ww−1
0 ,

where w ∈ [WΘ/W0/WΩ]. If wMΩ ⊆ MΘ , then the parabolic subgroup PΘ ∩
wMΩ of

wMΩ is equal to wMΩ . _e containment wMΩ ⊆ MΘ occurs in two cases.

Case 1: when wMΩ = MΘ ,which occurs if and only ifw ∈ [WΘ/W0/WΩ]∩W(Θ,Ω),
whereW(Θ,Ω) = {w ∈W0 ∶ wΩ = Θ}, and

Case 2: when w ∈ [WΘ/W0/WΩ] is such that wMΩ ⊊ MΘ is a proper Levi subgroup
of MΘ .

In both cases, Fy
Θ(τ) is not Mθ

Θ-distinguished by Proposition 8.7 and the unitary
exponents χΘ,y of Fy

Θ(τ) do not contribute to ExpSΘ(πNΘ , rPΘ λ) by Proposition 4.23
(cf. (4.2)).

Otherwise, if wMΩ ⊈ MΘ , we have that PΘ ∩
wMΩ is a proper parabolic subgroup

of wMΩ . By Proposition 8.5, we have that ∣χ(s)∣F < 1, for all χ ∈ ExpSΘ(F
y
Θ(τ)), and

all s ∈ S−Θ ∖ S1
ΘS∆0 . In particular, (4.3) holds for all exponents χ ∈ ExpSΘ(πNΘ , rPΘ λ)

relative to λ along all maximal ∆0-standard θ-split parabolic subgroups PΘ . By _e-
orem 4.17, we conclude that π is (H, λ)-relatively square integrable.

Observation 6.4 A representation π of G is H-distinguished if and only if π is
gH-distinguished; in particular, the property of distinction only depends on the G-
conjugacy class of H (or the G-equivalence class of θ, Lemma 4.3). _us, taking into
account Proposition 5.12 and Lemma 6.2, wemay rephrase_eorem 6.3 as follows.

(1) Assume that n is even. Let (m1 , . . . ,mk) be a partition of n such that each
m i is even. Let τ1 , . . . , τk be pairwise inequivalent Hm i -distinguished discrete series
representations of Gm i . _e parabolically induced representation τ1 × ⋅ ⋅ ⋅ × τk is an
irreducible H-distinguished relative discrete series representation of G.

(2) If n is odd, thenwemust be in theGalois case. Let (m1 , . . . ,mk) be a partition
of n such that exactly onem l is odd, and all other m i are even. Let τ1 , . . . , τk be pair-
wise inequivalentGLm i (F)-distinguished discrete series representations ofGLm i (E).
_e parabolically induced representation τ1×⋅ ⋅ ⋅×τk is an irreducibleGLn(F)-distin-
guished relative discrete series representation of GLn(E).

Corollary 6.5 Let π = ιGQτ be as in _eorem 6.3. _e representation π is a relative
discrete series representation that does not lie in the discrete spectrum of G.

Proof By_eorem 6.3, π is irreducible andH-relatively square integrable; therefore,
π is a relative discrete series. Since π = ιGQτ, where Q is proper in G, it follows from
the work of Zelevinsky [42] that π does not occur in the discrete spectrum of G.

Remark 6.6 At present, the author does not know if the construction outlined in
_eorem 6.3 exhausts all non-discrete relative discrete series in the linear and Galois
cases. In order to show that a representation is not (H, λ)-relatively square integrable,
it is necessary to show that rPλ is non-vanishing on the generalized eigenspace cor-
responding to an exponent χ ∈ ExpSM

(πN , rPλ) that fails the condition (4.3). _e
non-vanishing of rPλ is obscured by the nature of the construction of the form via
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Casselman’s Canonical Li�ing. Due to this lack of precise information, we cannot
exclude the possibility that certain representations are RDS. For instance, it may be
possible to relax the regularity condition imposed in _eorem 6.3, which is essential
in the proof of Proposition 8.7. At this time, the author does not have amethod to re-
move the assumption of regularity from Proposition 8.7, due to a lack of information
regarding the support of the rPλ.

By [25, _eorem 6.2] (see _eorem 4.13) and the proof of _eorem 6.3, one may
obtain the following.

Corollary 6.7 Let Q = LU be as in _eorem 6.3. If τ is a regular Lθ -distinguished
supercuspidal representation of L, then π = ιGQτ is H-relatively supercuspidal.

Remark 6.8 Note that Corollary 6.7 can be obtained bymore direct methods. See,
for instance, the work ofMurnaghan [33] for such results in amore general setting.

