
J. Functional Programming 7 (2): 129–161, March 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

129

Leftmost outside-in narrowing calculi∗
TETSUO IDA

Institute of Information Sciences and Electronics and

Center for Tsukuba Advanced Research Alliance

University of Tsukuba, Tsukuba 305, Japan

KOICHI NAKAHARA†
Canon Inc., Shimomaruko, Ohta-ku, Tokyo 146, Japan

Abstract

We present narrowing calculi that are computation models of functional-logic programming

languages. The narrowing calculi are based on the notion of the leftmost outside-in reduction

of Huet and Lévy. We note the correspondence between the narrowing and reduction deriva-

tions, and define the leftmost outside-in narrowing derivation. We then give a narrowing

calculus OINC that generates the leftmost outside-in narrowing derivations. It consists of

several inference rules that perform the leftmost outside-in narrowing. We prove the com-

pleteness of OINC using an ordering defined over a narrowing derivation space. To use the

calculus OINC as a model of computation of functional-logic programming, we extend OINC

to incorporate strict equality. The extension results in a new narrowing calculus, s-OINC. We

show also that s-OINC enjoys the same completeness property as OINC.

Capsule Review

Consider a term rewriting system T with reduction relation R. Solving an equation in R

means that, for given terms t(x, y), s(x, y) of T , one tries to solve the equation t(x, y) = s(x, y),

i.e. to find terms X,Y of T such that

t(X,Y) =R s(X,Y).

Solving such problems is useful for implementing functional-logic programming languages.

The method of narrowing consists of substituting for x, y terms u(~z), v(~z), respectively, ob-

taining the equation t(u(~z), v(~z)) = s(u(~z), v(~z)) in such a way that, for example, t(u(~z), v(~z))

contains an R-redex; then one contracts this redex, obtaining t′(u(~z), v(~z)), and one tries to

solve for ~z in the equation

t′(u(~z), v(~z)) =R s(u(~z), v(~z)).

Solutions found in this way will also be solutions for the original equation, but in general,

one only finds a subset of the solutions; hence the name ‘narrowing’. If one particular way of

narrowing finds all solutions, then it is called complete.

It is clear that this method is related to making reduction paths. The paper treats a method,

related to the leftmost outside-in reduction strategy of Huet and Lévy, in which ‘narrowing

∗ A version extended with detailed proofs of some of the propositions in this paper is
available from the authors’ web site, http://www.score.is.tsukuba.ac.jp/~ida.
† Part of this work was carried out while the second author was on the University of Tsukuba

Doctoral Program of Engineering.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

130 T. Ida and K. Nakahara

paths’ are systematically produced. It is proved that this method is complete for finding all

solutions relevant for functional programming. A second method introduced in the paper is

also complete for finding solutions relevant for functional-logic programming.

1 Introduction

Recently, narrowing has received much research interest in the declarative program-

ming community as it was found to be an important computing mechanism of

functional-logic programming languages (Antoy et al., 1994; Friborg, 1985; Gio-

vannetti et al., 1991; Hanus, 1990; Lock, 1992; Moreno-Navarro and Rodrı́guez-

Artalejo, 1992; Reddy, 1985). In this paper we present narrowing calculi that are

used for implementing functional-logic programming languages. Our narrowing cal-

culi are based on the notion of the outside-in reduction of Huet and Lévy (1991)

for orthogonal term rewriting systems. Huet and Lévy showed that, for a given

reduction derivation of a term s to its normal form (if it exists), there exists a

leftmost outside-in reduction derivation from s to its normal form. This derivation

is also called ‘standard’ due to this property.

The practical implications of the standard derivation lie in the following. First, for

a sub-class of orthogonal term rewriting systems, called strongly sequential systems,

there exists a sequential strategy (i.e. an effective means to locate a redex that should

be reduced next without look-ahead) by which we generate a standard reduction

derivation. This strategy is often called a ‘call-by-need’ strategy, since it selects a

redex only when its contraction is definitely needed in each reduction. Secondly, it

provides a theoretical basis of the lazy evaluation in the framework of (first-order)

functional programming.

By the correspondence of reduction and narrowing, in particular by the use

of a so-called lifting lemma, we can obtain a narrowing derivation that corre-

sponds to the standard reduction derivation. This narrowing derivation, which

we call a leftmost outside-in narrowing derivation, deserves special investiga-

tion, as the leftmost outside-in reduction derivation does in reduction. Let a

method of narrowing that generates the leftmost outside-in narrowing deriva-

tion be called leftmost outside-in narrowing. The leftmost outside-in narrow-

ing behaves very much like the leftmost outside-in reduction. It narrows the

subterms at the same positions that are contracted by the reduction using the

same rewrite rules. It performs ‘lazy narrowing’. Furthermore, to process narrow-

able expressions in an outside-in manner is amenable to the implementation of

narrowing.

There exists an important difference between reduction and narrowing derivations,

however. For a given standard reduction derivation its lifted narrowing derivation

is not necessarily that in which only ‘needed’ narrowable terms are contracted. This

phenomenon was observed by several researchers, and lead them to discover new

methods of narrowing. You (1989) presented an outer narrowing for constructor-

based orthogonal systems and Antoy et al. (1994) presented a needed narrowing

strategy for strongly sequential constructor-based systems. Darlington and Guo

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 131

(1989) noted the similarity between reduction and narrowing derivations, and de-

veloped a narrowing algorithm for constructor-based orthogonal term rewriting

systems. Their algorithm is essentially the same as our leftmost outside-in narrowing

restricted to constructor-based systems.

Because of Huet and Lévy’s intriguing definition of the leftmost outside-in re-

duction derivation (and narrowing derivation thereof), it is not easy to perceive

the computational characteristics of the leftmost outside-in narrowing. We present

the leftmost outside-in narrowing as a computation of calculi consisting of several

inference rules that together perform the leftmost outside-in narrowing. The calculi

show clearly fundamental computation steps of the leftmost outside-in narrowing,

and lead us to their implementations on computers.

Our narrowing calculi are defined for arbitrary orthogonal term rewriting systems.

