THE CONSTRUCTION OF AUTOMORPHIC FORMS FROM THE DERIVATIVES OF A GIVEN FORM II

BY
R. A. RANKIN
Dedicated to the memory of Robert Arnold Smith

Abstract

Explicit constructions of polynomials of preassigned degree and weight in the derivatives of a given automorphic form are described and studied, supplementing the results of an earlier paper. It turns out that the problem is essentially one concerning symmetric functions rather than automorphic forms.

1. Introduction. In an earlier paper [2] under the same title I exhibited a family of 'basic' polynomials $\psi_{m}(m=2,3, \ldots)$ in the derivatives of a given automorphic form f, which, together with f itself, sufficed to determine all automorphic forms expressible as polynomials in f and its derivatives. This result is restated in Theorem 4 of $\S 5$, but is, in some respects, not as useful as it might be, since a power of f, which could be negative, is involved as well as the basic polynomials, and no indication was given as to how the latter were to be combined in order to cancel out such a negative power and so produce an actual polynomial. This defect came to my notice recently when [3] I needed to express a certain newform as a polynomial of degree 2 in the derivatives of certain theta functions.

The object of the present paper is to show how such polynomials can be constructed in a more explicit way. The somewhat surprising fact emerges that the problem is essentially one concerning symmetric functions of a particular type and has relatively little to do with automorphic forms.

The symmetric function aspect is studied in $\S \S 2-4$, after which applications to automorphic forms are given.
2. Statement of the main result. Throughout, n denotes a sufficiently large positive integer and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ are algebraically independent complex numbers, which we regard as the elementary symmetric functions of n complex numbers, which are, therefore, the roots of the algebraic equation

$$
\sum_{\lambda=0}^{n}(-1)^{\lambda} \sigma_{n-\lambda} x^{\lambda}=0, \quad \text { where } \quad \sigma_{0}=1
$$

Received by the editors March 9, 1984 and, in revised form, May 10, 1984.
AMS Subject Classification (1980): Primary 10D05, Secondary 10D12, 10D15.
© Canadian Mathematical Society 1984.

The actual values of these roots are irrelevant for our purpose, since we shall only be concerned with the properties of the σ_{λ} and the corresponding power sums s_{1}, s_{2}, \ldots; these are related to the σ_{λ} by Newton's formulae:

$$
\begin{equation*}
\lambda \sigma_{\lambda}=\sum_{\mu=1}^{\lambda} \sigma_{\lambda-\mu} s_{\mu}(-1)^{\mu-1} \quad(1 \leqslant \lambda \leqslant n) . \tag{2.1}
\end{equation*}
$$

A polynomial of positive degree r and weight $m \geqslant 0$ in the σ_{λ} is a linear combination with complex coefficients of terms of the form

$$
\begin{equation*}
\sigma_{v_{1}} \sigma_{v_{2}} \ldots \sigma_{v_{r}}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{1}+v_{2}+\ldots+v_{r}=m \tag{2.3}
\end{equation*}
$$

Any such polynomial can be expressed as a polynomial in the power sums s_{μ} $(1 \leqslant \mu \leqslant n)$ and we are interested in those polynomials that, whien so expressed, are independent of the first power sum s_{1}. They clearly constitute a vector space over \mathbb{C}; we call this space $A(r, m)$.

The non-negative integers $v_{j}(j=1,2, \ldots, r)$ are the components of a vector \boldsymbol{v}, say, and form a partition of m into r non-negative summands. When these are in descending order,

$$
v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{r} \geqslant 0,
$$

we say that v is in standard form. The number of partitions (in standard form) of m into r or fewer positive integral summands is, as usual, denoted by $p_{r}(m)$; by convention, $p_{r}(0)=1$.

We denote by $V(r)$ the set of all vectors \boldsymbol{v} containing r non-negative integral components and by $V(r, m)$ the subset for which (2.3) holds. The subset of $V(r, m)$ consisting of vectors in standard form is denoted by $V^{*}(r, m)$. We shall always assume that $n \geqslant m$.