7 Distinguished Discrete Series: Known Results and Inducing Data

In this section,we survey the known results on distinguished discrete series represen-
tations in the linear and Galois cases. Our ultimate goal is to prove Proposition 7.16
and thus Corollary 7.17. First, we note that in the linear case multiplicity-one is due
to Jacquet and Rallis [22]. In the Galois case,multiplicity-one is due to Flicker [10].

Proposition 7.1 Let π be an irreducible admissible representation of G. If π is H-dis-
tinguished, then HomH(π, 1) is one-dimensional.

Jacquet and Rallis [22] also proved the next proposition.

Proposition 7.2 Let M be amaximal Levi subgroup of GLm(F), where m ≥ 2. Let π
be an irreducible admissible representation of GLm(F). If π is M-distinguished, then π
is equivalent to its contragredient π̃.

Flicker [10] used themethods of [12] to prove the following result.

Proposition 7.3 Let π be an irreducible admissible representation ofGLm(E), where
m ≥ 2. If π is GLm(F)-distinguished, then π ≅ θ π̃.

7.1 Distinguished Discrete Series in the Linear Case

In this subsection, unless otherwise noted, we let G = GLn(F), where n ≥ 2 is even,
and we let H = GLn/2(F) ×GLn/2(F).

Remark 7.4 It is known that an irreducible square integrable representation π of G
is H-distinguished if and only if π admits a Shalika model. It was shown by Jacquet
and Rallis [22] that if π is an irreducible admissible representation of G that admits
a Shalika model, then π is H-distinguished. For irreducible supercuspidal represen-
tations, the converse appears as [23, _eorem 5.5]. Sakellaridis and Venkatesh, and
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independentlyMatringe, proved the converse result for relatively integrable and rela-
tively square integrable representations by the technique of “unfolding” [39, Example
9.5.2], [31,_eorem 5.1]. In fact, Sakellaridis–Venkatesh proved that there is an equi-
variant unitary isomorphism between L2(H/G) and L2(S/G), where S is the Shalika
subgroup. Several analogous global results appear in [11].

Let π be a discrete series representation of GLm(F), m ≥ 2. Denote by L(s, π × π)
the localRankin–Selberg convolution L-function. It iswell known that L(s, π×π) has
a simple pole at s = 0 if and only if π is self-contragredient [21]. By [40, Lemma 3.6],
we have a local identity

L(s, π × π) = L(s, π,∧2
)L(s, π, Sym2

),(7.1)

where L(s, π,∧2), respectively L(s, π, Sym2
), denotes the exterior square, respectively

symmetric square, L-function of π deûned via the Local Langlands Correspondence
(LLC). It is alsowell known [6,27] that L(s, π,∧2) cannot have a polewhen m is odd.

_eorem 7.5 ([31, Proposition 6.1]) Suppose that π is a square integrable represen-
tation of G. _en π is H-distinguished if and only if the exterior square L-function
L(s, π,∧2) has a pole at s = 0.

Remark 7.6 It is now known that for all discrete series (and when n is even, all ir-
reducible generic representations), the Jacquet–Shalika and Langlands–Shahidi local
exterior square L-functions agreewith the exterior square L-functions deûned via the
LLC [19,_eorem 4.3, §4.2], [27,_eorems 1.1, 1.2].

Let ρ be an irreducible unitary supercuspidal representation of GLr(F), r ≥ 1.
For an integer k ≥ 2, write St(k, ρ) for the unique irreducible (unitary) quotient
of the parabolically induced representation ν 1−k

2 ρ × ν 3−k
2 ρ × ⋅ ⋅ ⋅ × ν k−1

2 ρ of GLkr(F)
[42, Proposition 2.10, §9.1], where ν(g) = ∣det(g)∣F , for any g ∈ GLr(F). _e repre-
sentations St(k, ρ) are o�en called generalized Steinberg representations and they are
exactly the nonsupercuspidal discrete series representations ofGLkr(F) [42,_eorem
9.3]. _e usual Steinberg representation Stn of GLn(F) is obtained as St(n, 1). Note
that St(k1 , ρ1) is equivalent to St(k2 , ρ2) if and only if k1 = k2 and ρ1 is equivalent to
ρ2 [42,_eorem 9.7 (b)].

_eorem 7.7 ([31,_eorem 6.1]) Suppose that n = kr is even. Let ρ be an irreducible
supercuspidal representation of GLr(F). Let π = St(k, ρ) be a generalized Steinberg
representation of G.
(i) If k is odd, then r must be even, and π is H-distinguished if and only if ρ is

GLr/2(F) ×GLr/2(F)-distinguished.
(ii) If k is even, then π is H-distinguished if and only if L(s, ρ, Sym2

) has a pole at
s = 0.

