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Observed Markov Chains

1.1 Introduction

This book studies finite state processes in discrete time. The simplest

such process is just a sequence of independent random variables which

at each time takes any one of the possible values in its state space with

equal probability. The canonical probability space for such a process

is the space of sequences of outcomes. The following chapter starts by

describing this probability space and constructing on it an appropri-

ate measure. A modified construction then gives a probability space

on which not all outcomes have equal probability. A Radon–Nikodym

derivative is then defined so the sequence of outcomes is no longer in-

dependent, rather the probability of the following state depends on the

present state. That is, we construct a Markov chain. This construction

of a Markov chain from first principles is not given in other treatments

of the subject. The semi-martingale representation of the chain is also

given.

The following first few chapters contruct Markov chains and hidden

Markov chains from first principles. Estimation algorithms are derived.

Semi-Markov chains and hidden semi-Markov chains are introduced and

discussed from Chapter 9 onwards.

1.2 Observed Markov chain models

Suppose {Xk ; k = 1, 2, . . .} is a sequence of random quantities taking

values in some set S.

We say {Xk ; k = 1, 2, . . . , L} is a Markov chain if the following prop-
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2 Observed Markov Chains

erties hold:

P (Xk = xk|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1)

= P (Xk = xk|Xk−1 = xk−1)

for each k ≥ 1 and for all x1, x2, . . . , xk .

This is also called an M1 model. The iid model is called an M0 model.

In an Mq model, a Markov chain of order q:

P (Xk = xk|X1 = x1, X2 = x2, . . . , Xk−1 = xk−1)

= P (Xk = xk|Xk−q = xk−q, . . . , Xk−1 = xk−1)

for each n ≥ 1 and for all x1, x2, . . . , xk .

It can be shown that a Markov chain of higher order can be reduced

to a 1-step Markov chain, so they are of limited independent interest, at

least theoretically.

In fact for an M2 chain {Xn}, where we have

P (Xk = xk|X1 = x1, . . . , Xk−1 = xk−1)

= P (Xk = xk|Xk−2 = xk−2, Xk−1 = xk−1),

we obtain an M1 chain if we set

Yk =

(
Xk

Xk−1

)
for k = 2, 3, . . . , L.

In our models, the state space S, (the set of values that each term of

the chain can take), is finite corresponding to the number of elements

in an alphabet. If S has N elements, it is convenient to let S consist

of the N standard unit vectors ei, i = 1, 2, . . . , N, in R
N . Here ei =

(0, . . . , 0, 1, 0, . . . , 0) ∈ R
N . Then the elements of S = {e1, . . . , eN} are

in one-to-one correspondence with an alphabet Q having N elements.

From now on we assume S = {e1, e2, . . . , eN}. Associated with a time-

homogeneous Markov chain we have well-defined transition probabilities:

pij ≡ pei,ej = P (Xk = ej|Xk−1 = ei).

These have the same values for each k = 2, 3, . . . , L. (That is what homo-

geneous means here.) This is the convention used by many probabilists.

However, shall use the convention used by those who work with HMMs

and write

aji = P (Xk = ej|Xk−1 = ei).

For the matrix (pij) the row sums are all 1, while for the matrix (aji)

the column sums are all 1.
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1.2 Observed Markov chain models 3

Along with the transition probabilities, we also need initial probabil-

ities

πj ≡ πej = P (X1 = ej)

for each ej ∈ S.

We can then write down the probability of any sample path

x = (x1, x2, . . . , xL)

of

X = (X1, X2, . . . , XL)

as

P (x) ≡ P (X = x) = πx1
×

L∏
k=1

pxk−1,xk
.

To calibrate this kind of model, we need some ‘training data’. This could

mean that we have M sequences of length L as sample paths from our

model. We could then make estimates

π̂j =
number of times ej occurs as X1

M

and

âji = p̂ij =
number of times ej follows ei

number of times anything follow ei
.

We shall show that expressions like these are maximum likelihood

estimators of these quantities.

In many other applications, there is often only one observed sample

path of a Markov chain. In other words, when k of Xk represents time,

we only have one observation history. It is not the case that different

spectators in this world see different histories (even though they may

report events as if that were the case). One observed sequence is the case

with financial and economic data, or other tracking signals. In genomics

we can often have more than one sample path from the same model.