Now take any vector $\boldsymbol{u} \in \mathbb{C}^{r}$ and let its components be $u_{1}, u_{2}, \ldots, u_{r}$. We denote the power sums of these r complex numbers by $S_{\mu}(\mu \geqslant 1)$ and make the assumption that

$$
\begin{equation*}
S_{1}=u_{1}+u_{2}+\ldots+u_{r}=0 . \tag{2.4}
\end{equation*}
$$

The set of all such $\boldsymbol{u} \in \mathbb{C}^{r}$ is denoted by $U(r)$.
For any $\boldsymbol{v} \in V(r, m)$ and $\boldsymbol{u} \in U(r)$ write

$$
\begin{equation*}
\sigma(\boldsymbol{v})=\sigma_{v_{1}} \sigma_{v_{2}} \ldots \sigma_{v_{r}}, \quad \boldsymbol{u}^{v}=u_{1}^{v_{1}} u_{2}^{v_{2}} \ldots u_{r}^{v_{r}} \tag{2.5}
\end{equation*}
$$

and put

$$
\begin{equation*}
\left[\boldsymbol{u}^{\nu}\right]=\left[u_{1}^{v_{1}} \boldsymbol{u}_{2}^{v_{2}} \ldots . u_{r}^{v_{r}}\right] \tag{2.6}
\end{equation*}
$$

to denote the monomial symmetric function of $u_{1}, u_{2}, \ldots, u_{r}$ containing \boldsymbol{u}^{ν} as a typical term. This is the sum of \boldsymbol{u}^{v} and all the other different terms obtained from it by permuting the suffixes. We write $\pi(\boldsymbol{v})$ for the number of terms in $\left[\boldsymbol{u}^{v}\right]$; it is independent
of \boldsymbol{u}. The symmetric function [$\left.\boldsymbol{u}^{\boldsymbol{\nu}}\right]$ is, of course, expressible as a polynomial in the S_{μ}. Now define, for $\boldsymbol{u} \in U(r)$,

$$
\begin{align*}
P_{r, m}(\boldsymbol{u}) & =\sum_{v \in V(r, m)} \sigma(v) u^{v}=\sum_{v \in V^{*}(r, m)} \sigma(v)\left[\boldsymbol{u}^{v}\right] \tag{2.7}\\
& =\sum_{v \in V(r, m)} \sigma(v)\left[u^{v}\right] / \pi(v), \tag{2.8}
\end{align*}
$$

and note that

$$
\begin{equation*}
P_{r, 0}(u)=\sigma_{0}^{r}=1, \quad P_{r, 1}(u)=0 . \tag{2.9}
\end{equation*}
$$

We denote by $B(r, m)$ the vector space generated by the polynomials $P_{r, m}(\boldsymbol{u})$ for different $\boldsymbol{u} \in U(r)$.

Theorem 1. For arbitrary integers $r \geqslant 1, m \geqslant 0$ we have

$$
\begin{equation*}
A(r, m)=B(r, m) \tag{2.10}
\end{equation*}
$$

their common dimension being

$$
\begin{equation*}
d_{r}(m):=p_{r}(m)-p_{r}(m-1), \tag{2.11}
\end{equation*}
$$

where $d_{r}(0)=1$.
We defer the proof of the theorem to $\S 3$, but note here a number of consequences.
Corollary 1. (i) $A(1, m)=B(1, m)=0$ (the zero space).
(ii) $d_{2}(m)$ is 1 for even m and 0 for odd m; accordingly, $A(2, m)=0$ for odd m.
(iii) $\sigma_{0} A(r-1, r+1)=A(r, r+1)$ for $r>1$.

Part (ii) may be deduced from the fact that $p_{r}(m)$ is the coefficient of x^{m} in the power series

$$
\left\{(1-x)\left(1-x^{2}\right) \ldots\left(1-x^{r}\right)\right\}^{-1}
$$

and from this we also deduce that $d_{r}(m)$ is the number of partitions of m into positive summands greater than unity and not exceeding r. For $r=3$ one can easily show that

$$
\begin{equation*}
d_{3}(m)=\frac{1}{12}\left\{2 m+5+3(-1)^{m}+4\left(\frac{m+1}{3}\right)\right\} \tag{2.12}
\end{equation*}
$$

where the last term contains a Legendre symbol. Incidentally, $d_{3}(m)$ is the number of entire modular forms of weight $2 m$ for the modular group.

Part (iii) follows since $\sigma_{0} A(r-1, r+1) \subseteq A(r, r+1)$ and $d_{r-1}(r+1)=$ $d_{r}(r+1)$.
3. Proof of Theorem 1. We show first that $A(r, m)$ has dimension $d_{r}(m)$, and may clearly assume that $m \geqslant 1$.

Any member F of $A(r, m)$ can be written as

$$
\begin{equation*}
F=\sum_{v \in V(r, m)} a(v) \sigma(v) \quad(a(v) \in \mathbb{C}) \tag{3.1}
\end{equation*}
$$

where $a(v)$ takes the same value for all permutations of the components $v_{1}, v_{2}, \ldots, v_{r}$. Our object is to determine conditions that the $a(v)$ must satisfy. We regard F as being expressed as a function of the power sums $s_{\mu}(1 \leqslant \mu \leqslant n)$ and we therefore require that $\partial F / \partial s_{1}=0$.