_e following is a corollary of [14,_eorem 1.3] and [32, Proposition 10.1].
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_eorem 7.8 For any even integer n ≥ 2,
(i) there exist inûnitelymany equivalence classes of H-distinguished irreducible (uni-

tary) tame supercuspidal representations of G;
(ii) there exist inûnitely many equivalence classes of self-contragredient irreducible

(unitary) tame supercuspidal representations of G that are not H-distinguished.

Finally, we note the following.

Proposition 7.9 For any even integer n ≥ 2, there are inûnitely many equivalence
classes of H-distinguished discrete series representations of G. Moreover,
(i) if n = 2, there are exactly four H-distinguished twists of the Steinberg representa-

tion St2 of G;
(ii) if n = 4, there are exactly four H-distinguished twists of the Steinberg representa-

tion St4 of G, and there are inûnitelymany equivalence classes of H-distinguished
generalized Steinberg representations of G of the form St(2, ρ);

(iii) if n ≥ 6, there are inûnitelymany equivalence classes ofH-distinguished nonsuper-
cuspidal discrete series representations of G.

Proof _emain statement follows from _eorem 7.8.
(i) _e Steinberg representation St2 has trivial central character and so it is H-

distinguished [36]. A twist χ ⊗ St2 of St2 by a quasi-character χ of F× has trivial
central character if and only if χ is trivial on (F×)2. In particular, χmust be a quadratic
(unitary) character and, since F has odd residual characteristic, there are four distinct
such characters.

(ii) By [11, Corollary 8.5 (ii)], a twisted Steinberg representation χ ⊗ St4 admits a
Shalikamodel if and only if χ is trivial on (F×)2. In this case, χ⊗St4 isH-distinguished
(Remark 7.4).
By_eorem 7.8 (ii), there exist inûnitelymany classes of self-contragredient super-

cuspidal representations ρ of G2 that are not H2-distinguished. In particular, given
such a ρ ≅ ρ̃, the Rankin–Selberg L-function L(s, ρ × ρ) has a pole at s = 0 [21]; how-
ever, by_eorem 7.5, L(s, ρ,∧2) does not have a pole at s = 0. It follows from (7.1) that
L(s, ρ, Sym2

) has a pole at s = 0. _e claim follows from _eorem 7.7 (ii)
(iii) _e last statement is an immediate consequence of_eorems 7.7 and 7.8.

7.2 Distinguished Discrete Series in the Galois Case

In this subsection, unless otherwise noted, let G = RE/FGLn(F), where n ≥ 2. We
identify G with GLn(E). Let H = GLn(F) be the subgroup of Galois ûxed points in
G. Let η∶ E× → C× be an extension to E× of the character ηE/F ∶ F× → C associated
with E/F by local class ûeld theory. _e following result is due to Anandavardhanan
and Rajan [2, §4.4], and also appears in [1,_eorem 1.3] and [30, Corollary 4.2].

_eorem 7.10 Let ρ be an irreducible supercuspidal representation of GLr(E). _en
the generalized Steinberg representation π = St(k, ρ) of GLkr(E) is GLkr(F)-distin-
guished if and only if ρ is (GLr(F), ηk−1

E/F)-distinguished.
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_e next result is due to Prasad for n = 2 [35] and Anandavardhanan and Rajan
for n ≥ 3 [2,_eorem 1.5].

_eorem 7.11 Let χ be a quasi-character of F× and identify χwith the quasi-character
χ ○det of H. _e Steinberg representation Stn of G is (H, χ)-distinguished if and only if
n is odd and χ = 1, or n is even and χ = ηE/F .

Corollary 7.12 If n = 2, then the twist η ⊗ St2 of the Steinberg representation St2 of
G is H-distinguished.

_e following is a corollary of the work of Hakim and Murnaghan [14, _eorem
1.1] andMurnaghan [32, Proposition 10.1].

_eorem 7.13
(i) _ere are inûnitelymany equivalence classes of irreducible (unitary) supercuspidal

representations of G that are H-distinguished,
(ii) _ere are inûnitelymany equivalence classes of irreducible (unitary) supercuspidal

representations of G that are (H, ηE/F)-distinguished.

_e next result is an immediate consequence of_eorems 7.10, 7.11, and 7.13.