These could be obtained from a DNA molecule by selecting out several

subsequences of length L.

In this section, we shall discuss the construction and estimation of

observed Markov chain models.

We shall consider a Markov chain X taking values in a finite set S.

We have not specified S, except that it has N elements, say. It does not

really matter what the objects in S are as long as we know how to put

them in one-to-one correspondence with some alphabet.
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4 Observed Markov Chains

As above it is most convenient to identity the elements of S with the

standard unit vectors e1, e2, . . . , eN in R
N . This means that

ei = (0, 0, . . . , 1, 0, . . . , 0)�

where the 1 is in the ith place and � denotes the transpose.

We shall first construct a Markov chain {Xk; k = 0, 1, 2, . . .} taking

values in a finite state space S = {e1, e2, . . . , eN}. This Markov chain

will be defined on a canonical probability space (Ω,F , P ), which we shall

now describe.

Note that with this notation we have the representations:

1 =

N∑
i=1

〈Xk, ei〉

and for any real-valued functions g(Xk)

g(Xk) = 〈g,Xk〉

where g = (g1, g2, . . . , gN) and gi = g(ei).

For u, v ∈ R
N write 〈u, v〉 = u1 v1 + · · · + uN vN , the usual inner

product of RN . We have just used this notation and will continue to use

this notation.

1.3 Notation

We introduce some notation to be used in this section.

The sample space Ω will consist of all sequences of

ω = (ω0, ω1, ω2, . . .)

where ωi ∈ S for each i ≥ 0.

A σ-algebra on Ω is a family of subsets F of Ω which satisfies:

(1) Ω ∈ F ;

(2) if A ∈ F then the complement Ac ∈ F ;

(3) if A1, A2, . . . are all in F then
⋃∞

i=1 Ai ∈ F .

Consider the family FA of subsets of Ω of the form:

{ω ∈ Ω |ωik = eik , k = 1, 2, . . . , l}, (1.1)

where i1 < i2 < · · · < il and ei1 , ei2 , . . . , eik are elements of S.

The σ-algebra F we shall consider on Ω will be the smallest σ-algebra

generated by all the sets in FA.
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1.3 Notation 5

Elements in F will be called events.

Once we have assigned a probability P (B) to each event B ∈ FA,

then it can be extended to an event of F ∈ F , by first expressing F as

a disjoint union of such sets:

F =

∞⋃
i=1

Ai , Ai ∈ FA, with Ai ∩ Aj = ∅ for i 
= j

and then defining P (F ) by

P (F ) =

∞∑
i=1

P (Ai).

There are many ways that a probability can be assigned to an event.

The probability function has the defining properties:

(i) P (Ω) = 1,

(ii) P (Ac) = 1− P (A), where Ac = Ω \A for any A ∈ F ,

(iii) if {An} ⊂ F are disjoint, then

P

(
∞⋃

n=1

An

)
=

∞∑
n=1

P (An) .

The canonical process The canonical process {Xk} is defined on Ω

by

Xk(ω) = ωk for each ω ∈ Ω

for k = 0, 1, 2, . . . The statistical properties of {Xk} will depend on the

probability P defined on F .

We let Fn ⊂ F be the collection all subsets of Ω generated by the

events A with ik ≤ n in (1.1) for n = 0, 1, 2, . . .. Then we have

Ω =
⋃

A∈Fn

A .

Note that Fn is the σ-algebra generated by X0, X1, . . . , Xn. This means

that knowing the elements ofFn is equivalent to knowingX0, X1, . . . , Xn.

The increasing family of σ-algebras {Fn} is called a filtration on Ω.

We shall call {Xn} a Markov chain if it has the following property:

P (Xn+1 = ej | Fn) = P (Xn+1 = ej |Xn).

Here the left-hand side is a conditional probability depending on the
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6 Observed Markov Chains

entire past history of the process {Xk | k = 0, 1, . . . , n} while on the right-

hand side the conditional probability depends only on the knowledge of

Xn.

This implies that we can define transition probabilities

aji = P (Xn+1 = ej |Xn = ei)

where
n∑

j=1

aji = 1 .

This is the case for a (time-)homogeneous Markov chain, as the matrix

of probabilities (aji) does not depend on n. However, the transition

probabilities could depend on n so

aji(n) = P (Xn+1 = ej |Xn = ei).

