SPLIT GRAPHS WITH SPECIFIED DILWORTH NUMBERS

BY

CHIÊ NARA AND IWAO SATO

ABSTRACT. Let G be a split graph with the independent part I_G and the complete part K_G . Suppose that the Dilworth number of (I_G, \leq) with respect to the vicinal preorder \leq is two and that of (K_G, \leq) is an integer k. We show that G has a specified graph H_k , defined in this paper, as an induced subgraph.

§1. Introduction. For a finite set S and a binary relation \leq on S, we call the pair (S, \leq) a *preordered set* if \leq satisfies both the reflexive and the transitive laws, and call a subset S_0 of S *incomparable* if for any two elements x and y of S_0 it holds neither $x \leq y$ nor $y \leq x$. The Dilworth number of a preordered set (S, \leq) is, by definition, the maximum cardinality of all incomparable subsets of S, which is equal to the minimum number of chains covering S (see [2]).

We denote by V(G) the vertex set of a simple graph G and by N(v) the neighborhood of a vertex v in G. Let S be a subset of V(G). Then the vicinal preorder \leq on S is defined by

 $u \leq v$ if and only if $N(u) \subset N(v) \cup \{v\}$

and Dilworth number of (S, \leq) is written by $\nabla_G(S)$. We use the symbol $\nabla(G)$ instead of $\nabla_G(V(G))$ for the sake of simplicity and call it *Dilworth number of G*. If V(G) is partitioned into two subsets, denoted by I_G and K_G , such that any two vertices of I_G are not adjacent to each other and the subgraph induced by K_G is complete, G is called a *split graph*. It is easy to see that we have $u \leq v$ for every $u \in I_G$ and every $v \in K_G$ of a split graph G and hence it holds $\nabla(G) =$ max{ $\nabla_G(I_G), \nabla_G(K_G)$ }. Split graphs are characterized by V. Chvátal and P. L. Hammer [1] as graphs which have no induced subgraph isomorphic to $2K_2$, C_4 or C_5 . Furthermore, they showed that *threshold graphs* (see [1]) are graphs with Dilworth number one, i.e., graphs having no induced subgraph isomorphic to $2K_2$, C_4 or P_4 , and hence threshold graphs are split graphs. A characterization of split graphs with Dilworth number two is given by S. Foldes and P. L. Hammer [3], and that of split graphs with Dilworth number three is given by the first author [4].

Received by the editors July 2, 1982 and, in final revised form, February 26, 1983. AMS subject-classification. 05C75

[©] Canadian Mathematical Society, 1984.

In this paper we show that if a split graph G has $\nabla_G(I_G) = 2$ and $\nabla_G(K_G) = k$, then G has a specified graph H_k (see §2) as an induced subgraph.

§2. Definition and theorem

DEFINITION. For an integer $k \ge 2$, we define a split graph H_k with the independent part I_{H_k} and the complete part K_{H_k} as follows,

$$I_{H_k} = \{x_1, x_2, \dots, x_{k-1}, y_1, y_2, \dots, y_{k-1}\},\$$

$$K_{H_k} = \{v_1, v_2, \dots, v_k\},\$$

 $N(x_i) = \{v_1, \ldots, v_i\}$ and $N(y_i) = \{v_k, \ldots, v_{k-i+1}\}$ for all *i* with $1 \le i \le k-1$.

Then it is easy to see $x_1 \leq x_2 \leq \cdots \leq x_{k-1}$, $y_1 \leq y_2 \leq \cdots \leq y_{k-1}$ and K_{H_k} is incomparable. Hence H_k satisfies

$$\nabla_{\mathbf{H}_{\mathbf{k}}}(I_{\mathbf{H}_{\mathbf{k}}}) = 2$$
 and $\nabla_{\mathbf{H}_{\mathbf{k}}}(K_{\mathbf{H}_{\mathbf{k}}}) = k$.

It must be noticed that H_k has H_{k-1} as an induced subgraph because $H_k - \{x_1, y_{k-1}, v_1\}$ is isomorphic to H_{k-1} .

Now we state our theorem and prove it in the following section.

THEOREM. Let G be a split graph. If G satisfies $\nabla_G(I_G) = 2$ and $\nabla_G(K_G) = k$ for an integer k, then G has an induced subgraph isomorphic to H_k .

§3. Lemmas and proofs. We shall identify two graphs which are isomorphic to each other if there is no cause of confusion. We set

 $\nabla(2, k) = \{ \text{a split graph } G : \nabla_G(I_G) = 2 \text{ and } \nabla_G(K_G) = k \}.$

First, we show two lemmas.