This has a practical implication in the design of a functional-logic programming

language, since there is an important class of orthogonal term rewriting systems

that is not constructor-based; for example, many applicative term rewriting systems,

when used as defining functional (and functional-logic) programs, are orthogonal

and non-constructor-based.1

In addition to the efficiency and ease of implementation, another central issue in

designing a narrowing calculus is to secure the property of completeness. Roughly

speaking, the completeness of a narrowing calculus is the ability, as an equation

solver, to find all the solutions of a given equation. Unrestricted narrowing is known

to be complete for terminating confluent term rewriting systems (Hullot, 1980).

Besides the needed narrowing and outer narrowing, several restricted narrowing

methods have been studied, and the completeness results have been obtained for

certain classes of term rewriting systems and with respect to certain classes of

solutions (Bockmayr et al., 1992; Echahed, 1988; Hullot, 1980; Middeldorp and

Hamoen, 1994). We prove that our narrowing calculi are complete for orthogonal

term rewriting systems with respect to a certain (and in practice sufficiently large)

class of solutions.

This paper is organized as follows. In section 2 we introduce our notations.

In section 3 we explain narrowing as a computation of an inference system,

NC (Narrowing Calculus). From NC we develop another narrowing calculus

that performs the leftmost outside-in narrowing. In section 4 we give an in-

ductive definition of the leftmost outside-in narrowing derivation and relate the

notion of the leftmost outside-in narrowing derivation to the standard reduc-

tion derivation of Huet and Lévy. In section 5 we present a calculus called

OINC that generates a leftmost outside-in derivation. The OINC calculus en-

joys soundness and completeness. In section 5.2 we prove the completeness of

OINC, and in section 6 we incorporate strict equality into OINC. We show that

this extended calculus, to be called s-OINC, is a natural and efficient model

of computation for functional-logic programming, and further, that s-OINC is

complete.

1 See, for example, the program examples in Huet and Lévy (1991).

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

132 T. Ida and K. Nakahara

2 Preliminaries

Let F be a set of function symbols, and V a set of variables, satisfying F∩V = ∅.
Terms are defined as usual over the alphabet F∪V. The set of terms is denoted

by T(F,V), or simply by T. A term t is called linear when no variable occurs

in t more than once. The set F is divided into disjoint sets FC and FD; FC is

a set of constructor symbols and FD is a set of defined function symbols. A term

in T(FC,V) is called a constructor term2, and a term in T(F,V) whose root

symbol is a constructor symbol is called a head-constructor term. We assume that a

distinguished symbol ‘true’ is in the set T(FC, ∅)
V(A) denotes a set of variables occurring in a syntactic objectA. The set O(t) of

positions of a term t is a set of sequences of positive integers that address subterms

of t. An empty sequence is denoted by ε. A position u in O(t) addresses a subterm

t|u , where t|u is defined as follows. Let t , f(t1, . . . , tn).
3 Then, t|u , t if u = ε and

t|u , ti|u′ if u = i.u′. A subterm t|u is called proper if u 6= ε. A position u in O(t)

is called a non-variable position if t|u is not a variable. The set of non-variable

positions of t is denoted by O(t). A term obtained from t by replacing t|u , where

u ∈ O(t), by a term s is denoted by t[s]u. An equation s = t, where s = t ∈ T, is a

special term whose root symbol is = (used as an infix operator, and allowed only at

the root position).

Partial order � over positions is defined as follows. For u, v ∈ O(t), v � u if v is a

prefix of u, i.e. ∃w such that vw = u. v ≺ u if v � u and v 6= u. Positions u and v are

called disjoint, written as u | v, if ¬(u � v) and ¬(v � u). u is called to be to the left

of v if u is written as w1iw2 and v is written as v = w1jw3 for i < j. u ∈ O(⊆ O(t)) is

the leftmost in O if for any v ∈ O ¬(v is to the left of u).

A substitution is a mapping fromV toT whose domain Dθ defined as Dθ = {x |
θx 6≡ x, x ∈ V} is finite. The codomain of θ is defined as Cod θ = {θx | x ∈ Dθ}.
We identify a substitution θ with the set {x 7→ θx | x ∈ Dθ}. An empty substitution

is defined as the empty set ∅. A substitution is extended to an endomorphism over

T as usual. For M ⊆ T, θM is defined as θM = {θt | t ∈ M}. Let V be a finite

subset of V. A variable-renaming substitution is a mapping that maps V to V

bijectively. The restriction of θ to V is denoted by θ �V . We write θ1 = θ2[V] when

θ1 �V= θ2 �V . The composition of θ2 and θ1 (first apply θ1, then θ2) is denoted by

θ2θ1. When σθ1 = θ2 for some substitution σ, we write θ1 � θ2.4 When σθ1 = θ2[V]

holds for some substitution σ, we write θ1 � θ2[V]. Two substitutions θ1 and θ2 are

equivalent, written as θ1 ∼ θ2, if θ1 � θ2 and θ2 � θ1. θ1 ≺ θ2 if θ1 � θ2 and θ1 is

not equivalent to θ2. V(θ) is defined as Dθ ∪V(Cod θ).

LetA be any syntactic object and ρ : V → V be a variable-renaming substitution,

where V ⊇ V(A). ρA is called a variant of A.

2 In Giovannetti et al. (1991) and Moreno-Navarro and Rodríguez-Artalejo (1992), a term
in T(FC,V) is called a ‘data’ term.

3 We use the symbol , to denote the definitional equality on syntactic objects.
4 We use the same symbol for order relations over positions and substitutions.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 133

Let R be a binary relation. R∗ denotes the reflexive and transitive closure of R,

and R+ is the transitive closure of R.

LetF andV be given, and l, r ∈ T(F,V). A rewrite rule is a pair l → r of terms

which satisfies the conditions l 6∈ V and V(r) ⊆ V(l). A term rewriting system R is

a set of rewrite rules. A term rewriting system R is called constructor-based if, for

every rewrite rule f(l1, . . . , ln) → r ∈ R, f ∈ FD and l1, . . . , ln are constructor terms.