To determine the consequences of this condition we require the following
Lemma 1. If the σ_{k} are expressed as functions of the $s_{\mu}(1 \leqslant \mu \leqslant n)$, then

$$
\begin{equation*}
\frac{\partial \sigma_{k}}{\partial s_{1}}=\sigma_{k-1} \quad(1 \leqslant k \leqslant n) . \tag{3.2}
\end{equation*}
$$

Similarly, if the s_{k} are expressed in terms of the σ_{μ} then

$$
\begin{equation*}
\frac{\partial s_{k}}{\partial \sigma_{1}}=k w_{k-1} \tag{3.3}
\end{equation*}
$$

where w_{k-1} is the complete (Wronskian) symmetric function of order $k-1$.
These results are of some interest and are, no doubt, well known; we shall only require (3.2).

Clearly both relations hold for $k=1$. The proofs in the general case follow easily by induction on using Newton's formulae (2.1).

If we differentiate (3.1) partially with respect to s_{1} and apply (3.2) we obtain

$$
\begin{equation*}
0=\sum_{v \in V(r, m)} a(v) \sigma(v)\left\{\frac{\sigma_{v_{1}-1}}{\sigma_{v_{1}}}+\ldots+\frac{\sigma_{v_{r}-1}}{\sigma_{v_{r}}}\right\}, \tag{3.4}
\end{equation*}
$$

where we make the convention that $\sigma_{-1}=0$. It follows that

$$
\begin{aligned}
0 & =\sum_{z \in V(r, m-1)} \sigma(z)\left\{a\left(z_{1}+1, z_{2}, \ldots, z_{r}\right)+\ldots+a\left(z_{1}, \ldots, z_{r-1}, z_{r}+1\right)\right\} \\
& =\sum_{z \in V^{*}(r, m-1)} \sigma(z)\left\{a\left(z_{1}+1, z_{2}, \ldots, z_{r}\right)+\ldots+a\left(z_{1}, \ldots, z_{r-1}, z_{r}+1\right)\right\} \pi(z)
\end{aligned}
$$

from which we deduce that

$$
\begin{equation*}
a\left(z_{1}+1, z_{2}, \ldots, z_{r}\right)+\ldots+a\left(z_{1}, \ldots, z_{r-1}, z_{r}+1\right)=0 \tag{3.5}
\end{equation*}
$$

for all $z \in V^{*}(r, m-1)$.
We now show that these $p_{r}(m-1)$ equations are linearly independent. For this purpose we arrange the $p_{r}(m)$ variables $a(v)$, where $v \in V^{*}(r, m)$, in lexicographical order, so that \boldsymbol{v} precedes \boldsymbol{v}^{\prime} (where $\boldsymbol{v}^{\prime} \neq \boldsymbol{v}$) when, for some $k \geqslant 0$,

$$
v_{\lambda}=v_{\lambda}^{\prime}(\lambda \leqslant k), \quad v_{k+1}>v_{k+1}^{\prime} .
$$

We then have a $p_{r}(m-1) \times p_{r}(m)$ matrix V of coefficients of the variables $a(v)$ in which the columns correspond to different $v \in V^{*}(r, m)$ and are taken in the lexi-
cographical order just described. The arguments of the r unknown variables in (3.5) determine r, not necessarily different, vectors in $V^{*}(r, m)$ and each of the equations determines a different leading vector (according to the lexicographical order). The corresponding columns in V form a square matrix V_{0} with the property that each row has its first nonzero entry in a different column. Accordingly, V_{0} is nonsingular, and so the $p_{r}(m-1)$ equations (3.5) are linearly independent. This proves that the functions F form a vector space of dimension $d_{r}(m)$.

We now show that $P_{r, m}(\boldsymbol{u})$, as defined by $(2.7,8)$, belongs to $A(r, m)$, where, as previously, we assume that $m \geqslant 1$. We therefore have to show that, for each $z \in V(r, m-1)$,

$$
u_{1}^{z_{1}+1} u_{2}^{z_{2}} \ldots u_{r}^{z_{r}}+\ldots+u_{1}^{z_{1}} u_{2}^{z_{2}} \ldots u_{r}^{z_{r}+1}=0
$$

which is clearly true, by (2.4). It follows that

$$
\begin{equation*}
B(r, m) \subseteq A(r, m) \tag{3.6}
\end{equation*}
$$

It remains to show that, if $F \in A(r, m)$, then F can be expressed as a linear combination of the polynomials $P_{r, m}(\boldsymbol{u})$ for different $\boldsymbol{u} \in U(r)$.

