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Abstract. In this paper, we first deduce a formula of S-curvature of homogeneous
Finsler spaces in terms of Killing vector fields. Then we prove that a homogeneous
Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature. In
the special case that the homogeneous Finsler space is a Randers space, we give an
explicit formula which coincides with the previous formula obtained by the second
author using other methods.
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1. Introduction. The notion of S-curvature was introduced by Z. Shen in [8] in his
study of volume comparison in Finsler geometry. S-curvature is an important quantity
in Finsler geometry in that it has some mysterious interrelations with other quantities
such as flag curvature, Ricci scalar, etc. Shen showed that the Bishop–Gromov volume
comparison theorem holds for Finsler spaces with vanishing S-curvature. Therefore, it
is also significant to characterize Finsler spaces with vanishing S-curvature.

The goal of this paper is to give an explicit formula of S-curvature of a
homogeneous Finsler space in terms of Killing vector fields. Let (M, F) be a connected
Finsler space. Then the group of isometries of (M, F), denoted by I(M, F), is a Lie
transformation group on M with respect to the compact-open topology (see [6]). A
vector field X on a Finsler space (M, F) is called a Killing vector field, if the local
one-parameters groups of transformations generated by X consists of local isometries
of (M, F). A Killing vector field X of (M, F) can be equivalently described as follows.
Any vector field X on M can naturally define a vector field X̃ on TM. The vector
field X generates a flow of diffeomorphisms ρt on M, with the corresponding flow of
diffeomorphisms ρ̃t on TM. Then the value of X̃ at (x, y) ∈ TM is just d

dt [ρ̃t(x, y)]|t=0.
Obviously, X is a Killing vector field for F if and only if X̃(F) = 0.

The space (M, F) is called homogeneous if the action of I(M, F) on M is transitive.
In this case, M can be written as a coset space I(M, F)/I(M, F)x, where I(M, F)x is
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the isotropic subgroup of I(M, F) at a point of x ∈ M. Since M is connected, the unit
connected component of I(M, F), denoted by G, is also transitive on M. Let H be the
isotropic of G at the point x. Then we have M = G/H. Moreover, the Finsler metric F
can be viewed as an G-invariant Finsler metric on G/H.

Since (M, F) is homogeneous, given any tangent vector v ∈ Ty(M), y ∈ M, there
exists a Killing vector field X such that X |y = v. Therefore, if we can get a formula for
S(X), where X is an arbitrary Killing vector field, then the S-curvature of (M, F) is
completely determined. The main result of this paper is a formula of the S-curvature
as described above. As an application, we show that a homogeneous Finsler space has
isotropic S-curvature if and only if it has vanishing S-curvature. This generalizes the
similar results on homogeneous Randers spaces and homogeneous (α, β)-spaces in [5]
and [7].

In Section 3, we present some preliminaries on Finsler spaces and S-curvature.
Section 4 is devoted to deducing the formula of S-curvature. In Section 5, we apply our
formula to homogeneous Randers spaces, and show that the formula coincides with
the previous one obtained in [5] in this special case.

2. Preliminaries. In this section, we recall some known results on Finsler spaces,
for details we refer the readers to [1, 3, 4] and [9].

A Finsler metric on a manifold M is a function F : TM\{0} → �+ satisfying the
following properties:

(1) F is smooth on TM\{0}.
(2) F is positively homogeneous of degree 1, namely, F(λy) = λF(y), for any λ > 0

and y ∈ TM\{0}.
(3) For any standard local coordinate system (TU, (x, , y) of TM, where x =

(xi) in an small open neighbourhood U ⊂ M, and y = yi∂xi ∈ TMx, the
fundamental tensor gij(y) = 1

2 [F2]yiyj is positive definite whenever y �= 0.
Riemannian metrics are a special class of Finsler metrics widely studied by

mathematicians. Their fundamental tensors only depends on x, which are regarded
as the metrics themselves.