Let s and t be terms. The rewrite relation →R induced from R is defined as follows:

s →R t if s|u ≡ σl, and t ≡ s[σr]u for some position u ∈ O(s), some substitution σ,

and some rewrite rule l → r ∈ R. The reflexive and transitive closure →∗R of →R
is also denoted as �R. The relation =R is defined as the reflexive, transitive, and

symmetric closure of →R.

We further assume the readers’ familiarity with basic concepts of term rewriting,

as are expounded in Dershowitz and Jouannaud (1990) or Klop (1992).

3 Narrowing calculus

Narrowing is a method for solving an equation for a given term rewriting system

(abbreviated as TRS). Operationally, narrowing is a combination of instantiating

an equation and a rewrite rule by applying a most general substitution, and of

rewriting the instantiated equation by the instantiated rewrite rule to form a new

equation (Fay, 1979; Slagle, 1974; Hullot, 1980). Narrowing is successively applied to

obtain an equation both sides of which are unifiable. The whole process of successive

rewriting of equations is also called ‘narrowing’.

3.1 Calculus NC

For our purpose, narrowing is best presented in the form of a calculus (G,L), where

G is a set of objects manipulated in this calculus, and L is a set of inference rules

that operate on G. Calculus NC that will be given in the following operates on

goals. A (possibly empty) sequence of equations and true’s is called a ‘goal’. In this

paper, a non-empty goal is usually denoted by E, e, E′, where e is an equation and

E and E ′ are goals. An empty goal is denoted by 2.

In this paper we consider narrowing with respect to a particular class of TRSs,

called Orthogonal Term Rewriting Systems (OTRS) that are defined as follows:

Definition 3.1 (OTRS)

A TRS R is called orthogonal if R satisfies the following conditions:

• [left-linearity] For any rewrite rule l → r ∈ R, l is linear.

• [non-ambiguity] For any two variants l → r and l′ → r′ of rewrite rules in R,

there is no unifier of l and l′|u for all u ∈ O(l′), except in the case that l → r

and l′ → r′ are variants of the same rewrite rule and u = ε.

We treat OTRSs for the following reasons:

• We are primarily interested in the narrowing that is used as a computing

mechanism of functional-logic programs. OTRSs model many functional-logic

programs.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

134 T. Ida and K. Nakahara

• OTRSs have been studied extensively in terms of their behavior in reductions,

and established theories of OTRSs can be applied to the study of narrowing.

Our definition of NC and some properties pertaining to it, however, are given

for arbitrary TRSs. We restrict ourselves to OTRSs in section 4.2 and thereafter, in

which we discuss the leftmost-outside-in narrowing.

Definition 3.2 (NC over goals)

Let R be a TRS.5 A calculus NC for R is a pair (G,NC), where G and NC are the

following.

• G is a set of goals.

• NC is a set of inference rules defined as follows:

— [n] narrowing

E, e, E′

θE, θe[r]u, θE ′

if there exist

– a new variant l → r of a rewrite rule in R,

– u ∈ O(e),6 and

– a most general unifier θ such that θe|u ≡ θl.
— [f] reflection

E, s = t, E′

θE, true, θE′

if s and t are unifiable with a most general unifier θ.

With reference to the inference rule [n], we say that the equation e is narrowed at

the position u. A term e|u is called a narrowable expression (narex for short). A term

is ‘narrowable’ if it contains a narex as a subterm. A term that contains no narex

is called ‘non-narrowable’. Furthermore, a substitution θ is called non-narrowable if

∀t ∈ Cod θ, t is non-narrowable.

Let G and G′ be goals. We write G
n θ G

′ if G′ is obtained from G by a single

application of the inference rule [n], where θ is a most general unifier formed

in the application, and likewise for G
f θ G

′. We also write G
n θ G

′ if G′ is

obtained from G by zero or more applications of the inference rule [n], and likewise

for G
f θ G

′. The substitution θ is a composition of the substitutions formed in

each step. Similarly, we write G
NC θ G

′ when G′ is obtained from G by a single

application of an inference rule in NC, and likewise for G
NC θ G

′. A sequence

G0
NC θ1

G1
NC θ2
· · · NC θkGk is called an NC-derivation. Let the symbol > denote

generically a sequence of zero or more true’s. The NC-derivation that ends with

> is called a successful NC-derivation. When we have a successful NC-derivation

starting form G0, we say that the goal G0 is solved. A successful NC-derivation

G0
NC θ1

G1
NC θ2
· · · NC θk> yields a solution (θk · · · θ1)�V(G0) of the goal G0.

5 In this paper, R is assumed not to contain a rewrite rule either side of which is an equation.
6 Note u 6= ε.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 135

Let A be an NC-derivation A : G
NC θ G

′. The goal G is called an initial goal of

the NC-derivation A. When k = 0, the above NC-derivation is empty. The empty

NC-derivation is denoted by 0.

Example 3.1

Let R be a TRS given by:

R =

{
f(z)→ z,

g(1)→ 1.

Given an equation f(g(x)) = f(y), there are 13 successful NC-derivations. Among

them we give below the following two successful NC-derivations:

f(g(x)) = f(y)
f {y 7→ g(x)}true, (1)

f(g(x)) = f(y)
n {z1 7→ g(x)} g(x) = f(y)

n {z2 7→ y} g(x) = y
n {x 7→ 1} 1 = y

f {y 7→ 1} true.
(2)

NC-derivations (1) and (2) yield the solutions {y 7→ g(x)} and {x 7→ 1, y 7→ 1},
respectively. The former solution contains a term that is still narrowable, whereas

the latter solution contains only normal forms. The latter is also obtainable from the

equation y = g(x) that can be formed from the former solution {y 7→ g(x)}. From the

viewpoint of equation solving, the former solution would be satisfactory, but from

the viewpoint of functional-logic programming, the latter solution {x 7→ 1, y 7→ 1}
is desirable. We will take the viewpoint of programming languages, and consider

the latter solution as our intended solution. To guarantee that solutions are normal

forms, later we introduce certain syntactic restrictions on goals and rewrite rules.