Many of the results below extend to the situation. We would then write

aji(n) in place of aji for all i, j.

As noted earlier some probabilists write

pij = P (Xn+1 = ej |Xn = ei).

However, we shall not follow this practice as there are some distinct

advantages using the above notation which is that used in Elliott et al.

(1995) and in other papers.

It is also possible to define Markov chains of higher-order M ≥ 2. The

Markov chain we have just described is the usual one and has order 1.

For an order-2 chain we would instead have the condition

P (Xn+1 = ej | Fn) = P (Xn+1 = ej |Xn, Xn−1).

As these higher-order Markov chains are used in genomic modelling, we

shall describe their representation as an order-1 Markov chain with an

extended state space.

1.4 Construction of Markov chains

The reference model We say that we have the reference model when

the probability is specified by

P (B) =
1

N l

for events B ∈ FA, of the form (1.1).
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1.4 Construction of Markov chains 7

We shall write P and E to indicate probabilities and expectations

using this probability.

Properties of the reference model

Property 1: We have

P (Xk = ej) ≡ P ({ω ∈ Ω |Xk(ω) = ej}) = P ({ω ∈ Ω|ωk = ej})

=
1

N

for each k and ej.

This means that each Xk has the same distribution, and this is the

uniform distribution, assigning equal probabilities to the occurrence of

each state in S.

Property 2: The terms of {Xk} are independent.

To show this let k < l. Then

P (Xk = ej , Xl = ei) ≡ P ({ω ∈ Ω|Xk(ω) = ej , Xl(ω) = ei})

= P ({ω ∈ Ω|ωk = ej , ωl = ei})

=
1

N2

= P (Xk = ej)P (Xl = ei)

This means that Xk and Xl are independent for any k, l and so the

sequence {Xn} is a uniformly iid (independent, identically distributed)

sequence.

An iid non-uniform model Let q1, q2, . . . , qN ≥ 0 so that

N∑
i=1

qi = 1 .

We now construct a probability P on (Ω,F) so that the {Xn} are iid

with

P (Xn = ej) = qj for j = 1, . . . , N.

Construction At each time n the Markov chain value Xn is just one

of the unit vector elements ei in its state space {e1, e2, . . . , eN}.

We shall often use the identity

N∑
j=1

〈Xn, ej〉 = 1
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8 Observed Markov Chains

for any n = 0, 1, 2, . . . from time to time without further explanation.

Inserting this identity into an argument from time to time is often a

useful trick.

For l = 0, 1, . . ., define

λl = N〈q,Xl〉

where q = (q1, . . . , qN )�.

Lemma 1.1 Recall E refers to the reference probability P defined

above.

(i) E[λ0] = 1,

(ii) E[λl| Fl−1] = 1 for l ≥ 1.

Proof For (i), we have

E[λ0] = E[N〈q,X0〉] = E

[
N∑
i=1

〈X0, ei〉N〈q,X0〉

]

= E

[
N∑
i=1

〈X0, ei〉N 〈q, ei〉

]
=

N∑
i=1

N qi · E [〈X0, ei〉]

=

N∑
i=1

Nqi ·
1

N
= 1.

For (ii), we have

E[λl|Fl−1] = E[N〈q,Xl〉| Fl−1] = E[N〈q,Xl〉] = 1

where we used the fact that under P the {Xk} are independent and so

E[N〈q,Xl〉| Fl−1] = E[N〈q,Xl〉]

and the last equality follows as in l = 0.

We now introduce a new probability on (Ω,F).

Write

Λn =

n∏
l=0

λn = λ0 · λ1 · · ·λn . (1.2)

We define the new probability P by requiring that

dP

dP

∣∣∣∣
Fn

= Λn .
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1.4 Construction of Markov chains 9

This simply means that if A ∈ Fn , then

P (A) = E[ Λn I(A)] . (1.3)

We note that if A ∈ Fn, then A ∈ Fn+1 also. This leads to two definitions

of P (A) depending on whether we use Λn or Λn+1 in (1.3). However, we

have the following result:

Lemma 1.2 The definition of P is well defined. That is,

E[ Λn I(A)] = E[ Λm I(A)]

for any A ∈ Fn and m > n.

Proof We first note that

E[ Λm | Fn] = Λn .