Corollary 7.14 Let G = GLn(E) and let H = GLn(F).
(i) If n ≥ 4 is not an odd prime, then there are inûnitely many equivalence classes of

H-distinguished nonsupercuspidal discrete series representations of G.
(ii) If n is an odd prime, then the Steinberg representation Stn of G is a nonsupercus-

pidal H-distinguished discrete series.

Proof Assume that n ≥ 4 is not an odd prime. _en n = kr for two integers
k, r ≥ 2. Note that ηE/F is a quadratic character; in particular, if k is even, then
ηk−1
E/F = ηE/F and if k is odd, then ηk−1

E/F = 1. By _eorem 7.13, there are inûnitely
many equivalence classes of irreducible supercuspidal representations ρ ofGr that are
(Gr , ηk−1

E/F)-distinguished. By_eorem 7.10 and [42,_eorem 9.7 (b)], there are inûn-
itely many equivalence classes of generalized Steinberg representations of G of the
form St(k, ρ) and that areH-distinguished. Of course, the generalized Steinberg rep-
resentations St(k, ρ) arenonsupercuspidaldiscrete series representations. _e second
statement follows from _eorem 7.11.

7.3 The Inducing Representations in Theorem 6.3

For the remainder of the paper, ûx a proper ∆ell-standard θ-stable parabolic subgroup
Q = QΩell , for some proper subset Ωell ⊂ ∆ell containing ∆ellmin. As in Proposition 5.12,
the subgroup Q admits a standard-θ-elliptic Levi subgroup L = LΩell and unipotent
radicalU = UΩell . _enext lemma is straightforward to verify byusing the description
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of Lθ , given in the proof of Proposition 5.12, and Lemma 4.3. _e multiplicity-one
statement follows from Proposition 7.1.

Lemma 7.15 Let L ≅ ∏
k
i=1 Gm i be a standard-θ-elliptic Levi subgroup of G. Let

τ ≅ ⊗
k
i=1 τ i be an irreducible admissible representation of L where each τ i is an irre-

ducible admissible representation of Gm i , 1 ≤ i ≤ k.
(i) _en τ is Lθ -distinguished if and only if τ i is Hm i -distinguished for all 1 ≤ i ≤ k.
(ii) If τ is Lθ -distinguished, then HomLθ (τ, 1) is one-dimensional.

Proposition 7.16 Let L be a standard-θ-elliptic Levi subgroup of G. _ere exist in-
ûnitelymany equivalence classes of regular non-supercuspidal Lθ -distinguished discrete
series representations of L.

Proof By assumption n ≥ 4 and n is always taken to be even in the linear case. We
have that L is isomorphic to a product∏k

i=1 Gm i of smaller general linear groups, for
some partition (m1 , . . . ,mk) of n. Let τ i be an irreducible admissible representation
of Gm i , 1 ≤ i ≤ k. By Lemma 6.2, the representation τ1 ⊗ ⋅ ⋅ ⋅ ⊗ τk of L is regular if and
only if τ i ≇ τ j for all 1 ≤ i /= j ≤ k. Moreover, τ1 ⊗ ⋅ ⋅ ⋅ ⊗ τk is supercuspidal (square
integrable) if and only if every τ i is supercuspidal (square integrable). It is suõcient
to prove that for any relevant partition of n (see Proposition 5.12), there exist pairwise
inequivalent Hm i -distinguished discrete series representations τ i such that at least
one τ i is not supercuspidal.

In the linear case, by Proposition 5.12, each m i ≥ 2 is even. By _eorem 7.8,
there are inûnitely many equivalence classes of Hm i -distinguished irreducible su-
percuspidal representations of Gm i . By Proposition 7.9, there exists at least one
non-supercuspidalHm i -distinguished discrete series representation ofGm i (inûnitely
manywhenm i ≥ 4). It follows fromLemma 7.15 that there exist inûnitelymany equiv-
alence classes of regular non-supercuspidal Lθ-distinguished discrete series represen-
tations of L.

In theGalois case, by Proposition 5.12, at most onem i is odd. Without loss of gen-
erality, assume that mk is odd. By _eorem 7.11 (i), the Steinberg representation Stmk

of Gmk is a non-supercuspidal Hmk -distinguished discrete series. By _eorem 7.13,
there are inûnitely many equivalence classes of Hm i -distinguished irreducible super-
cuspidal representations of Gm i . By Corollaries 7.12 and 7.14, there exists at least one
non-supercuspidalHm i -distinguished discrete series representation ofGm i (inûnitely
many when m i ≥ 4 is not an odd prime). It follows from Lemma 7.15 that there ex-
ist inûnitelymany equivalence classes of regular non-supercuspidal Lθ-distinguished
discrete series representations of L.

