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BY 
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Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. Explicit constructions of polynomials of preassigned de
gree and weight in the derivatives of a given automorphic form are 
described and studied, supplementing the results of an earlier paper. It turns 
out that the problem is essentially one concerning symmetric functions 
rather than automorphic forms. 

1. Introduction. In an earlier paper [2] under the same title I exhibited a family of 
'basic' polynomials \\fm (m = 2, 3 , . . . ) in the derivatives of a given automorphic form 
/ , which, together with/itself, sufficed to determine all automorphic forms expressible 
as polynomials in/and its derivatives. This result is restated in Theorem 4 of §5, but 
is, in some respects, not as useful as it might be, since a power of/, which could be 
negative, is involved as well as the basic polynomials, and no indication was given as 
to how the latter were to be combined in order to cancel out such a negative power and 
so produce an actual polynomial. This defect came to my notice recently when [3] I 
needed to express a certain newform as a polynomial of degree 2 in the derivatives of 
certain theta functions. 

The object of the present paper is to show how such polynomials can be constructed 
in a more explicit way. The somewhat surprising fact emerges that the problem is 
essentially one concerning symmetric functions of a particular type and has relatively 
little to do with automorphic forms. 

The symmetric function aspect is studied in §§2—4, after which applications to 
automorphic forms are given. 

2. Statement of the main result. Throughout, n denotes a sufficiently large positive 
integer and ai, a 2 , . . . , cr„ are algebraically independent complex numbers, which we 
regard as the elementary symmetric functions of n complex numbers, which are, 
therefore, the roots of the algebraic equation 

n 

X (-l)xo-n_xxx = 0, where a0 = 1. 
x=o 
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The actual values of these roots are irrelevant for our purpose, since we shall only be 
concerned with the properties of the o\ and the corresponding power sums su s2,.. . ; 
these are related to the ax by Newton's formulae: 

(2.1) Xax = 2 a x - ^ C - i r - 1 (1 *£ X *£ n). 

A polynomial of positive degree r and weight m ^ 0 in the o\ is a linear combination 
with complex coefficients of terms of the form 

(2.2) C T V I C T V 2 . . . C T V r , 

where 

(2.3) v, + v2 + . . . + vr = m. 

Any such polynomial can be expressed as a polynomial in the power sums s^ 
(1 ^ jx ^ n) and we are interested in those polynomials that, when so expressed, are 
independent of the first power sum sx. They clearly constitute a vector space over C; 
we call this space A(r, m). 

The non-negative integers Vj(j — 1 ,2 , . . . , r) are the components of a vector v, say, 
and form a partition of m into r non-negative summands. When these are in descending 
order, 

V! ^ V2 2S . . . ^ Vr ^ 0 , 

we say that v is in standard form. The number of partitions (in standard form) of m into 
r or fewer positive integral summands is, as usual, denoted by pr{m); by convention, 
Pr(0) = 1. 

We denote by V(r) the set of all vectors v containing r non-negative integral 
components and by V(r, m) the subset for which (2.3) holds. The subset of V(r,m) 
consisting of vectors in standard form is denoted by V*(r, m). We shall always assume 
that n^ m. 

Now take any vector u E C and let its components be ux, u2,..., ur. We denote the 
power sums of these r complex numbers by S^(\L ^ 1) and make the assumption that 

(2.4) Si = Mi + w2 + . . . + ur = 0. 

The set of all such w £ C is denoted by U(r). 
For any v E V{r, m) and u E U(r) write 

(2 .5 ) a ( v ) = CTVICTV2 . . . arVr, uv = u\] u2
2... u\r 

and pu t 

(2.6) M = [«>?...«;-] 

to denote the monomial symmetric function of w,, u2, . . . , ur containing uv as a typical 
term. This is the sum of wv and all the other different terms obtained from it by 
permuting the suffixes. We write TT( v) for the number of terms in [wv]; it is independent 
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of u. The symmetric function [uv] is, of course, expressible as a polynomial in the S^. 
Now define, for u E U(r), 

(2.7) PrA*)= S a(v)M* = S <J(V)[UV] 
vGV(r,m) vGV*(r,m) 

(2.8) = X cr(v)[«']/ir(v), 
veV(r,m) 

and note that 

(2.9) /%(" ) = a j = 1, PrA{u) = 0. 

We denote by B(r,m) the vector space generated by the polynomials Pr,m(u) for 
different u E t/(r). 

THEOREM 1. For arbitrary integers r ^ l , / n ^ 0 w /lave 

(2.10) A(r,m) = B(r,m), 

their common dimension being 

(2.11) dr(m)\ = Pr(m) - pr(m - 1), 

where dr(0) = 1. 