Randers metrics are the most well-known non-Riemannian Finsler metric. They
are defined as F = α + β, where α is a Riemannian metric and β is a 1-form, whose
α-norm ||β(x)||α is less than 1 everywhere. Randers metrics are generalized to (α, β)-
metrics of the form F = αφ(β/α).

3. Killing frames and the geodesic spray. A Killing frame for a Finsler manifold
(M, F) is a set of local vector fields Xi, i = 1, . . . , n = dim M, defined on an open
subset U around a given point, such that

(1) the values Xi(x), ∀i, give bases for each tangent space Tx(M), x ∈ U , and
(2) in U , each Xi satisfies X̃i(F) = 0, in other words, the X ′

i s are local Killing
vector fields in U .

Though Killing frames are rare in the general study of Finsler geometry, they can be
easily found for a homogeneous Finsler space at any given point. Let the homogeneous
Finsler space (M, F) be presented as M = G/H, where H is the isotropy subgroup for
the given x. The tangent space TMx can be identified as the quotient m = g/h, where
g and h are the Lie algebras of G and H, respectively. Take any basis {v1, . . . , vn} of m,
with the pre-images {v̂1, . . . , v̂n} in g. Then the Killing vector fields {X1, . . . , Xn} on M
corresponding to v̂is defines a Killing frame around x. The choice of v̂is or Xis identifies
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the quotient space m with a subspace of g, and then we can write the decomposition
of linear space

g = h + m. (3.1)

For the Killing frame {X1, . . . , Xn} around x ∈ M, a set of y-coordinates y = (yi)
can be defined by y = yiXi. Accordingly, we have the fundamental tensor gij = 1

2 [F2]yiyj ,
and the inverse matrix of (gij) is denoted as (gij). When both the Killing frame and the
local coordinates {x = (x̄ī), y = ȳj̄∂x̄j̄ } are used, the terms and indices for the local
coordinates are marked with bars, and the indices with bars are moved up and down
by the fundamental tensors ḡīj̄ or ḡīj̄ for the local coordinates. Let f i

ī and f ī
i , ∀i and ī,

be the transition functions such that around x,

∂x̄ī = f i
ī Xi and Xi = f ī

i ∂x̄ī . (3.2)

We summarize some easy and useful identities which show how the transition functions
exchange the indices with and without bars:

ȳī = f ī
i yi and yi = f i

ī ȳī (3.3)

∂ȳī = f i
ī ∂yi and ∂yi = f i

ī ∂ȳī , (3.4)

ḡīj̄ = f i
ī gijf

j
j̄ and gij = f ī

i ḡīj̄ f
j̄
j , (3.5)

ḡīj̄ = f ī
i gijf j̄

j and gij = f i
ī ḡīj̄ f j

j̄ . (3.6)

To apply Killing frames to the study of Finsler geometry, we start with the geodesic
spray.

THEOREM 3.1. Let {X1, . . . , Xn} be a Killing frame around x ∈ M for the Finsler
metric F. Then for y = ỹiXi(x) ∈ TMx, the geodesic spray G(x, y) can be presented as

G(x, y) = yiX̃i + 1
2

gilck
lj [F

2]yk yj∂yi , (3.7)

where ck
lj are defined by [Xl, Xj](x) = ck

ljXk(x).

If we use the local coordinates {x = (x̄i) and y = ȳī∂x̄ī}, then a direct calculation
shows that ck

ijs can be presented as

ck
ij = [(f ī

i ∂x̄ī f j̄
j − f ī∂x̄ī f j̄

i )f k
j̄ ](x). (3.8)

Now consider the case that M = G/H is a homogeneous Finsler space, where H is the
isotropy group of x ∈ M. Let the Killing vector fields Xi’s be defined by v̂i ∈ g, ∀i. Then
the tangent space TMx can be identified with the n-dimensional subspace m spanned
by the values of all the v̂i’s at x. With respect to the decomposition g = h + m, there is
a projection map pr : g → m. Note that for the bracket operation [·, ·] on g, we have
[·, ·]m = pr[·, ·]. Then ck

ijs can be determined by

[v̂i, v̂j]m = −ck
ij v̂k. (3.9)