By Corollary 1(i), this is trivially true for $r=1$ and we therefore dispose next of the case $r=2$ and may assume that m is even, say $m=2 N$. Since $d_{2}(2 N)=1$, it is enough to find a single nonzero polynomial in $B(2,2 N)$. For this purpose we take $\boldsymbol{u}=(-1,1)$, put $v_{1}=\lambda, v_{2}=2 N-\lambda$ and so we have

$$
\begin{align*}
P_{2, m}(\boldsymbol{u}) & =\sum_{\lambda=0}^{2 N}(-1)^{\lambda} \sigma_{\lambda} \sigma_{2 N-\lambda} \tag{3.7}\\
& =2 \sum_{\lambda=0}^{N-1}(-1)^{\lambda} \sigma_{\lambda} \sigma_{2 N-\lambda}+(-1)^{N} \sigma_{N}^{2},
\end{align*}
$$

which clearly does not vanish identically.
From now on we assume that $r \geqslant 3$ and that F is given by (3.1), where the $a(v)$ satisfy (3.5). In order to express F as a linear combination of polynomials in $B(r, m)$ it is only necessary to choose these polynomials so that the coefficient of $\sigma(v)$ is $a(v)$ for vectors v corresponding to columns in the matrix V that are not columns of V_{0}; for the remaining coefficients will take the correct values in view of the $p_{r}(m-1)$ equations (3.5). The corresponding set of $d_{r}(m)$ standard vectors we denote by $V_{1}^{*}(r, m)$ and note that for them we have

$$
\begin{equation*}
v_{1}=v_{2} . \tag{3.8}
\end{equation*}
$$

In what follows we shall be concerned with not identically vanishing polynomials $f \in \mathbb{C}\left[x_{1}, \ldots, x_{k}\right]$, where $k \geqslant 1$. Such a polynomial is a sum of terms of the form $A x_{1}^{\nu_{1}} x_{2}^{v_{2}} \ldots x_{k}^{v_{k}}$, where $A \neq 0$, and the leading term is that term that takes precedence by lexicographical ordering the sets of exponents, as described previously. The leading terms of two polynomials are said to be essentially distinct if their ratio is not independent of $x_{1}, x_{2}, \ldots, x_{k}$.

Lemma 2. Let $f_{\lambda} \in \mathbb{C}\left[x_{1}, \ldots, x_{k}\right](\lambda=1,2, \ldots, q)$ be q polynomials with essentially different leading terms. Then it is possible to find q vectors $\boldsymbol{x}^{(\mu)}=\left(x_{1}^{(\mu)}, \ldots, x_{k}^{(\mu)}\right)$ $(1 \leqslant \mu \leqslant q)$ such that

$$
\begin{equation*}
\operatorname{det} f_{\lambda}\left(\boldsymbol{x}^{(\mu)}\right) \neq 0 . \tag{3.9}
\end{equation*}
$$

Proof. This is certainly true when $q=1$. We assume that the result is true for some $q \geqslant 1$ and prove its truth for $q+1$. We may assume that the $q+1$ polynomials are ordered so that f_{q+1} has the highest leading term, and we take $\boldsymbol{x}^{(\mu)}(\mu=1,2, \ldots, q)$ so that the $q \times q$ determinant with entries $f_{\lambda}\left(\boldsymbol{x}^{(\mu)}\right)(1 \leqslant \lambda \leqslant q)$ does not vanish. Then, if no vector $\boldsymbol{x}^{(q+1)}$ can be found to make the corresponding $(q+1) \times(q+1)$ determinant vanish, it follows that there exist constants $c_{\lambda}(1 \leqslant \lambda \leqslant q+1)$ such that $c_{q+1} \neq 0$ and

$$
c_{1} f_{1}(\boldsymbol{x})+\ldots+c_{q+1} f_{q+1}(\boldsymbol{x})=0
$$

for all $\boldsymbol{x} \in \mathbb{C}^{k}$. By considering the leading terms on the left-hand side we obtain a contradiction. The lemma follows.