We defer the proof of the theorem to §3, but note here a number of consequences. 

COROLLARY 1. (i) A(\,m) = B(l,m) = 0 (the zero space). 
(ii) d2(m) is 1 for even m and 0 for odd m; accordingly, A(2, m) = Ofor odd m. 
(iii) <j0A(r - l , r + 1) = A(r,r + l)/<?rr > 1. 

Part (ii) may be deduced from the fact that/?r(m) is the coefficient of xm in the power 
series 

{(1 - J C ) ( 1 - x 2 ) . . . ( l -X')}'1 

and from this we also deduce that dr{m) is the number of partitions of m into positive 
summands greater than unity and not exceeding r. For r = 3 one can easily show that 

(2.12) d3(m) = j^{lm + 5 + 3 ( - l ) m + 4 C ? L ^ p ) l ' 

where the last term contains a Legendre symbol. Incidentally, d3(m) is the number of 
entire modular forms of weight 2m for the modular group. 

Part (iii) follows since v0A(r - l , r + 1) C A(r,r + 1) and dr_i(r + 1) = 
</r(r + 1). 

3. Proof of Theorem 1. We show first that A(r, m) has dimension dr(m), and may 
clearly assume that m ^ 1. 

Any member F of A(r, m) can be written as 
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(3.1) F = 2 a(v)(j(v) ( a ( v ) G C ) , 
v6V(r,m) 

where a(v) takes the same value for all permutations of the components Vi, v 2 , . . . , vr. 
Our object is to determine conditions that the a(v) must satisfy. We regard F as being 
expressed as a function of the power sums s^ (1 ^ jx ^ n) and we therefore require that 
dF/dS] = 0. 

To determine the consequences of this condition we require the following 

LEMMA 1. If the crk are expressed as functions of the s^ (1 ^ |x ^ n), then 

dak 

(3.2) = a*_, (l^k^n). 

Similarly, if the sk are expressed in terms of the CT^ f/zefl 

dsk 

(3.3) —- = *w*_, 
do-] 

where wk-x is the complete (Wronskian) symmetric function of order k — 1. 

These results are of some interest and are, no doubt, well known; we shall only 
require (3.2). 

Clearly both relations hold for k = 1. The proofs in the general case follow easily 
by induction on using Newton's formulae (2.1). 

If we differentiate (3.1) partially with respect to sx and apply (3.2) we obtain 

^ f ° ï , - l °"vr-ll 

(3.4) 0= S *(v)a(v) | -^+ . . . + - M , 

where we make the convention that v-{ = 0. It follows that 
0 = E (x(z){a(z, + l , z 2 , . . . ,zr) + . . . 4- a(z , , . . . ,z r_,,z r + 1)} 

z G V ( r , m - l ) 

2 a(z){a(z, + l , z 2 , . . . ,zr) + .. . + a(zu... 9zr-uzr + l)}ir(z) 
zGV*(r,m-\) 

from which we deduce that 

(3.5) a(z{ + l,z2 , . . . ,zr) + . . . + <z(zi,... ,zr_i,zr + 1) = 0 

for all z E V*(r,m - 1). 
We now show that these pr(m - 1) equations are linearly independent. For this 

purpose we arrange thepr(m) variables a{v), where v E V*(r, m), in lexicographical 
order, so that v precedes v' (where v' =£ v) when, for some & ^ 0, 

vx = v((\ ^ /:), v*+1 > v*+1. 

We then have SL pr(m - I) x pr(m) matrix V of coefficients of the variables a{v) in 
which the columns correspond to different v E V*(r, m) and are taken in the lexi-
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cographical order just described. The arguments of the r unknown variables in (3.5) 
determine r, not necessarily different, vectors in V*(r,m) and each of the equations 
determines a different leading vector (according to the lexicographical order). The 
corresponding columns in V form a square matrix V0 with the property that each row 
has its first nonzero entry in a different column. Accordingly, V0 is nonsingular, and 
so the/7r(m — 1) equations (3.5) are linearly independent. This proves that the functions 
F form a vector space of dimension dr(m). 

We now show that Prm(u), as defined by (2.7, 8), belongs to A(r,m), where, as 
previously, we assume that m ^ 1. We therefore have to show that, for each 
ZE V(r,m - 1), 

Z\ + 1 Zj Zr , • Z\ Z*, Zr+ 1 /~v 

W, U2. . . Ur
r + . . . + W,x U2 • • • W/ = 0 , 

which is clearly true, by (2.4). It follows that 

(3.6) B(r,m) CA(rym). 