LEMMA 1. For a split graph G the following three statements are equivalent;

- (i) $\nabla_{\rm G}(I_{\rm G}) \ge 2$,
- (ii) $\nabla(G) \ge 2$,
- (iii) G has an induced subgraph isomorphic to P_4 .

Proof. We shall show that $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)$. $(i) \Rightarrow (ii)$ and $(iii) \Rightarrow (i)$ are obvious. To see $(ii) \Rightarrow (iii)$, suppose $\nabla(G) \ge 2$. Then G has an induced subgraph isomorphic to $2K_2$, C_4 or P_4 (see [2]). Since G is a split graph, this subgraph is isomorphic to P_4 .

LEMMA 2. A split graph G belonging to $\nabla(2, k)$ and having minimal order satisfies $|K_G| = k$.

Proof. Since $\nabla(G) = \max\{\nabla_G(I_G), \nabla_G(K_G)\}\)$, we have $\nabla(G) \ge 2$ and G has P_4 as an induced subgraph by Lemma 1. Hence we have $k = \nabla_G(K_G) \ge \nabla_{P_4}(K_{P_4}) = 2$.

44

By $\nabla_G(K_G) = k$, there is an incomparable subset S of K_G with |S| = k. Let

$$T = \{ v \in I_G : v \in N(u) \text{ for some } u \in S \}$$

and let G_0 be the subgraph of G induced by $S \cup T$. Then we have $\nabla_{G_0}(K_{G_0}) = k$. Using $k \ge 2$, we see $\nabla(G_0) \ge 2$ and hence $2 \le \nabla_{G_0}(I_{G_0}) \le \nabla_G(I_G) = 2$ by Lemma 1. This implies $G = G_0$, because of the minimality of |V(G)|. therefore we have $|K_G| = k$.

We call a graph with minimal order belonging to $\nabla(2, k)$ a *critical graph*.

Proof of Theorem. Let G be a split graph belonging to $\nabla(2, k)$. We prove Theorem by the mathematical induction with respect to an integer k. If k = 2, Theorem is true since we have $\nabla(G) = 2$ and $G > P_4 \cong H_2$ by Lemma 1.

Assuming the truth of the theorem for k-1 ($k \ge 3$), we shall show that it is true for k. It is obvious that there is an induced subgraph G_0 of G which is a critical graph belonging to $\nabla(2, k)$. Then it suffices to show that G_0 is isomorphic to H_k . From now on, we shall use the symbol G instead of G_0 and so G is a critical graph belonging to $\nabla(2, k)$ and satisfies $|K_G| = k$ by Lemma 2. We will prove $G \cong H_k$.

CASE 1. |N(u)| = 1 for some vertex $u \in I_G$.

Let $N(u) = \{v\}$. By $|K_G| = k$ and $\nabla_G(K_G) = k$, the set K_G is incomparable. By $k \ge 3$, it holds $\nabla(G-v) \ge k-1 \ge 2$ and hence $\nabla_{G-v}(I_{G-v}) = 2$ by Lemma 1. Therefore G-v belongs to the set $\nabla(2, k-1)$ and has the graph H_{k-1} as an induced subgraph by the induction's hypothesis. Since $\nabla_G(I_G) = 2$, at least one of the pairs contained in the set $\{u, x_1, y_1\}$ is comparable. We have either $u \le x_1$ or $u \le y_1$ because the pair $\{x_1, y_1\}$ is incomparable, $x_1 \le u$ and $y_1 \le u$. Without loss of generality, we can assume $u \le x_1$. Then we have $\{v\} = N(u) \subset N(x_1)$ and $x_1 \in N(v)$.

First, we show

$$N(v) \cap I_G = \{x_1, \ldots, x_{k-2}, u\}.$$

If we have $x_i \notin N(v)$ for some i $(1 \le i \le k-2)$, then the set $\{x_1, x_i, y_1\}$ is incomparable in G, which contradicts $\nabla_G(I_G) = 2$. Hence we have $\{x_1, \ldots, x_{k-2}, u\} \subset N(v)$. Suppose $y_i \in N(v)$ for some i $(1 \le i \le k-2)$. Then $N(v) - \{u\}$ is not contained in $N(v_i)$ for any i $(1 \le i \le k-1)$ and $N(v_i) \cap$ $V(G-u) = N(v_i)$ for every i $(1 \le i \le k-1)$ by $N(u) = \{v\}$. This implies that the set $\{v, v_1, \ldots, v_{k-1}\}$ is incomparable in G-u and G-u belongs to $\nabla(2, k)$, which contradicts being critical of G. Thus we have $N(v) \cap I_G =$ $\{x_1, \ldots, x_{k-2}, u\}$.