Corollary 7.17 _ere are inûnitely many equivalence classes of H-distinguished rel-
ative discrete series representations of G of the form constructed in _eorem 6.3. In
particular, there are inûnitely many classes of such representations where the discrete
series τ is not supercuspidal.

Proof _is is immediate from Proposition 7.16 and from [42,_eorem 9.7 (b)].
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8 Computation of Exponents and Distinction of Jacquet Modules

We work under the hypotheses of _eorem 6.3 and use the notation from its proof.
In order to discuss Casselman’s Criterion for the inducing data of π = ιGQτ, we use the
following notation. If Θ1 ⊂ Θ2 ⊂ ∆0, then we deûne

A−Θ1
= {a ∈ AΘ1 ∶ ∣α(a)∣ ≤ 1, for all α ∈ ∆0 ∖Θ1},

A−Θ2
Θ1

= {a ∈ AΘ1 ∶ ∣β(a)∣ ≤ 1, for all β ∈ Θ2 ∖Θ1}.

_e set A−Θ1
is the dominant part of AΘ1 in G, while A−Θ2

Θ1
is the dominant part of AΘ1

in MΘ2 .
In both the linear and Galois cases, we have that Q = w0PΩw−1

0 is a Weyl group
conjugate of a ∆0-standard parabolic subgroup PΩ , where Ωell = w0Ω. We also have
that L = w0MΩw−1

0 . If τ0 is a representation of MΩ , then τ = w0τ0 is a representation
of L. Let PΘ be a ∆0-standardmaximal θ-split parabolic subgroup corresponding to
amaximal proper θ-split subset Θ ⊂ ∆0. Below y = ww−1

0 is a “nice” representative of
a double-coset in PΘ/G/Q, where w ∈ [WΘ/W0/WΩ] (Lemma 4.7).

Lemma 8.1 _e exponents of Fy
Θ(τ) are the restriction to AΘ of the exponents of

wτ0 along the parabolic subgroup PΘ ∩ wMΩ of wMΩ . If τ = w0τ0 is a discrete series
representation of L, and the parabolic subgroup PΘ ∩

wMΩ of wMΩ is proper, then for
any exponent χ ∈ ExpAΘ

(F
y
Θ(τ)) the inequality ∣χ(a)∣F < 1 is satisûed for every a ∈

A−wΩ
Θ∩wΩ ∖ A1

Θ∩wΩAwΩ .

Proof _is is a special case of Lemma 4.16 and the usual Casselman’s Criterion ([7,
_eorem 6.5.1]) applied to the discrete series representation wτ0 of wMΩ .

Lemma 8.2 Assume that τ is a regular unitary irreducible admissible representation
of L. If y = ww−1

0 , where w ∈ [WΘ/W0/WΩ] is such that wMΩ ⊂ PΘ , then F
y
Θ(τ) is

irreducible and the central character χΘ,y of Fy
Θ(τ) is unitary.

Proof If wMΩ ⊂ PΘ , then PΘ ∩
wMΩ = wMΩ , NΘ ∩

wMΩ = {e}, and wMΩ ⊂ MΘ . It
follows that the representation (wτ0)NΘ∩wMΩ is equal to wτ0 and it is irreducible and
unitary. Moreover, since τ is a regular representation of L, it follows that wτ0 is regular
as a representation of wMΩ regarded as a Levi subgroup ofMΘ . By [7,_eorem 6.6.1],
the representation F

y
Θ(τ) is irreducible and unitary. By the irreducibility of Fy

Θ(τ),
the only exponent is its central character χΘ,y . Since Fy

Θ(τ) is unitary, the character
χΘ,y of AΘ is unitary.

Remark 8.3 Recall that W(Θ,Ω) = {w ∈ W0 ∶ wΩ = Θ}. We ûnd ourselves in the
situation of Lemma 8.2 in two cases.

Case 1: w ∈ [WΘ/W0/WΩ] ∩W(Θ,Ω), if and only if wMΩ = MΘ ,

Case 2: w ∈ [WΘ/W0/WΩ] is such that wMΩ ⊊ MΘ is a proper Levi subgroup ofMΘ .

In order to apply the Relative Casselman Criterion (_eorem 4.17) using Lemma
8.1, we need the following technical fact.
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Lemma 8.4 Let Ω be a proper subset of ∆0 such that Ωell = w0Ω contains ∆ellmin.
Let Θ be a maximal θ-split subset of ∆0. Let w ∈ [WΘ/W0/WΩ] such that MΘ∩wΩ =

MΘ ∩ wMΩw−1 is a proper Levi subgroup of MwΩ = wMΩw−1. _en we have the
containment S−Θ ∖ S1

ΘS∆0 ⊂ A−wΩ
Θ∩wΩ ∖ A1

Θ∩wΩAwΩ .