The proof of Theorem 3.1 needs local coordinates {x = (x̄i) and y = ȳī∂x̄ī} around
x. We first need to see how to present each X̃i with the local coordinates.
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LEMMA 3.2. For any vector field X = f ī∂x̄ī around x,

X̃(x, y) = f ī∂x̄ī + ȳī∂x̄ī f j̄∂ȳj̄ , (3.10)

for any y = ȳī∂x̄ī ∈ TMx.

Proof. Let ρt and ρ̃t be the flows of diffeomorphisms X generates on M and TM,
respectively. For each i, the flow curve ρ̃t(∂x̄ī |x) can be presented as

(ρt(x), ∂x̄ī + t∂x̄ī fj̄∂x̄j̄ + o(t)), (3.11)

so the flow curve ρ̃t(x, y) for y = ȳī ∈ TMx has the local coordinates

(ρt(x), [ȳj̄ + tȳī∂x̄ī f j̄ + o(t)]∂x̄j̄ ). (3.12)

Differentiating with respect to t and considering the values at t = 0, we get (3.10). �
Now, we use the above lemma to recalculate the terms of the geodesic spray

G = ȳī∂x̄ī − 1
2

ḡīl̄([F2]x̄j̄ ȳl̄ ȳj̄ − [F2]x̄l̄ )∂ȳī . (3.13)

By (3.10) and the property that X̃i(F) = 0, ∀i, we have the following equations which
hold on a neighbourhood around x:

ȳī∂x̄ī = yif ī
i ∂x̄ī

= yi(X̃i − ȳī∂x̄ī f j̄
i ∂ȳj̄ )

= yiX̃i − f ī
k∂x̄ī f j̄

i f l
ȳj̄ y

iyk∂yl

= yiX̃i − f ī
k∂x̄ī f j̄

j f i
j̄ yjyk∂yi , (3.14)

ḡīl̄[F2]x̄l̄ ∂ȳī = gilf l̄
l [F2]x̄l̄ ∂yi

= −gil(yī∂x̄i f j̄
l [F2]ȳj̄ )∂yi

= −gilf ī
j ∂x̄ī f j̄

l f k
j̄ [F2]yk yj∂yi , (3.15)

and

ḡīl̄[F2]x̄j̄ ȳl̄ ȳj̄∂ȳī = gil[f j̄
j [F2]x̄j̄ ]yl yj∂yi

= −gil(ȳī∂x̄ī f j̄
j [F2]ȳj )yl yj∂yi

= −gilf ī
l ∂x̄i f j̄

j [F2]ȳj̄ yj∂yi − gilf ī
k∂x̄i f j̄

j f h
j̄ [F2]yhyl yjyk∂yi

= −gilf ī
l ∂x̄ī f j̄

j f k
j̄ [F2]yk yj∂yi − 2f ī

k∂x̄ī f j̄
j f i

j̄ yjyk∂yi . (3.16)

By (3.14)–(3.16) and (3.8), we get

G(x, y) = yiX̃i + 1
2

gil(f ī
l ∂

ī
x̄ − f ī

j ∂x̄ī f j̄
l )f k

j̄ [F2]yk yj∂yi

= yiX̃i + 1
2

gilck
lj [F

2]yk yj∂yi . (3.17)

This completes the proof of Theorem 3.1.
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4. The formula of S-curvature for a homogeneous Finsler space. The formula
(3.7) of the geodesic spray can be immediately applied to get a formula of S-curvature.
Suppose in a local coordinate system, x = (x̄ī) and y = ȳī∂x̄ī ∈ TMx, with y �= 0. Then
the distortion function is defined by

τ (x, y) = ln

√
det(ḡp̄q̄)

σ (x)
, (4.18)

where σ (x) is defined by

σ (x) = Vol(Bn)
Vol{(yi) ∈ �n|Fx(yibi) < 1} ,

where Vol means the volume of a subset in the standard Euclidean space �n and Bn

is the open ball of radius 1. The function σ (x) can be used to define the Busemann–
Hausdorff volume σ (x)dx̄1 · · · x̄n. The S-curvature of the nonzero tangent vector (x, y),
denoted as S(x, y), is defined to be the derivative of τ in the direction of the geodesics
of G(x, y), with initial vector y.