It remains to show that, if F E A(r, m), then F can be expressed as a linear combination 
of the polynomials Pr,m(u) for different u E U(r). 

By Corollary l(i), this is trivially true for r = 1 and we therefore dispose next of the 
case r = 2 and may assume that m is even, say m = 27V. Since d2(2N) = 1, it is enough 
to find a single nonzero polynomial in 5(2, 2N). For this purpose we take u = (— 1, 1), 
put vi = X, v2 = 2N - \ and so we have 

IN 

(3.7) Pi,m(u)= 2 (-l)x(xxCT2iV_x 
X = 0 

yv— l 

= 2 2 (-l)x(T,a2/v_, + ( - l )V^ , 
x=o 

which clearly does not vanish identically. 
From now on we assume that r ^ 3 and that F is given by (3.1), where the a(v) 

satisfy (3.5). In order to express F as a linear combination of polynomials in B(r, m) 
it is only necessary to choose these polynomials so that the coefficient of a(v) is a{v) 
for vectors v corresponding to columns in the matrix V that are not columns of V0; for 
the remaining coefficients will take the correct values in view of the pr(m — 1) 
equations (3.5). The corresponding set of dr(m) standard vectors we denote by Vf(r, m) 
and note that for them we have 

(3.8) v, = v2. 

In what follows we shall be concerned with not identically vanishing polynomials 
/ E C[* i , . . . ,**] , where k ^ 1. Such a polynomial is a sum of terms of the form 
Ax]] xv

2
2 . . . xv

k
k, where A i= 0, and the leading term is that term that takes precedence 

by lexicographical ordering the sets of exponents, as described previously. The leading 
terms of two polynomials are said to be essentially distinct if their ratio is not indepen
dent Of JCj,JC2, . . . ,Xk. 
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LEMMA 2. Letfk E C[*i,. . . , xk] (X = 1, 2, . . . , q) be qpolynomials with essentially 
different leading terms. Then it is possible to find q vectors x{*} — (x^,. . . ^x^) 
(1 ^ [x ̂  q) such that 

(3.9) detA(jc(^) ± 0. 

PROOF. This is certainly true when q = 1. We assume that the result is true for some 
q ^ 1 and prove its truth for q + 1. We may assume that the q + 1 polynomials are 
ordered so that/^+i has the highest leading term, and we take JC(^ (|x = 1,2, . . . , g) 
so that the q x q determinant with entries/x(jc

(Fi)) (1 ^ X ^ q) does not vanish. Then, 
if no vector x{q+l) can be found to make the corresponding (q + 1) x (q + 1) 
determinant vanish, it follows that there exist constants rx(l ^ X ^ q + 1) such that 
cq+] ^ 0 and 

c,/i(x) + . . . + cq+lfq+l(x) = 0 

for all x E C*. By considering the leading terms on the left-hand side we obtain a 
contradiction. The lemma follows. 

We now take the vector u E U(r) to be of the particular form 

U — (\,X\,X2, . . . , * r - 2 » ~ 1 ~ X] — X2 — . . . .Xr-i), 

where the xx (1 ^ X ^ r — 2) are complex numbers. Then, for v E Vf(r, m), [uv] is 
a polynomial with integral coefficients in the r — 2 variables X\,x2,. . . ,xr-2 and has 
leading term 

( - i r < * ; i + V 2 ^ . . . ^ . 

Because of (3.8), these leading terms are all essentially different. Therefore, by 
Lemma 2, we can find q vectors x{^ E C~2( l ^ |JL ̂  q = dr(m)) such that (3.9) holds, 
where/x (1 ^ X ̂  q) runs through the q polynomials [uv]. 

Let u^ and [w)J denote respectively the values of the vector u and polynomial [uv] 
at JC(M,). It follows that it is possible to solve the dr{m) linear equations 

S [ < ] z „ = fl(v)ir(v) (vŒVf(r,m)), 

for the (̂  unknowns ẑ  (1 =̂  |x =̂  g). Hence 

and this completes the proof of the theorem. 