3.2 Correspondence between narrowing and reduction derivations

By the construction of narrowing, we see a correspondence between the NC-

derivation

e0
n θ1

e1
n θ2
· · · n θk ek

and the reduction derivation

µ0e0 →R µ1e1 →R · · · →R µkek

where µi = θk · · · θi+1 for i = 0, . . . , k,

in which the same rewrite rule is employed at the same position in each step of

both derivations. Whenever we say an NC-derivation corresponds to a reduction

derivation (and vice versa), we implicitly assume that the same rewrite rule is

employed at the same position in each step of both derivations.

The last step
f of a successful NC-derivation corresponds to the reduction in

which a rewrite rule x = x→ true is used. Let R+ denote a TRS extended with the

rewrite rule x = x → true. Then, the whole successful NC-derivation e0
n θ true

can be made to correspond to the reduction derivation θe0 �R+
true.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

136 T. Ida and K. Nakahara

The correspondence between narrowing and reduction derivations can be extended

in an obvious way to the derivations of goals consisting of multiple equations. We

should note, however, that the induced reduction relation → is with respect to R+

not to R.

4 Leftmost outside-in narrowing

The calculus NC is too general as a computation model in that it does not incorpo-

rate a method by which we can locate a narex. Selection of a narex could be specified

by a computation rule which is often called a strategy. A computation rule could

specify, for example, that the outermost-leftmost narexes be processed first among

the narexes. In this paper we are aiming at a calculus in which a computation rule

is built in. Towards that goal, we define a special class of successful NC-derivations

called leftmost outside-in NC-derivations.

4.1 Well-founded order on a set of successful NC-derivations

Huet and Lévy defined the leftmost outside-in reduction derivation inductively

on the length of derivations using a set of external positions.7 In this paper we

give an alternative (but equivalent) definition of the leftmost outside-in narrowing

derivations inductively on the complexity of derivations. The complexities of suc-

cessful NC-derivations are compared by an ordering defined over a set of successful

NC-derivations.

Let (D,D) be an ordered set, where D is a set of successful NC-derivations and D
is an ordering over the set D defined below.

Definition 4.1

• The size, size(t), of a term t is the number of variables and function symbols

occurring in t.

• The degree d(σ) of a substitution σ is defined as follows:

d(σ) = (
∑
v∈V

size(σv))− |V(σV)|,

where |X| for any finite set X is the cardinality of X, and V =V(σ).

The notion of degree was given by Eder (1985). The degree is shown to preserve

the orderings ≺ and ∼. The following proposition is due to Eder (1985):

Proposition 4.1

Let σ and θ be substitutions.

• If σ ∼ θ then d(σ) = d(θ).

• If σ ≺ θ then d(σ) < d(θ).

It is easy to see that d(θ) is a non-negative integer. As a corollary of Proposition 4.1,

we have: ≺ is a well-founded ordering.

7 The definition of an external position is given in section 4.3.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 137

Definition 4.2

Let G be a goal and A : G
NC θ> ∈ D. The complexity ||A|| of A is defined as a

triple 〈n(A), d(θ), #G〉, where

• n(A) is the number of applications of the inference rule [n] in the derivation

A,

• d(θ) is the degree of the substitution θ, and

• #G is the number of variables and function symbols occurring in G excluding

the symbols = and true.

Definition 4.3

• The ordering >> on the complexities of a successful NC-derivation is the

lexicographic extension of the ordering > on natural numbers.

• The ordering B on D is defined as follows:

Let A,A′ ∈ D. A B A′ if ||A|| >> ||A′|| .
• D , B ∪ = .

Note that the ordering B is well-founded, and hence (D,D) is a well-founded set.

The least (in this ordering) successful NC-derivation is a zero-step NC-derivation

> NC ∅>. We denote this NC-derivation by 0>. We have ||0>|| = 〈0, 0, 0〉.
Intuitively, a successful NC-derivation G

NC θ> describes the process of solving

a goal G. The ordering B over NC-derivations specifies which solving processes are

simpler. We show an easy example to illustrate this view of NC-derivations. Suppose

a successful NC-derivation

A : G0
n θ1

G1
NC θ>

is given. The NC-derivation A′ : G1
NC θ> is simpler than A, since A′ is included in

A. Indeed, in our ordering, we have A B A′, since n(A′) = n(A)− 1.

This is not the only case that the solving process is simplified. If we can transform

A to another successful NC-derivation A′′ : G′0
NC θ′> in such a way that

• the goal G0 is transformed to G′0 such that #G′0 <#G0,

• θ′ is equivalent to θ, and

• n(A′′) = n(A),

then we simplify the goal and its solving process. Since (D,D) is a well-founded

set, the simplification of successful NC-derivations eventually terminates with the

NC-derivation 0>. This also suggests an effective means of solving a goal.

There are special pairs of successful NC-derivations related by the subset of the

relation B. This subset will be denoted by
OI
B. The relation

OI
B, although found a

posteriori, gives a hint on the design of a new narrowing calculus that embodies

the leftmost outside-in narrowing. The following lemmas (Lemmas 4.2, 4.3, 4.6 and

4.7) enable us to enumerate those pairs of successful NC-derivations. The leftmost

outside-in NC-derivation will be defined inductively with respect to the relation
OI
B.

Let us now observe that the complexity of an NC-derivation is invariant by

‘α-conversion’.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

138 T. Ida and K. Nakahara

Lemma 4.1

Let R be an arbitrary TRS, G be a goal, and α be a variable-renaming substitution.

If there exists an NC-derivation A : G
NC θ> then there exists an NC-derivation

A′ : αG
NC σ> such that σα ∼ θ. In both NC-derivations the same rewrite rule is

employed at the same position of the corresponding equation in each step.

Proof

By the induction on the length of the NC-derivation.

Clearly, in the above lemma we have ||A|| = ||A′||.

Lemma 4.2

Let A : >, s = x, E
f η(={x 7→ s})>, ηE

NC θ> be an NC-derivation and A′ :

ηE
NC θ> be the NC-derivation taken from the sub-derivation >, ηE NC θ>. Then

A B A′.

Proof

It is straightforward to show that θ � θη. If θ ∼ θη then d(θ) =d(θη) by Propo-

sition 4.1. But in this case, we have s ∈ V, and hence #(>, s = x, E) >#(ηE).