Notice that the distortion function τ (x, y) is only determined by the metric F ,
not relevant to the choice of local coordinates or frames. If there is Killing frame
{X1, . . . , Xn} around x, then it is not hard to see that X̃iτ = 0, ∀i. Thus, only the
derivative of τ in the direction 1

2 gilck
lj [F

2]yk yj∂yi remains to appear in the S-curvature
formula. Notice also that in the expression of τ , σ (x) is a function of x only. This
observation leads to the following formula for the S-curvature.

THEOREM 4.1. Let {X1, . . . , Xn} be a Killing frame around x, then for any y �= 0 in
TMx, the S-curvature at (x, y) can be presented with the notations for the Killing frame
as

S(x, y) = 1
2

gilck
lj [F

2]yk yjIi, (4.19)

where Ii = ln
√

det(gpq) are the coefficients of the mean Cartan torsion with respect to
the basis the Killing frame induced in TMx.

Now assume M = G/H is homogeneous, with H being the isotropy group at x. In
Section 3, we have seen the existence of Killing frames around x. Each Killing frame
{X1, . . . , Xn} determines a decomposition g = h + m, where Xi is determined by v̂i in
m. Let the operation [·, ·]m be defined as before. The gradient field of ln

√
det(gpq) with

respect to the fundamental tensor on TMx\0 is the m-valued function

gilIiv̂l = gil[ln
√

det(gpq)]yi v̂l. (4.20)

We will denote it as ∇gij ln
√

det(gpq)(y) for y ∈ m. Let 〈·, ·〉y be the inner product defined
by the fundamental tensor gij at y. Then by (3.9), we can rewrite (4.19) as

S(x, y) = gilck
ljgkhyhyjIi

= 〈[y,∇gij ln
√

det(gpq)(y)]m, y〉y, (4.21)
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which gives a more beautiful formula for the S-curvature of a homogenous Finsler
space. The formula (4.21) is relevant to the choice of m rather than the specified basis
of m to generate the Killing frame. To summarize, we have proved the following

THEOREM 4.2. Let M be a homogeneous Finsler space G/H, where H is the isotropy
subgroup of x ∈ M. Fix any complement m of h in g, with the corresponding [·, ·]m. Then
for any nonzero y ∈ m = TMx, we have

S(x, y) = 〈[y,∇gij ln
√

det(gpq)(y)]m, y〉y. (4.22)

A Finsler metric F is said to have isotropic S-curvature when the S-curvature has
the form S = (n + 1)c(x)F for some function c(x) on M. An immediate application of
Theorem 4.2 is the following corollary.

COROLLARY 4.3. A homogeneous Finsler space is of isotropic S-curvature if and only
if it has vanishing S-curvature.

Proof. We need to only consider the S-curvature at a fixed point x. The function
ln

√
det(gpq) is homogeneous of degree 0, so it must reach its maximum or minimum at

some nonzero y, where the gradient field vanishes. Then by (4.21), S(x, y) = 0. If the
S-curvature is isotropic, i.e., if S = (n + 1)c(x)F , then c(x) must be 0. This proves the
“only if” part of the corollary. The “if” part is obvious. �

As another corollary, we obtain an important property of homogeneous Einstein–
Randers spaces. Recall that an Einstein–Randers space must have constant S-curvature
(see [2]). Therefore we have

COROLLARY 4.4. A Homogeneous Einstein–Randers space must have vanishing S-
curvature.