4. The functions Pr,m(w). 

THEOREM 2. For r ^ 2, m ^ 2 and u E f/(r), 
»!-2 

(4.1) (-ir- ' /n/> r ,„ ,(H)= S ( - O - ' ^ ^ ^ - ^ . ^ a ) . 
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PROOF. We work in terms of formal power series and write 
n 

(4.2) g(x) = X (~1)WX 

\ = 0 

from which we deduce, by the usual methods of symmetric function theory, that 

(4.3) = - 2 " -x"' 
gW x = 

Accordingly, by (2.7) and (4.2), 

Fr(B,oc): = 2 ( - l r / ' r . J n ) ^ " = I l g(.ujx) 
fff=0 7 = 1 

and, on differentiating, we obtain, by (4.2), 

2 ( - î r m / ^ w ) . * ' " - 1 =F r ( i i ,*) S Ujg'(UjX)/g(UjX) 

00 

\ = i 

We deduce (4.1) by taking the coefficient of xm~l and noting that S, = 0. 
Denote by D(m) (m ^ 2) the set of partitions IT of m into summands v,, v2,. . . , vk 

(k arbitrary), where 

v, ^ v2 ^ . . . ^ v^ ^ 2 

and write 

( 4 . 4 ) 5-n- ^ v ( ̂ v 2 • • • SVj. , OTT — 0 V | O V 2 . . . Oyk , 

(4.5) €, = (-1)"-* , <p„ = e.5,5, . 

Observe that <p„ depends on r only through the factor S„. 

THEOREM 3. Let r 3= 2, m 3= 2 and M £ f/(r). rfcen 

(4.6) />,,„(«) = £ *„<&, 
T T E D ( W ) 

w/zere f/ie coefficients b^ are positive rational numbers independent ofr and are defined 
inductively as follows: 

b0 = 1, b^ = — ZJ b9, m 

the summation being extended over all partitions p of non-negative integers that 
become TT after the addition of a single positive summand; the trivial partition of zero 
is denoted by p = 0. 

This follows in a straightforward manner by induction. In the examples that follow 
we write 
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(4.7) <pk = ( - D ^ ' s A . 

2Pr,2 = 92, 3P r ,3 = 93, 4P r ,4 = Cp4 + " ^\ , 

5 3 1 2 1 3 
5P r ,5 = cp5 + - 9 3 9 2 , 6Pr>6 = 96 + T9492 + 1 9 3 + «92» 

7 7 7 
7P r ,7 = 97 + " ^9592 + " ^ ^ 4 9 3 + ^ ^ 9 2 , 

8P r ,8 = 98 + - 9 6 9 2 + ^ 9 5 9 3 + ^ 9 4 + 4 9492 + ^9392 + ^ 9 2 -

Note, in particular, that when r = m = 8, d%(&) — 1 and that we need to take more 
than one vector u to represent some polynomials in A(8, 8). For, if we take 

/ = as4 + bs4s2 + cs2, 

it is not possible to find u to make 

unless fe2 = 12 ac. 

COROLLARY 2. Lef car fee a primitive rth root of unity, where r ^ 2 an J /ef wr fee rfee 
vector with components cor (0 ^ \ < r). Then 

prAur) = (-\y-]sr. 

This follows at once from Theorem 3 by considering the values taken by Sk. 

5. Applications to automorphic forms. In [2] I was concerned with the deter
mination of all polynomials in the derivatives of an automorphic form/of arbitrary real 
weight k and multiplier system (MS) v that could be expressed as polynomials in /and 
its derivatives. Almost no assumptions were made regarding the group T to which/ 
belonged other than that it was infinite; but to fix ideas it may be assumed that F is a 
discrete group acting on the upper half-plane. As in [2] write 

and, for simplicity, restrict attention to admissible values of k, i.e. real numbers other 
than the integers k = 0, - 1 , - 2 , . . . 

If we now put 

(5.2) a|1 = A | 1/*o(M'^0), i = ( - i r ' 5 X ( ^ 2 ) , 

then i|im is a polynomial in the h^ ( \x ^ 0) of degree and weight m and can be expressed 
explicitly as an m x m determinant; see equation (6) of [2]. The following theorem was 
proved in [2]. 

(5.1) K = ^—.—;—;(^ = 0 , 1 , 2 , . . . ) , 
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THEOREM 4. IfPr,m is a polynomial of degree r and weight m in the automorphic form 
f and its derivatives, then Pr m is expressible as hr

0~
m Qmj where Qm is a polynomial of 

weight m in the functions i)^ (|x ^ 2). Conversely, given any such polynomial Qm, an 
integer r ^ m can be found such that hr^m Qm is a polynomial of degree r and weight 
m in f and its derivatives and is an automorphic form. 

It may be noted that, in the theorem, the automorphic form hr^m Q,„ has weight 
(i.e. negative dimension) rk + 2m and MS vr. For the reasons mentioned in §1, 
Theorem 4 is not as useful as might be desired. 