Otherwise, d(θ) < d(θη). Thus we obtain A B A′.

We write A
v1
B A′, if A and A′ are the NC-derivations of the forms given above.

Lemma 4.3

Let A : >, x = t, E
f η(={x 7→ t})>, ηE

NC θ>, where t 6∈ V be an NC-derivation

and A′ : ηE
NC θ> be the NC-derivation taken from the sub-derivation

>, ηE NC θ>. Then A B A′.

Proof

Similar to the proof of Lemma 4.2.

We write A
v2
B A′, if A and A′ are the NC-derivations of the forms given above.

To prove Lemmas 4.6 and 4.7, we need the following lemmas.

Notation 4.1

Let G be a goal consisting of n(> 0) equations, and i1, . . . , in be a permutation

of 1, . . . , n. G[i1, . . . , ij], j 6 n denotes a goal obtained from G by replacing the

i1-th, . . . , ij-th equations in the goal G by true’s.

Lemma 4.4 (Decomposition lemma)

If there exists an NC-derivation f(s1, . . . , sn) = f(t1, . . . , tn)
f θtrue, then there exists

an NC-derivation s1 = t1, . . . , sn = tn
f σ>, such that σ ∼ θ.

Proof

Let G , s1 = t1, . . . , sn = tn. It is easy to show that for j = 1, . . . , n, there exists an

NC-derivation

σij−1
· · ·σi1G[i1, . . . , ij−1]

f σij
σij σij−1

· · ·σi1G[i1, . . . , ij],

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 139

where σij−1
· · ·σi1 � θ and σij σij−1

· · ·σi1 � θ. By combining the above n NC-

derivations and letting σ = σin · · ·σi1 , we obtain an NC-derivation

s1 = t1, . . . , sn = tn
f σ>,

such that σ � θ. Since σ and θ are unifiers of f(s1, . . . , sn) and f(t1, . . . , tn), and θ is

most general, we also have θ � σ. Hence σ ∼ θ.

Lemma 4.5 (
f -promotion lemma)

Let R be an arbitrary TRS and G be a goal consisting of n(> 0) equations. If there

exists a successful NC-derivation

A : G
n θ′ G

′ f θ1
θ1G

′[1]
f θ2
· · · f θn−1

θn−1 · · · θ2θ1G
′[1, . . . , n− 1]

f θn >,

that yields a substitution θ = θn . . . θ2θ1θ
′,

then there exists a successful NC-derivation

A′ : G
n f σ1

σ1G[i1]
n f σ2

· · · n f σn−1
σn−1 . . . σ1G[i1, . . . , in−1]

n f σn >, where i1, . . . , in is a permutation of 1, . . . , n,

that yields a substitution σ = σn . . . σ2σ1,

such that

• all the
n -steps in A are also taken in A′ in the same order as in A,

• in each corresponding
n -steps the same rewrite rule is employed at the same

position,

• in the last step of
n -steps (if any) of each sub-derivation

σj−1 . . . σ1G[i1, . . . , ij−1]
n f σj σj . . . σ1G[i1, . . . , ij], for j = 1, . . . , n,

narrowing contraction is performed on the ij-th equation of the goal G, and

• θ ∼ σ.

Proof

By repeated applications of the switching lemma (Lemma A1) given in the Appendix.

We switch adjacent
n - and

f -steps, and adjacent
f - and

f -steps.

We call the NC-derivation A′ in the
f -promotion lemma the

f -promoted NC-

derivation of A. The idea of Lemma 4.5 is as follows. Whenever one equation in

the goal is ready to be solved (i.e. the rule [f] is applicable), after zero or more

applications of the rule [n] on that equation in the same order as in A, we apply the

rule [f] immediately.

The following simple example explains a
f -promoted NC-derivation clearly.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

140 T. Ida and K. Nakahara

Example 4.1

Suppose a TRS

R =

{
a→ b,

b→ c,

is given. We have a successful NC-derivation

A : a = x, a = c
n ∅ a = x, b = c

n ∅ a = x, c = c
n ∅ b = x, c = c

f {x 7→ b} true, c = c
f ∅ true, true.

The
f -promoted NC-derivation A′ of A is the following.

A′ : a = x, a = c
n ∅ a = x, b = c

n ∅ a = x, c = c
f ∅ a = x, true

n ∅ b = x, true
f {x 7→ b} true, true

A′ is obtained from A by a single
f - and

f -switching, and by a single
n - and

f -switching. In A′ the order of
n -steps is the same as in A. The difference is that

when c = c is ready to be solved after the second step, the third step is the
f -step

applied to c = c rather than the
n -step on a = x, i.e. a = x

n ∅ b = x.

The following notion of descendant is used in Lemmas 4.6 and 4.7.

Definition 4.4

Let G(, e1, . . . , en)
NC θG

′(, e′1, . . . , e′n) be an NC-derivation.

• The term e′i, i ∈ {1, . . . , n} is called an immediate descendant of ei, written as

ei ↪→ e′i.

• A term e′ is a descendant of e if e ↪→∗ e′, where ↪→∗ is the reflexive and

transitive closure of ↪→.

Lemma 4.6

Let R be an arbitrary TRS. If there exists an NC-derivation

A : >, f(s1, . . . , sn) = f(t1, . . . , tn), E
n θ1

>, f(s′1, . . . , s
′
n) = f(t′1, . . . , t

′
n), θ1E

f θ2
>, θ2θ1E

NC θ′>, (3)

where the descendants of f(s1, . . . , sn) = f(t1, . . . , tn) are not narrowed at the position

1 or 2, then there exists an NC-derivation

A′ : s1 = t1, . . . , sn = tn, E
NC σ1

>, σ1E (4)

NC σ′>, (5)

such that

• σ′σ1 ∼ θ′θ2θ1,

• the derivation s1 = t1, . . . , sn = tn
NC σ1

> extracted from the sub-derivation

(4) is the
f -promoted derivation of s1 = t1, . . . , sn = tn

n θ1
s′1 = t′1, . . . , s

′
n =

t′n
f θ′

2
>, where θ′2 ∼ θ2, and

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 141

• in each step of the sub-derivations (3) and (5), the same rewrite rule is employed

at the same position of the corresponding equation in each goal.