Next, we shall show that there is a vertex $w \in N(v_1) - N(v)$ such that

$$N(w) = \{v_1, \ldots, v_{k-1}\}.$$

1984]

Since G is critical, the pair $\{v, v_1\}$ is incomparable and so there is a vertex $w \in N(v_1) - N(v)$, which is different from all x_i and y_i $(1 \le i \le k-2)$. If $v_i \notin N(w)$ for some i $(1 < i \le k-1)$, then the set $\{u, w, y_{k-2}\}$ is incomparable in G, which contradicts $\nabla_G(I_G) = 2$. Hence we have $N(w) = \{v_1, \ldots, v_{k-1}\}$.

From the above, by reordering the vertices of I_G and putting $x'_1 = u$, $x'_{2} = x_{1}, \ldots, x'_{k-1} = x_{k-2}, y'_{1} = y_{1}, \ldots, y'_{k-2} = y_{k-2}$ and $y'_{k-1} = w$, we see $G \cong H_{k}$.

CASE 2. $|N(u)| \ge 2$ for all $u \in I_G$.

We shall show that this leads to a contradiction. Let v be a vertex of K_{G} . Then by being critical of G, the subgraph G-v belongs to the set $\nabla(2, k-1)$ and G-v has the graph H_{k-1} as an induced subgraph by the induction hypothesis. Since $|N(x_1)| \ge 2$ and $|N(y_1)| \ge 2$, the set $\{x_1, y_1\}$ is contained in N(v). Furthermore, we shall show that all x_i and all y_i $(1 \le i \le k-2)$ belong to N(v). If $x_i \notin N(v)$ for some $i \ (1 \le k - 2)$, then the set $\{x_1, x_i, y_1\}$ is incomparable in G, which contradicts $\nabla_G(I_G) = 2$. Thus $x_i \in N(v)$, and we can see $y_i \in N(v)$ $(1 \le i \le k - 2)$ similarly.

On the other hand, since the pair $\{v, v_1\}$ is incomparable, there is a vertex w not belonging to N(v) but to $N(v_1)$, which is different from all x_i and y_i $(1 \le i \le k-2)$. By $|N(w)| \ge 2$, we have $v_i \in N(w)$ for some $i (2 \le i \le k-1)$. Now the set $\{x_1, w, y_1\}$ is incomparable in G, which contradicts $\nabla_G(I_G) = 2$. Thus the proof is completed.

The following corollaries are easily seen.

COROLLARY 1. Let G be a split graph with $\nabla_G(I_G) = 2$. Then $\nabla(G)$ is the largest k such that G has an induced subgraph isomorphic to H_{k} .

COROLLARY 2 (S. Foldes and P. L. Hammer [3]). Let G be a split graph with $\nabla_G(I_G) = 2$. Then we have $\nabla(G) = 2$ if and only if G has no induced subgraph isomorphic to H_3 .

A graph is an interval graph if there is a mapping *i* which associates to every $v \in V(G)$ a non-empty interval of the naturally ordered set \mathbb{R} of all real numbers such that u is adjacent to v if and only if $u \neq v$ and $i(u) \cap i(v) \neq \emptyset$. It is known that a split graph is an interval graph if and only if $\nabla_G(I_G) \leq 2$ (see [3]). Thus the following is an immediate corollary.

COROLLARY 3. Let G be an interval, split graph with Dilworth number at least two. Then $\nabla(G)$ is the largest number k such that G has an induced subgraph isomorphic to H_k .

REFERENCES

1. V. Chvátal and P. L. Hammer, Set-packing problem and threshold graph, Univ. of Waterloo, CORR 73-21, August 1973.

46

March

1984]

SPLIT GRAPHS

2. R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161–166.

3. S. Foldes and P. L. Hammer, Split graphs having Dilworth number two, Can. J. of Math. Vol. 29 (1977), 666-672.

4. C. Nara, Split graphs with Dilworth number three, Nat. Sci. Rep. Ochanomizu Univ., Vol. 33 (1982), 37-44.

Department of Mathematics, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158, Japan. Tsuruoka Technical College,

104 Sawata, Aza, Ioka, Óaza, Tsuruoka City 997, Japan.