We now observe that, by (5.2), hr
0~

m Qm = hr
0 Q* , where Q* is a polynomial in the 

Sp (|x ^ 2) of weight m. Moreover, because hr
0~

m Qm is a polynomial in the h^ (jx ^ 
0), Q* , when expressed as a polynomial in the cr̂  cannot contain any term having more 
than r factors o^ with |JL > 0. This means that hr

0~
m Qm is associated with a unique 

member F of A(r, m); conversely, each F E A(r, m) gives rise to a polynomial of the 
type Pr m mentioned in Theorem 4. 

Theorem 3 now fills the gap in Theorem 4, in that it shows that every F in A(r, m) 
can be expressed as a linear combination of the polynomials Pr,m{u) for different 
u E U(r), where Pr,m(u) is expressed as in (4.6) in terms of the s^ (|x ^ 2) and the 
coefficients b^ can be determined inductively. 

Note that for particular choices of automorphic forms some polynomials in A{r, m) 
may vanish identically. For example, it was shown on p. 115 of [2] that 

35i|i4 + l l i | i2 

vanishes identically for/equal to the modular discriminant A; here r — m — 4. This 
differential equation for A is homogeneous in the sense that the terms are of constant 
degree and weight. Inhomogeneous differential equations for automorphic forms also 
exist; see [2] and, for a fuller discussion, [4] and [5]. 

In conclusion we remark that the restriction to admissible k — 0 can be removed for 
k =£ 0 by considering the function l / / i n place of/, or by using Resnikoff s functions 
D^/in place of the h^. 

6. Extension to several automorphic forms. The ideas used to construct the 
polynomials Pr,m(u) can be extended to several automorphic forms as follows. Let 

a b' 

-c d-

and let k be any admissible real number. Put 

(6.2) fT(z) = (cz + dYkf(Tz), S = cz + d, k = c/S9 

where the functions/and fT are holomorphic on some open domain D C C. We write 
/ r = / | 7 X * ) a n d p u t 

fiq)(z) 
(6.3) hq(z, / , k) = (zED, q^ 0). 

T(k + q). q\ 

(6.1) SL(2,C), Tz = ^—5 ( z E C ) 
cz + d 
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By differentiating the equation 

f(Tz) = (cz + d)kf(z) 

successively, we obtain, as in §2 of [2], 

(6.4) hq{Tz, f, k) = Sk+2« I Kq V hv(z, fT, k). 
v=o (q - v)\ 

If we now introduce the formal power series 

(6.5) h(x;z,f,k) = S hq(z, f9k)x", 

we find that 

(6.6) h(x\ Tz, / , k) = SkekxS2h(xS2; z, fT, k). 

Now take r functions/^ and r admissible real numbers kx (A — 1,2,. . . , r) satisfying 
the conditions stated above, any u E U(r), and write 

(6.7) K = kx + k2 + . . . + kr. 

We then deduce from (6.6) that 
r r 

(6.8) EI h(uxx;Tz,f„k,)=SK R h(S2uKx;z, fK\T{kx),kK). 
X = l X = l 

Define 

(6.9) Fm{z) = S /iv,(z, / , , * , ) . . . hVr(z, fr, kr)u\ 
vEV{r,m) 

Then Fm(Tz) is the coefficient of xm on the left-hand side of (6.8), and so we have 

(6.10) Fm(Tz) = SK+2m 2 f n hVk(z,fK\T(kx),kx)}uv 

vEV(r,m) \ = 1 

for all z E D. In particular, if 

/x|7X*x) = wx/x (1 ^ X ^ r ) , 

we have 

(6.11) Fm{Tz) = w{w2 . . . wr{cz + d)K+2mFm(z), 

from which we deduce 

THEOREM 5. Let fK be automorphic forms of admissible weight kk and MS wx 

(1 ^ \ ^ r), where r ^ 2, for a discrete infinite group F; we write this as 
/x E {T, kx, vvx}. 77iefl, if for every integer m ^ 0 Fm is defined by (6.9), we have 

Fm E {T, K + 2m, w, . . . wr}. 

We immediately deduce 
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COROLLARY 3. Letfx E {T, kx, wx}for X = 1,2. Then if 
m 

Gm(z) = X (-l)xMz,/i,*i)A„,-x(z,/2,*2) ( m ^ O ) , 
x=o 

Gm E {r, fci + A:2 + 2m, WiW2}. 

The function Gm is a generalization of the polynomial P2,m of (3.7), where m is even 
and/, = /2. Corollary 3 has already been proved by H. Cohen [1] (Theorem 7.1 and 
Corollary 7.2). 
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