Furthermore, we have A B A′.

Proof

From the NC-derivation A, using Lemma 4.4, we can construct an NC-derivation

B : s1 = t1, . . . , sn = tn, E
n θ1

s′1 = t′1, . . . , s
′
n = t′n, θ1E

f θ′
2
>, θ′2θ1E,

such that θ′2 ∼ θ2. By Lemma 4.5, we have the f-promoted derivation B′ of B

B′ : s1 = t1, . . . , sn = tn, E
NC σ1

>, σ1E.

with σ1 ∼ θ′2θ1 ∼ θ2θ1. We have σ1 = ρθ2θ1 for some variable-renaming substitution

ρ. Applying Lemma 4.1 to the derivation θ2θ1E
NC θ′>, we have an NC-derivation

B′′ : σ1E
NC σ′>,

such that σ′ρ ∼ θ′. Concatenating B′ and B′′, we obtain the desired derivation A′ with

θ′θ2θ1 ∼ σ′ρθ2θ1 = σ′σ1. We have A B A′ since n(A) = n(A′), d(θ′θ2θ1) = d(σ′σ1)

and #(>, f(s1, . . . , sn) = f(t1, . . . , tn), E) > #(s1 = t1, . . . , sn = tn, E).

We write A
d
B A′, if A and A′ are the NC-derivations of the forms given above.

In the following Lemma 4.7 we consider the case that as for the first leftmost

equation narrowing is applied to the left-hand sides of the equations in the goals.

This is because Lemma 4.7 will be used in a restricted context, as we will see in

section 4.2.

Lemma 4.7

Let R be an arbitrary TRS. If there exists an NC-derivation

A : >, f(s1, . . . , sn) = t, E
n θ1

>, f(s′1, . . . , s
′
n) = θ1t, θ1E

n θ2

>, θ2r = θ2θ1t, θ2θ1E
NC θ′>, (6)

where t 6∈ V,

in which the descendant of f(s1, . . . , sn) = t is narrowed for the first time at the

position 1, in some step in A using a new variant f(l1, . . . , ln)→ r of a rewrite rule

in R, then there exists an NC-derivation

A′ : s1 = l1, . . . , sn = ln, r = t, E
NC σ1

>, σ1r = σ1t, σ1E (7)

NC σ′>, (8)

such that

• σ′σ1 ∼ θ′θ2θ1,

• the derivation s1 = l1, . . . , sn = ln
NC σ1

> extracted from the sub-derivation

(7) is the
f -promoted derivation of s1 = l1, . . . , sn = ln

n θ1
s′1 = l1, . . . , s

′
n =

ln
f θ′

2
>, where θ′2 ∼ θ2, and

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

142 T. Ida and K. Nakahara

• in each step of the sub-derivations (6) and (8), the same rewrite rule is employed

at the same position of the same equation in each goal.

Furthermore, we have A B A′.

Proof

Similar to the proof of the previous lemma. Since n(A′) = n(A)− 1, we have A B A′.

We write A
on
B A′, if A and A′ are the NC-derivations of the forms given above.

Applying the above lemmas (Lemmas 4.2, 4.3, 4.6 and 4.7) repeatedly, we can

transform a successful NC-derivation to a simpler one.

The transformation of successful NC-derivations can be more abstractly treated

by the ordering
OI
B mentioned at the beginning of this subsection. Thus, we have the

following definition of
OI
B:

Definition 4.5

An ordering
OI
B over a set D of successful NC-derivations is defined as

OI
B=

v1
B ∪

v2
B ∪

d
B ∪

on
B.

When A
OI
B A′, A′ is said to be simpler than A. The ordering

OI
B is crucial in defining

a leftmost outside-in NC-derivation in section 4.2.

Note in passing the following:

Fact 4.1

If A : t = s
f θ> then A (

d
B ∪

v1
B ∪

v2
B)+ 0>.

4.2 Leftmost outside-in NC-derivations

We next discuss what class of successful NC-derivations we will transform with the

relation
OI
B. A priori, at this point we shall examine a class of NC-derivations, to be

called initial NC-derivations. This restriction is justified in view of our interest in

narrowing methods that can be used in functional-logic programs. The reason will

be clearer when we discuss the strict equality in section 6.

We first give necessary definitions.

Definition 4.6

A goal G is called right-normal if for every equation in G its right-hand side is a

ground normal form.

The restriction of right-normality on goals is slightly more general than what we

actually need, since we are interested in solving a strict equation s ≡ t = true.

The choice of right-normal initial goals as our objects of narrowing leads us to a

class of goals called proper goals.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 143

Definition 4.7

• A successful NC-derivation G
NC θ> is called initial8 if G is right-normal.

• Let D0(⊆ D) be a set of initial successful NC-derivations, and

G0 = {G | G is an initial goal of A′ such that A
OI∗
B A′, A ∈ D0}.

An element of G0 is called a proper goal.

We start with an initial NC-derivation A and simplify it successively to A′ using
OI
B. In the course of this transformation, initial goals that are not right-normal are

introduced. Those initial goals, together with the original right-normal goals, are

collectively called ‘proper’ goals.

A proper goal has the following properties.

Definition 4.8

Let G be a goal e1, . . . , ei, . . . , en, and Vleft(G, i) =V(e1) ∪ . . . ∪V(ei−1) ∪V(ei|1).

• The i-th equation ei of G is called left-independent if Vleft(G, i) ∩V(ei|2) = ∅.
• A goal G is called left-independent if all the equations in G are left-independent.

By the definition of proper goals, we can easily see that the following proposition

holds if we restrict ourselves to OTRSs.

Proposition 4.2

Let R be an OTRS. A proper goal G has the following properties:

(G1) G is left-independent.

(G2) The right-hand side of every equation in G is linear and non-narrowable.

Note that the left-linearity of R is necessary for the properties (G1) and (G2), the

non-ambiguity of R for the property (G2). Because of the condition (G2), we only

have to consider narrowing on the left-hand side of equations.