This follows from Lemma 1.1, because

E[ Λm | Fn] = E[E[ Λm | Fm−1] | Fn]

= E[ Λm−1E[λm | Fm−1] | Fn]

= E[ Λm−1 | Fn]

= E[ Λm−2 | Fn]

= · · ·

= E[ Λn | Fn]

= Λn .

Then for A ∈ Fn

E[ Λm I(A)] = E[E[ Λm I(A) | Fn] ]

= E[E[ Λm | Fn] I(A) ]

= E[ Λn I(A) ]

and we are done.

Now let B be an event in FA so B ∈ Fn for some n ≥ 0. We then

define

P (B) = E[ Λn I(B) ],

and by Lemma 1.2, this is well defined. Suppose F ∈ F is of the form

F =

∞⋃
j=1

Aj
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10 Observed Markov Chains

for disjoint events {Aj}, Aj ∈ FA, (we could let many of the Aj = ∅).

We then set

P (F ) =

∞∑
j=1

P (Aj) .

Properties of the iid non-uniform model We now investigate the

statistics of {Xk} under P .

Property 1: We have P (Xk = ej) = qj for each k, j.

Proof For k ≥ 0 and j ∈ {1, 2, . . . , N}, let A = {ω ∈ Ω|ωk = ej} ∈ Fk,

then

P (Xk = ej) = P ({ω ∈ Ω|Xk(ω) = ej})

= P (A)

= E[ Λk I(A)]

= E
[
E[ Λk I(A)| Fk−1]

]
= E

[
Λk−1 E[λk I(A)| Fk−1]

]
= E

[
Λk−1 E[λk I(A)]

]
= E[λk I(A)]E[ Λk−1]

= E[λk I(A)],

where we note that λk I(A) depends only on the values of Xk and so is

independent under P of Fk−1.

We also used

E[Λk−1] = E[Λk−1 I(Ω)] = P (Ω) = 1.

Continuing the calculation,

E[λk I(A)] = E

[
N∑
i=1

〈Xk, ei〉N〈Xk, q〉 I(Xk = ej)

]

= E

[
N∑
i=1

〈Xk, ei〉N〈ei, q〉 I(ei = ej)

]
= E [〈Xk, ej〉Nqj ]

=
1

N
·Nqj

= qj

where we used

E[〈Xk, ej〉] = P (Xk = ej) =
1

N
.
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1.4 Construction of Markov chains 11

Thus

P (Xk = ej) = qj

as we claimed.

Property 1 means also that the {Xk} have the same distributions for

all k.

Property 2: The terms of {Xk} are independent random variables.

Proof We show that Xk and Xl are independent for l > k by showing

that

P (Xk = ej &Xl = ei) = P (Xk = ej) · P (Xl = ei)

for any i, j. The proof that we present readily extends to a similar iden-

tity for any finite number of terms of the sequence {Xk}. We leave this

to the reader.

We note that

〈Xk, ej〉 = I(Xk = ej) =

{
1 if Xk = ej
0 if Xk 
= ej .

We have

P (Xk = ej , Xl = ei)

= E
[
Λl I(Xk = ej) I(Xl = ei)

]
= E

[
Λl 〈Xk, ej〉 〈Xl, ei〉

]
= E

[
Λk 〈Xk, ej〉

]
E
[
λk+1, . . . , λl 〈Xl, ei〉

]
by independence under P ,

= qj E
[
λk+1, . . . , λl 〈Xl, ei〉

]
.

In fact under P , we saw in the derivation of Property 1, that

E
[
Λk 〈Xk, ej〉

]
= E

[
λk 〈Xk, ej〉

]
= qj .

In the same way,

E
[
λk+1, . . . , λl 〈Xl, ei〉

]
= E

[
λl 〈Xl, ei〉

]
= qi

and so we have shown that

P (Xk = ej, Xl = ei) = P (Xk = ej) · P (Xl = ei)

as claimed.
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12 Observed Markov Chains

1.5 The general Markov chain

The processes we have constructed so far have distributions at each time

which are independent of other times. We now construct a Markov chain

with a given π as the initial probabilities ofX0 and (aji) as the transition

probabilities. This is again constructed using a change of probability

from the reference model.

Write

λ0 = N 〈π,X0〉

where π = (π1, π2, . . . , πN )� with πi ≥ 0 and

N∑
i=1

πi = 1 .

With A = (aji) for l ≥ 1, set

λl = N〈Xl, AXl−1〉 .