We now take the vector $\boldsymbol{u} \in U(r)$ to be of the particular form

$$
\boldsymbol{u}=\left(1, x_{1}, x_{2}, \ldots, x_{r-2},-1-x_{1}-x_{2}-\ldots x_{r-2}\right)
$$

where the $x_{\lambda}(1 \leqslant \lambda \leqslant r-2)$ are complex numbers. Then, for $\boldsymbol{v} \in V_{1}^{*}(r, m)$, $\left[\boldsymbol{u}^{v}\right]$ is a polynomial with integral coefficients in the $r-2$ variables $x_{1}, x_{2}, \ldots, x_{r-2}$ and has leading term

$$
(-1)^{v_{1}} x_{1}^{v_{1}+v_{2}} x_{2}^{v_{3}} \ldots x_{r-2}^{v_{r}-1} .
$$

Because of (3.8), these leading terms are all essentially different. Therefore, by Lemma 2, we can find q vectors $\boldsymbol{x}^{(\mu)} \in \mathbb{C}^{r-2}\left(1 \leqslant \mu \leqslant q=d_{r}(m)\right)$ such that (3.9) holds, where $f_{\lambda}(1 \leqslant \lambda \leqslant q)$ runs through the q polynomials $\left[\boldsymbol{u}^{v}\right]$.

Let \boldsymbol{u}_{μ} and $\left[\boldsymbol{u}_{\mu}^{\nu}\right.$] denote respectively the values of the vector \boldsymbol{u} and polynomial [\boldsymbol{u}^{ν}] at $\boldsymbol{x}^{(\mu)}$. It follows that it is possible to solve the $d_{r}(m)$ linear equations

$$
\sum_{\mu=1}^{q}\left[\boldsymbol{u}_{\mu}^{v}\right] z_{\mu}=a(\boldsymbol{v}) \pi(\boldsymbol{v}) \quad\left(v \in V_{1}^{*}(r, m)\right)
$$

for the q unknowns $z_{\mu}(1 \leqslant \mu \leqslant q)$. Hence

$$
F=\sum_{\mu=1}^{q} z_{\mu} P_{r, m}\left(\boldsymbol{u}_{\mu}\right)
$$

and this completes the proof of the theorem.
4. The functions $\boldsymbol{P}_{\boldsymbol{r}, \boldsymbol{m}}(\boldsymbol{u})$.

Theorem 2. For $r \geqslant 2, m \geqslant 2$ and $u \in U(r)$,

$$
\begin{equation*}
(-1)^{m-1} m P_{r, m}(\boldsymbol{u})=\sum_{\mu=0}^{m-2}(-1)^{\mu} s_{m-\mu} S_{m-\mu} P_{r, \mu}(\boldsymbol{u}) \tag{4.1}
\end{equation*}
$$

Proof. We work in terms of formal power series and write

$$
\begin{equation*}
g(x)=\sum_{\lambda=0}^{n}(-1)^{\lambda} \sigma_{\lambda} x^{\lambda} \tag{4.2}
\end{equation*}
$$

from which we deduce, by the usual methods of symmetric function theory, that

$$
\begin{equation*}
\frac{g^{\prime}(x)}{g(x)}=-\sum_{\lambda=1}^{\infty} s_{\lambda} x^{\lambda-1} . \tag{4.3}
\end{equation*}
$$

Accordingly, by (2.7) and (4.2),

$$
F_{r}(\boldsymbol{u}, x):=\sum_{m=0}^{\infty}(-1)^{m} P_{r, m}(\boldsymbol{u}) x^{m}=\prod_{j=1}^{r} g\left(u_{j} x\right)
$$

and, on differentiating, we obtain, by (4.2),

$$
\begin{aligned}
\sum_{m=1}^{\infty}(-1)^{m} m P_{r, m}(\boldsymbol{u}) x^{m-1} & =F_{r}(\boldsymbol{u}, x) \sum_{j=1}^{r} u_{j} g^{\prime}\left(u_{j} x\right) / g\left(u_{j} x\right) \\
& =-F_{r}(\boldsymbol{u}, x) \sum_{\lambda=1}^{\infty} s_{\lambda} S_{\lambda} x^{\lambda-1}
\end{aligned}
$$

We deduce (4.1) by taking the coefficient of x^{m-1} and noting that $S_{1}=0$.
Denote by $D(m)(m \geqslant 2)$ the set of partitions π of m into summands $v_{1}, v_{2}, \ldots, v_{k}$ (k arbitrary), where

$$
v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{k} \geqslant 2
$$

and write

$$
\begin{array}{ll}
s_{\pi}=s_{v_{1}} s_{v_{2}} \ldots s_{v_{k}}, & S_{\pi}=S_{v_{1}} S_{v_{2}} \ldots S_{v_{k}}, \\
\epsilon_{\pi}=(-1)^{m-k} \quad, \quad \varphi_{\pi}=\epsilon_{\pi} s_{\pi} S_{\pi} . \tag{4.5}
\end{array}
$$