We are now ready to define a leftmost outside-in NC-derivation starting from a

proper goal for OTRSs.

Definition 4.9

Let R be an OTRS, and G be a proper goal. A Leftmost Outside-In (LOI) NC-

derivation G
NC θ> is defined inductively (with respect to

OI
B) as follows.

• An empty successful NC-derivation 0> is LOI.

• A : G
NC θ> is LOI if there exists an NC-derivation A′ such that A

OI
B A′ and

A′ is LOI.

Note that we define the notion of LOI on successful NC-derivations. We will see

in the next section that the notion of LOI NC-derivation is closely related to that

of the standard reduction derivation of Huet and Lévy.

8 This should not be confused with the notion of an initial goal.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

144 T. Ida and K. Nakahara

4.3 Standard reduction derivation

Huet and Lévy’s definition of a standard reduction derivation is given via the notion

of an external redex position. To define an external redex position, we first give

the definition of a residual. Let s→U t be an elementary reduction, contracting the

redexes s|u1
, . . . , s|un , where U = {u1, . . . , un} ⊆ O(s), and ui and uj(i 6= j) are pairwise

disjoint. Suppose a reduction derivation9

A : s0→U1
s1→U2

· · ·→Uk
sk is given.

Let A[i, j] denote a reduction derivation si→Ui+1
si+1 → · · ·→Uj

sj(i 6 j), and A[i]

denote A[i, k]. A reduction derivation may be written as juxtaposition of sub-

derivations.

Let Redex(s) denote the set of all the redex positions in a term s.

Definition 4.10

Let A : s→{u}t be an elementary reduction derivation and v ∈ Redex(s). Suppose

l → r is used to contract the redex s|u . The set v\A of residuals of v by A is defined

as follows:

v\A =

{v} if v | u or v ≺ u,
{uw1v1 | r|w1

≡ l|w}
if v = uwv1 and w ∈ O(l)− O(l),

∅ otherwise.

The notion of residual is extended to non-elementary reduction derivations in the

following way:

v\0 = {v},
v\(AB) =

⋃
w∈v\A w\B.

A set Red(A) of initial redex positions contributing to A is defined as follows:

Red(A) = {u ∈ Redex(s0) | ∃i 6 k Ui ∩ (u\A[1, i− 1]) 6= ∅}.

The reduction derivation A preserves u ∈ O(s0) if A does not contract a redex

above u, i.e. ∀i 6 k ¬(∃v ∈ Ui, v ≺ u). An external position is then defined as follows:

Definition 4.11

Let A be a reduction derivation starting from s. A position u in s is external for A if

9 To be precise, the notion of a reduction derivation

s0 →R s1 →R · · · →R sk, given in section 3.2,

and the notion of the reduction derivation

s0→U1
s1→U2

· · ·→Uk sk, that is being defined here,

are different. The former reduction derivation is made into the latter by taking Ui, i =
1, . . . , k to be a singleton set consisting of a redex position where the reduction occurs in
si−1 →R si. Having this distinction in mind, we use the former notation for the reduction
derivation defined here, as well.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 145

• A preserves u, or

• A = A1A2A3 and there exists v ≺ u such that

— A1 preserves u,

— A2 : t→V t
′, with v ∈ V and u ∈ Pattern(t, v),

where

– Pattern(t, v) = {vw ∈ O(t) | w ∈ O(l)}, and

– l → r is a rewrite rule used to contract the redex t|v ,

and

— v is external for A3.

The set of external positions for A is denoted by X(A). The set E(A) of external

redex positions for A is defined as E(A) = X(A) ∩ Red(A). Finally, we have the

definition of standard reduction derivation.

Definition 4.12

A reduction derivation A is called standard if either A = 0 or A = A1A2, where A1 is

the elementary reduction derivation contracting the leftmost redex position in E(A)

and A2 is standard.

The standard reduction derivation starting from a term s has the following important

properties:

(i) It represents the class of the reduction derivations starting from s.

(ii) The standard reduction derivation from s to its normal form is the one that

contracts only the redexes that are needed to get to the normal form.

Clause (i) accounts for the use of the terminology ‘standard’. It is formally stated

as follows:

Theorem 4.1 (Standardization theorem (Huet and Lévy, 1991))

Let R be an OTRS. Every reduction derivation class contains a unique standard

reduction derivation.

We next consider to apply the above theorem to reduction derivations starting

from goals. For a non-empty goal G the reduction derivation G �R+
> contains a

reduction derivation

e0 → e1 → · · · → ek → true, where e0 is in G,

the last step of which is the reduction by the rewrite rule x = x → true, and the

rest of which are reductions by the rewrite rule in OTRS R. Since we defined

the notion of standard reduction for OTRSs, we have to extend the definition of

standard reduction derivation to the reduction derivation starting from an equation

and ending with true.

Definition 4.13

Let R be an OTRS and e an equation. A reduction derivation

e0 →R e1 →R · · · →R ek →R+
true, k > 0

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

146 T. Ida and K. Nakahara

is standard if

e0→U1
e1→U2

· · ·→Uk
ek,

where Ui = {ui} and e|ui is a redex contracted at the reduction ei−1 →R ei for

i = 1, . . . , k is standard.

Then, we have the following definition of standard reduction derivation starting

from a goal:

Definition 4.14

Let R be an OTRS, and G be a goal. A standard reduction A from a goal G to >
is inductively defined as follows:

• A : 2→∅ 2 is standard.

• A : e, E �R+
true, E �R+

> is standard if

— e�R+
true is standard, and

— E �R+
> is standard.

By this definition of standard reduction derivation starting from a goal we obtain

the following proposition as a corollary of Theorem 4.1, which we will use later.

Corollary 4.1

Let R be an OTRS, and G be an arbitrary goal. If there exists a reduction derivation

G�R+
> then there exists a standard reduction derivation G�R+

>.

4.4 Standard NC-derivation

We next apply the notion of ‘standard’ of the reduction derivation to NC-derivations

using the correspondence between narrowing and reduction derivations that we saw

in section 3.2. Some precaution is necessary. We cannot simply define a standard

NC-derivation as the one whose corresponding reduction derivation is standard for

the following reasons:

• We deal with NC-derivations that are generated by the transformation, using

the relation
OI
B, of initial NC-derivations.