Proof Recall that for any F-torus A we write A1 for the OF-points of A. First, SΘ is
contained in AΘ and since Θ ∩wΩ is a subset of Θ, we have that

AΘ = ( ⋂
α∈Θ

ker α)○ ⊂ ( ⋂
α∈Θ∩wΩ

ker α)○ = AΘ∩wΩ .

At the level of F-points, we have AΘ ⊂ AΘ∩wΩ , and similarly for the integer points
A1

Θ ⊂ A1
Θ∩wΩ . It follows that SΘ ⊂ AΘ∩wΩ and S1

Θ ⊂ A1
Θ∩wΩ . Also, we have S∆0 ⊂

A∆0 ⊂ AΩ , and since S∆0 = SG is central in G, we have S∆0 = wS∆0w−1 ⊂ wAΩw−1 =

AwΩ . We now observe that A−Θ ⊂ A−wΩ
Θ∩wΩ and in particular that S−Θ ⊂ A−wΩ

Θ∩wΩ ; it is
clear that S−Θ ⊂ A−Θ . Note that wΩ is a base for the root system of MwΩ relative to
the maximal F-split torus A0. Suppose that a ∈ A−Θ . _en ∣α(a)∣ ≤ 1, for all α ∈

∆0 ∖ Θ. Moreover, since a ∈ AΘ , we have that ∣α(a)∣ = 1, for α ∈ Θ as well. Let
β ∈ wΩ ∖ (Θ ∩ wΩ). _en β = wα for some α ∈ Ω. Since w ∈ [WΘ/W0/WΩ], we
have that β = wα ∈ Φ+

0 . Write β = ∑є∈∆0 cє ⋅ є, where cє ≥ 0, cє ∈ Z. _en we have that

∣β(a)∣ = ∣ ∏
є∈∆0

є(a)cє ∣ = ∏
є∈∆0

∣є(a)∣cє ≤ 1,

since ∣є(a)∣ ≤ 1, for all є ∈ ∆0, and cє ≥ 0. In particular, a ∈ A−wΩ
Θ∩wΩ . Putting this

together, we see that S1
ΘS∆0 ⊂ S−Θ ∩A1

Θ∩wΩAwΩ ; therefore, to prove the desired result,
it suõces to prove the opposite inclusion.

It is at this point that we specialize to the linear and Galois cases. By assumption
Θ = Θk , for some 1 ≤ k ≤ ⌊ n

2 ⌋, as in Proposition 5.4. Suppose that s ∈ S−Θ∩A1
Θ∩wΩAwΩ .

We want to show that s ∈ S1
ΘS∆0 . Notice that S∆0 = {e}; therefore, it is suõcient

to prove that s ∈ S1
Θ . By assumption, s = tz where t ∈ A1

Θ∩wΩ and z ∈ AwΩ . Since
w ∈ [WΘ/W0/WΩ],we have thatwΩ ⊂ Φ+

0 ;moreover, by the assumption that MΘ∩wΩ
is a proper Levi subgroup of MwΩ , we have that Θ ∩wΩ ⊊ wΩ is a proper subset. It
follows thatwΩ cannot be contained inΦ+

Θ . Moreover, there exists α ∈ wΩ∖(Θ∩wΩ)

such that α ∈ Φ+

0 and α ∉ Φ+

Θ . In the Galois case, there is a unique expression α =

∑
n−1
j=1 c j γ(є j − є j+1), where c j ∈ Z and c j ≥ 0, such that, since Θ = Θk and α ∉ Φ+

Θ ,
at least one of ck or cn−k is nonzero (cn/2 /= 0, when n even, k = n/2). In the linear
case, γ does not appear in the expression for α. First observe that α(s) = α(t)α(z) =
α(t) ∈ O×

F , since z ∈ AwΩ and t ∈ A1
Θ∩wΩ = AΘ∩wΩ(OF). On the other hand, in the

Galois case, writing s explicitly as s = γs′, where

s′ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

diag(a, . . . , a
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

k

, 1 . . . , 1
²
⌊

n
2 ⌋−2k

, a−1 , . . . , a−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

) 1 ≤ k ≤ ⌊ n
2 ⌋,

diag(a, . . . , a
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

n/2

, a−1 , . . . , a−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n/2

) n even, k = n/2,
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(with s = s′ and n even in the linear case). Applying α to s, we have

α(s) = (
n−1

∑
j=1
c j γ(є j − є j+1))(

γs′) = (єk − єk+1)(s′)ck(єn−k − єn−k+1)(s′)cn−k

= ack acn−k

So in the Galois case, α(s) = ac ∈ O×

F , where c = ck + cn−k (or c = 2c n
2
when n is

even and k = n/2), and similarly in the linear case. _en we have ∣a∣cF = 1 for c a
positive integer so ∣a∣F = 1. In particular, we have that a ∈ O×

F , and s ∈ S1
Θ = SΘ(OF),

as desired.