Observe that φ_{π} depends on r only through the factor S_{π}.
Theorem 3. Let $r \geqslant 2, m \geqslant 2$ and $u \in U(r)$. Then

$$
\begin{equation*}
P_{r, m}(\boldsymbol{u})=\sum_{\pi \in D(m)} b_{\pi} \varphi_{\pi} \tag{4.6}
\end{equation*}
$$

where the coefficients b_{π} are positive rational numbers independent of r and are defined inductively as follows:

$$
b_{0}=1, \quad b_{\pi}=\frac{1}{m} \sum b_{\rho},
$$

the summation being extended over all partitions ρ of non-negative integers that become π after the addition of a single positive summand; the trivial partition of zero is denoted by $\rho=0$.

This follows in a straightforward manner by induction. In the examples that follow we write

$$
\begin{gather*}
\varphi_{\lambda}=(-1)^{\lambda-1} s_{\lambda} S_{\lambda} . \tag{4.7}\\
2 P_{r, 2}=\varphi_{2}, \quad 3 P_{r, 3}=\varphi_{3}, \quad 4 P_{r, 4}=\varphi_{4}+\frac{1}{2} \varphi_{2}^{2}, \\
5 P_{r, 5}=\varphi_{5}+\frac{5}{6} \varphi_{3} \varphi_{2}, \quad 6 P_{r, 6}=\varphi_{6}+\frac{3}{4} \varphi_{4} \varphi_{2}+\frac{1}{3} \varphi_{3}^{2}+\frac{1}{8} \varphi_{2}^{3}, \\
7 P_{r, 7}=\varphi_{7}+\frac{7}{10} \varphi_{5} \varphi_{2}+\frac{7}{12} \varphi_{4} \varphi_{3}+\frac{7}{24} \varphi_{3} \varphi_{2}^{2}, \\
8 P_{r, 8}=\varphi_{8}+\frac{2}{3} \varphi_{6} \varphi_{2}+\frac{8}{15} \varphi_{5} \varphi_{3}+\frac{1}{4} \varphi_{4}^{2}+\frac{1}{4} \varphi_{4} \varphi_{2}^{2}+\frac{2}{9} \varphi_{3}^{2} \varphi_{2}+\frac{1}{48} \varphi_{2}^{4} .
\end{gather*}
$$

Note, in particular, that when $r=m=8, d_{8}(8)=7$ and that we need to take more than one vector \boldsymbol{u} to represent some polynomials in $A(8,8)$. For, if we take

$$
f=a s_{4}^{2}+b s_{4} s_{2}^{2}+c s_{2}^{4}
$$

it is not possible to find \boldsymbol{u} to make

$$
a=\frac{1}{4} S_{4}^{2}, \quad b=\frac{1}{4} S_{4} S_{2}^{2}, \quad c=\frac{1}{48} S_{2}^{4},
$$

unless $b^{2}=12 a c$.
Corollary 2. Let ω_{r} be a primitive rth root of unity, where $r \geqslant 2$ and let u_{r} be the vector with components $\omega_{r}^{\lambda}(0 \leqslant \lambda<r)$. Then

$$
P_{r, r}\left(\boldsymbol{u}_{r}\right)=(-1)^{r-1} s_{r} .
$$

This follows at once from Theorem 3 by considering the values taken by S_{λ}.
5. Applications to automorphic forms. In [2] I was concerned with the determination of all polynomials in the derivatives of an automorphic form f of arbitrary real weight k and multiplier system (MS) v that could be expressed as polynomials in f and its derivatives. Almost no assumptions were made regarding the group Γ to which f belonged other than that it was infinite; but to fix ideas it may be assumed that Γ is a discrete group acting on the upper half-plane. As in [2] write

$$
\begin{equation*}
h_{\mu}=\frac{f^{(\mu)}}{\Gamma(k+\mu) \cdot \mu!}(\mu=0,1,2, \ldots) \tag{5.1}
\end{equation*}
$$

and, for simplicity, restrict attention to admissible values of k, i.e. real numbers other than the integers $k=0,-1,-2, \ldots$

If we now put

$$
\begin{equation*}
\sigma_{\mu}=h_{\mu} / h_{0}(\mu \geqslant 0), \quad \psi_{\mu}=(-1)^{\mu-1} s_{\mu} h_{0}^{\mu}(\mu \geqslant 2) \tag{5.2}
\end{equation*}
$$

then ψ_{m} is a polynomial in the $h_{\mu}(\mu \geqslant 0)$ of degree and weight m and can be expressed explicitly as an $m \times m$ determinant; see equation (6) of [2]. The following theorem was proved in [2].