Recall
∑N

j=1 aji = 1.

Lemma 1.3 We have the properties:

(i) E[λ0] = 1;

(ii) E[λl| Fl−1] = 1 .

Proof Part (i) is shown as in Lemma 1.1. For (ii)

E[λl| Fl−1] = E[N〈Xl, AXl−1〉| Fl−1]

= E

⎡⎣ N∑
j=1

〈Xl, ej〉N〈Xl, AXl−1〉| Fl−1

⎤⎦
= E

⎡⎣ N∑
j=1

〈Xl, ej〉N〈ej, AXl−1〉| Fl−1

⎤⎦
=

N∑
j=1

N〈ej, AXl−1〉E [ 〈Xl, ej〉| Fl−1]

=

N∑
j=1

〈ej , AXl−1〉

as E [ 〈Xl, ej〉| Fl−1] = E [ 〈Xl, ej〉] = P (Xl = ej) = 1/N.
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So

E[λl| Fl−1] =

N∑
j=1

N∑
i=1

〈Xl−1, ei〉 〈ej , AXl−1〉

=

N∑
j=1

N∑
i=1

〈Xl−1, ei〉 〈ej , A ei〉

=
N∑
j=1

N∑
i=1

aji 〈Xl−1, ei〉 =
N∑
i=1

〈Xl−1, ei〉 = 1,

as
∑N

j=1 aji = 1.

Now write

Λn =

N∏
l=0

λl

and define P on (Ω,F) by

dP

dP

∣∣∣∣
Fn

= Λn.

This leads to P being well defined on F in the way described before.

Properties of this model

Property 1: We have P (X0 = ej) = πj for j = 1, 2, . . . , N .

This is proved just as in the second model.

Property 2: We have P (Xk+1 = ej |Xk = ei) = aji for all i, j and all k.

Proof We use

P (Xk+1 = ej |Xk = ei) =
P (Xk+1 = ej , Xk = ei)

P (Xk = ei)
.

We have

P (Xk+1 = ej , Xk = ei) = E
[
Λk+1 〈Xk+1, ej〉 〈Xk, ei〉

]
= E

[
E[ Λk+1 〈Xk+1, ej〉 〈Xk, ei〉| Fk]

]
= E

[
Λk 〈Xk, ei〉E[λk+1 〈Xk+1, ej〉| Fk]

]
.
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14 Observed Markov Chains

Now

E[λk+1 〈Xk+1, ej〉| Fk]

= E [N 〈Xk+1, AXk〉 〈Xk+1, ej〉| Fk]

= E

[
N∑

r, s=1

〈Xk+1, er〉 〈Xk, es〉N〈Xk+1, AXk〉 〈Xk+1, ej〉| Fk

]

= E

[
N∑

r, s=1

〈Xk+1, er〉〈Xk, es〉N · ars δrj | Fk

]

= E

[
N∑
s=1

〈Xk+1, ej〉〈Xk, es〉N · ajs| Fk

]

=

N∑
s=1

ajs 〈Xk, es〉N E[〈Xk+1, ej〉| Fk]

=

N∑
s=1

ajs 〈Xk, es〉

as

E[〈Xk+1, ej〉| Fk] = E[〈Xk+1, ej〉] =
1

N

as above.

Putting these calculations together,

P (Xk+1 = ej , Xk = ei) = E

[
Λk〈Xk, ei〉

N∑
s=1

ajs〈Xk, es〉

]

= E

[
Λk〈Xk, ei〉

N∑
s=1

ajs〈ei, es〉

]

= E

[
Λk〈Xk, ei〉

N∑
s=1

ajs δis

]
= aji E[Λk〈Xk, ei〉]

= aji P (Xk = ei)

The proof is complete.

As before write

A = (aji)

where

aji = P (Xn+1 = ej |Xn = ei).
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A semi-martingale representation of {Xn} The semi-martingale

representation of the vector-valued process Xn+1 is its decomposition

into the sum of an Fn-measurable term and a vector-valued martingale

increment. If we define

Vn+1 = Xn+1 −AXn .

Then clearly

Xn+1 = AXn + Vn+1 . (1.4)

Certainly AXn is Fn-measurable. We now show that

E[Vn+1| Fn] = E[Vn+1|Xn] = 0 ∈ R
N .