Proposition 8.5 If y = ww−1
0 ∈ [WΘ/W0/WΩ] ⋅ w−1

0 is such that PΘ ∩ wMΩ is a
proper parabolic subgroup of wMΩ , then the exponents χ ∈ ExpSΘ(F

y
Θ(τ)) of Fy

Θ(τ)
satisfy ∣χ(s)∣F < 1, for all s ∈ S−Θ ∖ S1

ΘS∆0 .

Proof First by Lemma 8.4 we have that S−Θ ∖ S1
ΘS∆0 ⊂ A−wΩ

Θ∩wΩ ∖ A1
Θ∩wΩAwΩ . By

Lemma 4.15, any exponent χ ∈ ExpSΘ(F
y
Θ(τ)) is the restriction to SΘ of an exponent

χ̂ ∈ ExpAΘ
(F

y
Θ(τ)); therefore, the result follows from Lemma 8.1.

Finally, we study the Mθ
Θ-distinction of the Jacquet module πNΘ . In preparation

for this, we characterized the θ-ûxed points of the standard Levi Mr = MΘr of the
maximal θ-split parabolic subgroups Pr = PΘr in Proposition 5.7. _e characteriza-
tion is in terms of the groups M(r ,n−2r ,r) and H(r ,n−2r ,r). First, we present Lemma
8.6, which characterizes the H(r ,n−2r ,r)-distinction in the Galois case. We omit the
elementary veriûcation (and the obvious modiûcation when n is even and r = n/2).

Lemma 8.6 Assume that we are in the Galois case. Fix an integer 1 ≤ r ≤ ⌊ n
2 ⌋ and

assume that r /= n/2. Let π1 ⊗ π2 ⊗ π3 be an irreducible admissible representation of
M(r ,n−2r ,r). _en π1⊗π2⊗π3 is H(r ,n−2r ,r)-distinguished if and only if π2 is Hn−2r-dis-
tinguished and π3 ≅

θ k π̃1.

Proposition 8.7 Let τ ≅ ⊗k
i=1 τ i be an irreducible admissible regular representation

of L. Assume that τ is Lθ -distinguished. Let PΘ be a maximal ∆0-standard parabolic
subgroup corresponding to a maximal θ-split subset Θ of ∆0. Let y = ww−1

0 , where
w ∈ [WΘ/W0/WΩ]. In both Case 1 and Case 2, Fy

Θ(τ) cannot beM
θ
Θ-distinguished.

Proof By assumption, we are in either Case 1 or Case 2 of Remark 8.3. In particular,
we have that y = ww−1

0 , where w ∈ [WΘ/W0/WΩ], such that

F
y
Θ(τ) = ιMΘ

MΘ∩yQ(
yτ) = ιMΘ

MΘ∩wMΩ
(
wτ0) and τ0 = w−1

0 τ = γ
(

k
⊗
i=1

τ i)

is the representation of MΩ corresponding to the representation τ of L = LΩell =

w0MΩw−1
0 , where γ simply does not appear in the linear case. By Lemma 7.15, τ is

Lθ-distinguished if and only if each τ i is Hm i -distinguished for all 1 ≤ i ≤ k. By
Lemma 5.3, Θ is equal to Θr for some 1 ≤ r ≤ ⌊ n

2 ⌋ andMΘ = MΘr = Mr . Without loss
of generality, r < n/2. By Proposition 5.4, in the linear case Mr = M(r ,n−2r ,r) and in
the Galois case Mr =

γM(r ,n−2r ,r). We again use the shorthand M● = M(r ,n−2r ,r) and
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H● = H(r ,n−2r ,r). _e θ-ûxed point subgroup of Mr is described in Proposition 5.7.
In the linear case, we have that

Mθ
r = H● = {diag(A, B, θr(A)) ∶ A ∈ Gr , B ∈ Hn−2r},

while in the Galois case, we have Mθ
r = γγ−1

●
H●γ●γ−1, where

γ● = γ(r ,n−2r ,r) = diag(γr , γn−2r , γr) ∈ M(r ,n−2r ,r) .