Theorem 4. If $P_{r, m}$ is a polynomial of degree r and weight m in the automorphic form f and its derivatives, then $P_{r, m}$ is expressible as $h_{0}^{r-m} Q_{m}$, where Q_{m} is a polynomial of weight m in the functions $\psi_{\mu}(\mu \geqslant 2)$. Conversely, given any such polynomial Q_{m}, an integer $r \leqslant m$ can be found such that $h_{0}^{r-m} Q_{m}$ is a polynomial of degree r and weight m in f and its derivatives and is an automorphic form.

It may be noted that, in the theorem, the automorphic form $h_{0}^{r-m} Q_{m}$ has weight (i.e. negative dimension) $r k+2 m$ and $\mathrm{MS} v^{r}$. For the reasons mentioned in $\S 1$, Theorem 4 is not as useful as might be desired.

We now observe that, by (5.2), $h_{0}^{r-m} Q_{m}=h_{0}^{r} Q_{m}^{*}$, where Q_{m}^{*} is a polynomial in the $s_{\mu}(\mu \geqslant 2)$ of weight m. Moreover, because $h_{0}^{r-m} Q_{m}$ is a polynomial in the $h_{\mu}(\mu \geqslant$ 0), Q_{m}^{*}, when expressed as a polynomial in the σ_{μ} cannot contain any term having more than r factors σ_{μ} with $\mu>0$. This means that $h_{0}^{r-m} Q_{m}$ is associated with a unique member F of $A(r, m)$; conversely, each $F \in A(r, m)$ gives rise to a polynomial of the type $P_{r . m}$ mentioned in Theorem 4.

Theorem 3 now fills the gap in Theorem 4, in that it shows that every F in $A(r, m)$ can be expressed as a linear combination of the polynomials $P_{r, m}(\boldsymbol{u})$ for different $\boldsymbol{u} \in U(r)$, where $P_{r, m}(\boldsymbol{u})$ is expressed as in (4.6) in terms of the $s_{\mu}(\mu \geqslant 2)$ and the coefficients b_{π} can be determined inductively.

Note that for particular choices of automorphic forms some polynomials in $A(r, m)$ may vanish identically. For example, it was shown on p. 115 of [2] that

$$
35 \psi_{4}+11 \psi_{2}^{2}
$$

vanishes identically for f equal to the modular discriminant Δ; here $r=m=4$. This differential equation for Δ is homogeneous in the sense that the terms are of constant degree and weight. Inhomogeneous differential equations for automorphic forms also exist; see [2] and, for a fuller discussion, [4] and [5].

In conclusion we remark that the restriction to admissible $k=0$ can be removed for $k \neq 0$ by considering the function $1 / f$ in place of f, or by using Resnikoff's functions $D^{\mu} f$ in place of the h_{μ}.
6. Extension to several automorphic forms. The ideas used to construct the polynomials $P_{r . m}(\boldsymbol{u})$ can be extended to several automorphic forms as follows. Let

$$
T=\left[\begin{array}{ll}
a & b \tag{6.1}\\
c & d
\end{array}\right] \in \operatorname{SL}(2, \mathbb{C}), \quad T z=\frac{a z+b}{c z+d} \quad(z \in \mathbb{C})
$$

and let k be any admissible real number. Put

$$
\begin{equation*}
f_{T}(z)=(c z+d)^{-k} f(T z), \quad S=c z+d, \quad \lambda=c / S \tag{6.2}
\end{equation*}
$$

where the functions f and f_{T} are holomorphic on some open domain $D \subseteq \mathbb{C}$. We write $f_{T}=f \mid T(k)$ and put

$$
\begin{equation*}
h_{q}(z, f, k)=\frac{f^{(q)}(z)}{\Gamma(k+q) \cdot q!} \quad(z \in D, q \geqslant 0) . \tag{6.3}
\end{equation*}
$$

By differentiating the equation

$$
f(T z)=(c z+d)^{k} f(z)
$$

successively, we obtain, as in $\$ 2$ of [2],

$$
\begin{equation*}
h_{q}(T z, f, k)=S^{k+2 q} \sum_{\nu=0}^{q} \frac{\lambda^{q-\nu}}{(q-\nu)!} h_{\nu}\left(z, f_{T}, k\right) \tag{6.4}
\end{equation*}
$$