This will establish the following result.

Theorem 1.4 The semi-martingale representation of {Xn} is Xn+1 =

AXn + Vn+1 .

Proof Taking conditional expectations, we have

E[Vn+1 |Xn] = E[Xn+1 −AXn |Xn] = E[Xn+1 |Xn]−AXn .

We now compute E[Xn+1 |Xn].

Expressing Xn+1 as

Xn+1 =
∑
j

〈Xn+1, ej〉 ej =
∑
j

I(Xn+1 = ej) ej

we have for any i,

E[Xn+1 |Xn = ei] = E

⎡⎣∑
j

I(Xn+1 = ej) ej

∣∣∣Xn = ei

⎤⎦
=
∑
j

ej E [ I(Xn+1 = ej) |Xn = ei]

=
∑
j

ej P(Xn+1 = ej |Xn = ei)

=
∑
j

ej aji

= Aei

and so E[Xn+1 |Xn] = AXn. Consequently, with Vn+1 = Xn+1 −AXn

E[Vn+1|Xn] = E[Xn+1 −AXn|Xn] = 0 ∈ R
N ,

so Vn+1 is a vector martingale increment. The proof is complete.
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We can also calculate the conditional variance–covariance matrix

E[Vn+1 V
�
n+1 |Xn] .

Here, Vn+1 is N × 1 vector and Vn+1 V
′
n+1 is an N ×N matrix.

The (i, j) element of E[Vn+1 V
�
n+1 |Xn] can be written as

E[Vn+1,i Vn+1,j |Xn].

The evaluation of this conditional variance–covariance matrix is given

in the following lemma.

Lemma 1.5 We have

E[Vn+1 V
�
n+1 |Xn] = diag(AXn)−A diag(Xn)A

� .

Proof We note that

Xn+1 X
�
n+1 = diag(Xn+1) .

For example, [
1

0

] [
1 0

]
=

[
1 0

0 0

]
= diag

[[
1

0

]]
.

This implies that

Xn+1 X
�
n+1 = diag(AXn) + diag(Vn+1) .

and hence

E[Xn+1 X
�
n+1 |Xn] = diag(AXn).

We can also write

Xn+1 X
�
n+1 = (AXn + Vn+1)(AXn + Vn+1)

�

= (AXn + Vn+1)(X
�A�n + V �n+1)

= AXn X
�
n A� + Vn+1X

�
n A� +AXnV

�
n+1 + Vn+1 V

�
n+1

= Adiag(Xn)A
� + Vn+1X

�
n A� +AXnV

�
n+1 + Vn+1 V

�
n+1

and so, as Vn+1 is a martingale increment,

E[Xn+1 X
�
n+1|Xn] = Adiag(Xn)A

� +E[Vn+1 V
�
n+1 |Xn].

Comparing the two expressions, we obtain

E[Vn+1 V
�
n+1 |Xn] = diag(AXn)−Adiag(Xn)A

�

and so the lemma is proved.
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Remark These arguments apply to any first-order Markov chain.

The decomposition (1.4) is sometimes called a semi-martingale decom-

position. This is because Xn+1 is expressed as a predictable part, AXn,

and a noise term, or martingale increment term, which has conditional

mean zero. The decomposition in (1.4) is unique.

Strictly speaking a semi-martingale representation of {Xn} means, in

this context, that for each n

Xn = An +Mn

where {An} is a predictable process and {Mn} is a {Fn}-martingale. If

fact, this decomposition is unique and for

An = X0 +

n+1∑
k=1

(A− I) Xk−1 and Mn =

n+1∑
k=1

Vk . (1.5)

The representations (1.4) and (1.5) are equivalent.

1.6 Conclusion

In this opening chapter Markov chains have been constructed from first

principles. The state space is the set of all sequences whose elements

are points in the state space. The probability measures are constructed

explicitly so that the terms in the sequences are independent random

variables or finally Markov chains with given transition probabilities.

These constructions are not usually given in the literature.

1.7 Exercises

Exercise 1.1 Explicitly construct a Markov chain on the state space

{e1, e2, e3} for t ∈ {0, 1, 2, 3} with transition matrix⎛⎝1/2 1/3 0

1/4 1.3 1/2

1/4 1/3 1/2

⎞⎠ .

Exercise 1.2 Prove the decomposition (1.4) is unique.
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