By Lemma 4.3, in theGalois case, Fy
Θ(τ) is Mθ

Θ-distinguished if and only if γ−1
F

y
Θ(τ)

is H●-distinguished.
Without loss of generality, we complete the proof in the Galois case. To obtain the

proof in the linear case replace the application of Proposition 7.3 with Propostion 7.2.
Case 1. Suppose that Θ and Ω are associate and w ∈ [WΘ/W0/WΩ] ∩W(Θ,Ω).

_en MΘ = wMΩ and F
y
Θ(τ) = wτ0 = wγ(τ1 ⊗ τ2 ⊗ τ3), where τ1 , τ3 are repre-

sentations of Gr and τ2 is a representation of Gn−2r . By convention, γ−1wγ is a per-
mutation matrix (cf. Lemma 5.10). Moreover, γ−1

(F
y
Θ(τ)) = γ−1wγ(τ1 ⊗ τ2 ⊗ τ3) is

equal to τx(1) ⊗ τx(2) ⊗ τx(3), for some compatible permutation x of {1, 2, 3}. By
Lemma 8.6, γ−1

F
y
Θ(τ) is H●-distinguished if and only if τx(3) ≅ θ r τ̃x(1) and τx(2) is

Hn−2r-distinguished. By Proposition 7.3, each τ i satisûes τ i ≅
θmi τ̃ i . However, since τ

is regular, Lemma 6.2 implies that the τ i are pairwise inequivalent. In particular, we
have that θ r τ̃x(1) ≅ τx(1) ≇ τx(3). _erefore, γ

−1
(F

y
Θ(τ)) is not H●-distinguished and

F
y
Θ(τ) is not Mθ

Θ-distinguished.
Case 2. Suppose that w ∈ [WΘ/W0/WΩ] is such that wMΩw−1 ⊂ MΘ is a proper

Levi subgroup. In this case, Fy
Θ(τ) = ιMΘ

MΘ∩wPΩ
wτ0 and by [7, _eorem 6.6.1], the

representation γ−1
(F

y
Θ(τ)) is an irreducible unitary representation of M●. Indeed,

MΘ = γM● and MΩ = γM, with M● = M(r ,n−2r ,r) and M = M(m1 , . . . ,mk); moreover,
w′ = γ−1wγ is an element of [WM●/W/WM] and conjugates M into M●. Writing P
for P(m1 , . . . ,mk), we have

γ−1
(F

y
Θ(τ)) =

γ−1
( ιMΘ

MΘ∩wPΩ

wτ0) =
γ−1

( ι
γM●
γM●∩wγP

wγ
(τ1 ⊗ ⋅ ⋅ ⋅ ⊗ τk))

≅ ιM●
M●∩w′ P

w′
(τ1 ⊗ ⋅ ⋅ ⋅ ⊗ τk),

and this representation is isomorphic to π1 ⊗ π2 ⊗ π3, where π1 , π2 are irreducible
admissible representations of Gr and π2 is an irreducible admissible representation
of Gn−2r . Since w′ ∈ [WM●/W/WM], by Proposition 4.8, the group M● ∩

w′P is a
parabolic subgroup ofM● (a product of parabolic subgroups on each block ofM●). It
follows that each of the π j , j = 1, 2, 3, are irreducibly induced representations of the
form τa1 × ⋅ ⋅ ⋅ × τar , for some subset of the representations {τ1 , . . . , τk}. Again, by
Lemma 8.6 γ−1

(F
y
Θ(τ)) is H●-distinguished if and only if π2 is Gn−2r-distinguished

and π3 ≅ θ r π̃1. Suppose that π1 = τa1 × ⋅ ⋅ ⋅ × τa l , and π3 = τb1 × ⋅ ⋅ ⋅ × τbs . _en we
have that π̃1 ≅ τ̃a1 × ⋅ ⋅ ⋅ × τ̃a l ≅

θma1 τa1 × ⋅ ⋅ ⋅ ×
θma l τa l ≅

θ rπ1 . Moreover, we have
that π1 ≅

θ r π̃1. Since τ is regular, by Lemma 6.2, the discrete series τ i are pairwise
inequivalent; therefore, by [42, _eorem 9.7(b)], we have that π1 ≇ π3. _at is, we
have θ π̃1 ≅ π1 ≇ π3. In particular, γ

−1
(F

y
Θ(τ)) is not H●-distinguished, and F

y
Θ(τ) is

not Mθ
Θ-distinguished.
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