5. Homogeneous Randers spaces. In this last section, we will apply the S-
curvature formula (4.21) to calculate the S-curvatures of homogeneous Randers spaces.
It turns out that the resulting formula coincides with the one given in [5]. Although the
situation will be a little more complicated, the same technique can be transported to
the (α, β)-metrics, and we can get the same formula as in [7]. Though the calculation
here seems longer, it is still acceptable. More importantly, the calculation does not
use the complicated S-curvature formula for Randers metric or (α, β)-metrics at all.
Hopefully, with the help of (4.21), we can obtain the explicit formula of S-curvature
for many more generalized classes of homogeneous Finsler metrics.

Let F = α + β be a homogeneous Randers metric on M = G/H, where H is the
isotropy group of x ∈ TM. Let m be a complement of h in g. Identify m with TMx as
above. Then α is determined by an linear metric on m and β is determined by a vector
in m∗, which is invariant under the adjoint action of H. We still denote them as α and
β. Let 〈, 〉 be the inner product induced by α gives on m and suppose β is defined by
β(·) = 〈·, u〉, where u ∈ m is a fixed vector of H (see [5]).

For each v ∈ TMx = m with α(v) = 1, we choose an orthonormal basis
{v̂1, . . . , v̂n} of m with respect to α, such that u = bv̂1 and v = av̂1 + a′v̂2 with

a2 + a′2 = 1. Then α on m is simplified as α =
√

y12 + · · · + yn2 and β = by1. All
the notations are defined for this Killing frame around x defined by the v̂is.
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The fundamental tensor at v is given by

g11 = 1 + b2 + 3ba − ba3,

g12 = ba′3,
g22 = 1 + ba3,

gii = 1 + ba,

and all other gij vanishes at v. Similarly, the tensor gij is given by

g11 = (1 + ba)−3(1 + ba3),

g12 = −(1 + ba)−3ba′3,
g22 = (1 + ba)−3(1 + b2 + 3ba − ba3),

gii = (1 + ba)−1,

and all other gij vanishes at v. The coefficients of the Cartan torsion are then given by

I1 = n + 1
2(1 + ba)

ba′2,

I2 = − n + 1
2(1 + ba)

baa′,

and all other Iis vanish as v. Therefore at the vector v, we have

∇gij ln
√

det(gpq) = (n + 1)ba′2

2(1 + ba)3
v̂1 − (n + 1)ba′(a + b)

2(1 + ba)3
v̂2

= n + 1
2(1 + ba)2

u − (n + 1)b(a + b)
2(1 + ba)3

v,

and

〈[v,∇gij ln
√

det(gpq)(v)]m, v〉v = n + 1
2(1 + ba)2

〈[v, u]m, v〉v. (5.23)

The calculation of the fundamental tensor at v indicates that

〈[v, u]m, v〉v = acg11 + (ad + a′c)g12 + a′dg22,

where [v, u]m = cv̂1 + dv̂2, i.e.,

〈[y, u]m, u〉 = bc, (5.24)

〈[y, u]m, v〉 = ac + a′d. (5.25)
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Thus, we have a′bd = b〈[v, u]m, v〉 − a〈[v, u]m, u〉, and

〈[v,∇gij ln
√

det(gpq)(v)]m, v〉v,

= n + 1
2(1 + ba)2

[ac(1 + b2 + 3ba − ba3) + (ad + a′c)ba′3 + a′d(1 + ba3)]

= n + 1
2(1 + ba)2

[(ac + a′d) + (ab + 3a2 − a4 − a2a′2 + a′4)bc + (aa′2 + a3)abd]

= n + 1
2(1 + ba)

(〈[v, u]m, u〉 + 〈[v, u]m, v〉). (5.26)

Notice that F(v) = 1 + ba and α(v) = 1. Therefore for general v, the homogeneity of
the S-curvature indicates that the formula should be adjusted to

S(x, v) = n + 1
2F(v)

(α(v)〈[v, u]m, v〉 + 〈[v, u]m, v〉). (5.27)

This formula coincides with the one obtained in [5].
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