Matchings in graphs

P.J. McCarthy

Abstract

Results of Tutte and of Anderson giving conditions for a simple graph G to have a perfect matching are generalized to give conditions for G to have a matching of defect d. A corollary to one of these results is a theorem of Berge on the size of a maximum matching in G.

Let G be a simple graph with vertex-set V and edge-set E. A matching in G is a set M of edges of G such that every vertex of G is incident to at most one edge in M. A matching M in G is perfect if every vertex of G is incident to exactly one edge in M.

If $S \subseteq V$, denote by G_{S} the subgraph of G obtained by removing all of the vertices in S and all of the edges to which vertices in S are incident. Denote by $p(S)$ the number of components of G_{S} having an odd number of vertices. In [4] Tutte obtained the following result.

TUTTE'S THEOREM. The graph G has a perfect matching if and only if $p(S) \leq|S|$ for every subset S of V.

The simplest proof of this theorem is the recent one by Anderson [1]. It makes use of Hall's Theorem on systems of distinct representatives. Earlier, Berge obtained Tutte's Theorem as a corollary to a result on the number of vertices of G not incident to the edges in a maximum matching in G [2; 3, Chapter 18]. We shall derive this result of Berge from Tutte's Theorem by using a technique popular in transversal theory.

A matching M in G has defect d if there are d vertices of G not incident to edges in M.

Received 9 April 1973. The author acknowledges partial support from a University of Kansas General Research Fund grant.

THEOREM 1. Let d be an integer with $0 \leq d \leq|v|$ and $|v|+d$ even. The groph G has a matching of defect d if and only if $p(S) \leq|S|+d$ for every subset S of V.

Proof. Let D be a set such that $|D|=d$ and $V \cap D$ is empty. Let G^{\prime} be the graph with vertex-set $V \cup D$ and edge-set consisting of E and edges joining each element of D with each vertex in V. It is clear that G has a matching of defect d if and only if G^{\prime} has a perfect matching. By Tutte's Theorem this is the case if and only if $p^{\prime}(S) \leq|S|$ for every subset S of $V \cup D$, where $p^{\prime}(S)$ is the number of components of G_{S}^{\prime} having an odd number of vertices.

If $V \subseteq S$, then $p^{\prime}(S)=|D \backslash S| \leq|D|=d \leq|V| \leq|S|$.
If $V \nsubseteq S$ and $D \pm S$, then $p^{\prime}(S)=0$ or. 1 since for $v_{1}, v_{2} \in V \backslash S$ and $x \in D \backslash S$ both $\left\{v_{1}, x\right\}$ and $\left\{v_{2}, x\right\}$ are edges of G^{\prime}. If S is empty, then $p^{\prime}(S)=0$ since $|V|+d$ is even. Hence, we always have $p^{\prime}(S) \leq|S|$.

If $D \subseteq S$, let $S=T \cup D$, where $T \subseteq V$. Then $p^{\prime}(S)=p(T)$, and so G^{\prime} has a perfect matching if and only if for all such S we have $p(T)=p^{\prime}(S) \leq|S|=|T|+d$.

A matching M in G is a maximum matching if no matching in G has more edges than M.

COROLLARY (Berge). The number of vertices of G not incident to any of the edges in a maximum matching in G is equal to $\max \{p(S)-|S|: S \subseteq V\}$.

Note that if d is the stated maximum, then $|V|+d$ is even: in fact, for every $S \subseteq V$, the quantity $|V|+p(S)-|S|$ is even.

Let $|V|=2 n$. Anderson [1] objained an interesting sufficient condition for there to exist a perfect matching in G, namely, that any $k \leq \frac{3}{2} n$ vertices of G be adjacent to at least $\frac{4}{3} k$ vertices. We offer the following generalization.

THEOREM 2. Let d be an integer such that $0 \leq d \leq \frac{3}{4}|v|$ and $|V|+d$ is even. If any $k \leq \frac{3}{4}(|v|+d)$ vertices of G are adjacent to at least $\frac{4}{3} k-d$ vertices, then G has a matching of defect d.

Proof. Let d and G^{\prime} be as in the proof of Theorem 1. By Anderson's result, G^{\prime} has a perfect matching if any $k \leq \frac{3}{4}(|V|+d)$ vertices of G^{\prime} are adjacent to at least $\frac{4}{3} k$ vertices of G^{\prime}. We show that this is the case when G satisfies the hypothesis of the theorem. Let $S \subseteq V \cup D$ be such that $|S|=k \leq \frac{3}{4}(|V|+d)$.

If $S \subseteq D$, then the vertices in S are adjacent to the $|V|$ vertices in V, and $k \leq d \leq \frac{3}{4}|V|$: hence $\frac{4}{3} k \leq|V|$.

If $S \nsubseteq V$ and $S \nsubseteq D$, then the vertices in S are adjacent to the $|V|+d$ vertices of G^{\prime}, and $\frac{4}{3} k \leq|V|+d$.

If $S \subseteq V$, then the vertices in S are adjacent to the d vertices of G in D and to at least $\frac{4}{3} k-d$ vertices in V. Hence, the vertices in S are adjacent to at least $\frac{4}{3} k$ vertices of G^{\prime}.

As a corollary we obtain a result for graphs with an odd number of vertices analogous to Anderson's result for graphs with an even number of vertices.

COROLLARY. If $|v|=2 n+1$, and if any $k \leq \frac{3}{2}(n+1)$ vertices of G are adjacent to at least $\frac{4}{3} k-1$ vertices, then G has a matching of defect one.

References

[1] Ian Anderson, "Perfect matchings of a graph", J. Combinatorial Theory Ser. B 10 (1971), 183-186.
[2] Claude Berge, "Sur le couplage maximum d'un graphe", C.R. Acad. Sci. Paris 247 (1958), 258-259.
[3] Claude Berge, The theory of graphs and its applications (translated by Alison Doig. Methuen,.London; John Wiley \& Sons, New York, 1962).
[4] W.T. Tutte, "The factorization of linear graphs", J. London Math. Soc. 22 (1947), 107-111.

Department of Mathematics, University of Kansas, Lawrence, Kansas, USA.