If we now introduce the formal power series

$$
\begin{equation*}
h(x ; z, f, k)=\sum_{q=0}^{\infty} h_{q}(z, f, k) x^{q}, \tag{6.5}
\end{equation*}
$$

we find that

$$
\begin{equation*}
h(x ; T z, f, k)=S^{k} e^{\lambda x S^{2}} h\left(x S^{2} ; z, f_{T}, k\right) \tag{6.6}
\end{equation*}
$$

Now take r functions f_{λ} and r admissible real numbers $k_{\lambda}(\lambda=1,2, \ldots, r)$ satisfying the conditions stated above, any $\boldsymbol{u} \in U(r)$, and write

$$
\begin{equation*}
K=k_{1}+k_{2}+\ldots+k_{r} . \tag{6.7}
\end{equation*}
$$

We then deduce from (6.6) that

$$
\begin{equation*}
\prod_{\lambda=1}^{r} h\left(u_{\lambda} x ; T z, f_{\lambda}, k_{\lambda}\right)=S^{K} \prod_{\lambda=1}^{r} h\left(S^{2} u_{\lambda} x ; z, f_{\lambda} \mid T\left(k_{\lambda}\right), k_{\lambda}\right) . \tag{6.8}
\end{equation*}
$$

Define

$$
\begin{equation*}
F_{m}(z)=\sum_{v \in V_{(r, m)}} h_{v_{1}}\left(z, f_{1}, k_{1}\right) \ldots h_{v_{r}}\left(z, f_{r}, k_{r}\right) \boldsymbol{u}^{v} \tag{6.9}
\end{equation*}
$$

Then $F_{m}(T z)$ is the coefficient of x^{m} on the left-hand side of (6.8), and so we have

$$
\begin{equation*}
F_{m}(T z)=S^{K+2 m} \sum_{v \in V(r, m)}\left\{\prod_{\lambda=1}^{r} h_{v_{\lambda}}\left(z, f_{\lambda} \mid T\left(k_{\lambda}\right), k_{\lambda}\right)\right\} \boldsymbol{u}^{v} \tag{6.10}
\end{equation*}
$$

for all $z \in D$. In particular, if

$$
f_{\lambda} \mid T\left(k_{\lambda}\right)=w_{\lambda} f_{\lambda} \quad(1 \leqslant \lambda \leqslant r),
$$

we have

$$
\begin{equation*}
F_{m}(T z)=w_{1} w_{2} \ldots w_{r}(c z+d)^{K+2 m} F_{m}(z), \tag{6.11}
\end{equation*}
$$

from which we deduce
Theorem 5. Let f_{λ} be automorphic forms of admissible weight k_{λ} and $M S w_{\lambda}$ $(1 \leqslant \lambda \leqslant r)$, where $r \geqslant 2$, for a discrete infinite group Γ; we write this as $f_{\lambda} \in\left\{\Gamma, k_{\lambda}, w_{\lambda}\right\}$. Then, if for every integer $m \geqslant 0 F_{m}$ is defined by (6.9), we have

$$
F_{m} \in\left\{\Gamma, K+2 m, w_{1} \ldots w_{r}\right\} .
$$

We immediately deduce

Corollary 3. Let $f_{\lambda} \in\left\{\Gamma, k_{\lambda}, w_{\lambda}\right\}$ for $\lambda=1,2$. Then if

$$
G_{m}(z)=\sum_{\lambda=0}^{m}(-1)^{\lambda} h_{\lambda}\left(z, f_{1}, k_{1}\right) h_{m-\lambda}\left(z, f_{2}, k_{2}\right) \quad(m \geqslant 0),
$$

$G_{m} \in\left\{\Gamma, k_{1}+k_{2}+2 m, w_{1} w_{2}\right\}$.
The function G_{m} is a generalization of the polynomial $P_{2, m}$ of (3.7), where m is even and $f_{1}=f_{2}$. Corollary 3 has already been proved by H. Cohen [1] (Theorem 7.1 and Corollary 7.2).

References

1. H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), pp. 271-285.
2. R. A. Rankin, The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), pp. 103-116.
3. R. A. Rankin, A family of newforms, Ann. Acad. Sci. Fenn., Ses. AI. Math. 10 (1985), pp. 93-99.
4. H. L. Resnikoff, On differential operators and automorphic forms, Trans. Amer. Math. Soc. 124 (1966), pp. 334-346.
5. H. L. Resnikoff, Automorphic forms and automorphic preserving differential operators on products of halfplanes, Abh. Math. Sem. Univ. Hamburg, 38 (1972), pp. 168-198.

Department of Mathematics
University of Glasgow
Glasgow G12 8QW
Scotland