• The relation
OI
B does not preserve the ‘standard’ property of a reduction

derivation.

To see the points above, let us take an example.

Example 4.2

Let R be given as follows:

R =

{
f(c(x))→ x,

a→ b.

We want an NC-derivation f(c(a)) = b
n {x 7→ a} a = b

n ∅ b = b
f ∅ true to be

standard, since the reduction derivation f(c(a)) = b → a = b → b = b → true is

standard.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 147

To solve a goal f(c(a)) = b, we may opt for solving a goal c(a) = c(x), x = b.

The goal c(a) = c(x) is solved by an NC-derivation c(a) = c(x)
f {x 7→ a} true.

This NC-derivation should be standard, since the corresponding reduction c(a) =

c(a)→ true is standard by definition. The goal c(a) = c(x) may be solved by another

NC-derivation c(a) = c(x)
n ∅ c(b) = c(x)

f {x 7→ b} true. Although the reduction

derivation c(a) = c(b) → c(b) = c(b) → true is standard, we do not want this NC-

derivation to be standard since intuitively the narrowing step c(a) = c(x)
n ∅c(b) =

c(x) is superfluous.

Based on the above observation, we define a standard NC-derivation as follows:

Definition 4.15

Let R be an OTRS.

• Let e0 be a proper goal. An NC-derivation e0
n θ1

e1
n θ2
· · · n θk ek(, sk =

tk)
f θk+1

true, k > 0, is standard10 if

(S1) the corresponding reduction derivation

µ0e0 →{1.u1} µ1e1 → · · · →{1.uk} µkek → true,

where µi = θk+1 · · · θi+1 for i = 0, . . . , k, is standard, and

(S2) min({u1, . . . , uk}) ⊆ O(tk), where min(U) = {v ∈ U | ¬(∃u ∈ U, u ≺ v)}, and

{u1, . . . , uk} is a multi-set consisting of positions u1, . . . , uk .

• Let G be a proper goal. A standard NC-derivation for a successful NC-

derivation A : G
NC η> is inductively defined as follows.

— An empty successful NC-derivation 0> is standard.

— A : >, e, E NC σ >, σE
NC θ> (the leftmost equation is always solved first)

is standard if

– e
NC σ true extracted from the above NC-derivation is standard, and

– σE
NC θ> extracted from the above NC-derivation is standard.

For the NC-derivation s = t
NC θtrue where t is a ground term, the condition

(S2) is always satisfied. If t is a variable, only s = t
f {t 7→ s}true is a standard

NC-derivation although s may be narrowable. The condition (S2) is imposed to

prevent such an s from being narrowed. Initial goals such as s = t above may in

general be generated for solving a goal that contains s as a subterm.

For example, to solve f(s1, . . . , sn) = t, we will solve the equations s1 = l1, . . . ,

sn = ln, r = t, where f(l1, . . . , ln)→ r is employed at some step of the NC-derivation

f(s1, . . . , sn) = t
NC θtrue. Clearly, if the NC-derivation f(s1, . . . , sn) = t

NC θtrue

satisfies the condition (S1), then the NC-derivations solving each (descendant of)

equation of the goal s1 = l1, . . . , sn = ln, r = t satisfy the condition (S1). However,

this decomposition of the equation solving does not preserve the ‘standard’ property

10 In Huet and Lévy (1991), a standard reduction derivation is also called a leftmost outside-in
reduction derivation. Since we want to distinguish the notion introduced by Huet and Lévy
and the notion of our LOI derivation, we always call Huet and Lévy’s leftmost outside-in
reduction ‘standard reduction’.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

148 T. Ida and K. Nakahara

in the converse direction. With the condition (S2) the converse holds. Suppose

e0 , si = li in clause (S1) of Definition 4.15. Condition (S2) guarantees that

i.u1, . . . , i.uk ∈ Pattern(f(s′1, . . . , s
′
n) = t, 1) in B2 of the reduction derivation B =

B1B2B3 reconstructed from the NC-derivation s1 = l1, . . . , sn = tn, r = t
NC θ>,

where

• B1 : f(s1, . . . , sn) = t� f(s′1, . . . , s
′
n) = t,

• B2 : f(s′1, . . . , s
′
n) = t→ σr = t, and

• B3 : σr = t� t = t in Definition 4.11.

Hence, we have uj ∈ X(B) for j = 1, . . . , k.

The following lemma is an immediate consequence of the definition of standard

NC-derivation:

Lemma 4.8

Let A be a successful NC-derivation starting from a proper goal. A is standard ⇔
a successful NC-derivation B such that A

OI
B B is standard.

By Lemma 4.8 it is easy to see the equivalence of standard and LOI NC-

derivations.

Theorem 4.2

Let A be a successful NC-derivation starting from a proper goal. A is standard ⇔
A is LOI.

4.5 Standardization of NC-derivations

We can obtain a standardization theorem for narrowing derivations using the

following lifting lemma (Hullot, 1980; Middeldorp and Hamoen, 1994).

Lemma 4.9 (Lifting lemma for NC-derivations)

Let R be an arbitrary TRS. Suppose G is an arbitrary goal, θ is a normalized

substitution and V is a set of variables such that V(G) ∪ Dθ ⊆ V . If there exists a

reduction derivation

θG�R+
G′

then there exist a goal G′′ and substitutions θ′ and σ such that

• G NC σ G
′′,

• θ′G′′ ≡ G′,
• θ′σ = θ[V], and

• θ′ is normalized.

In both derivations the same rewrite rule is employed at the same position of the

corresponding equation in each step.

Proposition 4.3, which states the property of the solutions of initial NC-derivations,

and Lemma 4.10 will be used in the proof of the standardization theorem.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 149

Proposition 4.3

Let R be an OTRS, and G be a right-normal goal. If there exists a successful

NC-derivation G
NC θ >, then the solution θ �V(G) is non-narrowable.

Lemma 4.10

Let R be an OTRS, θ be a normalized substitution, and G be a goal. Suppose we

have reduction derivations A : θG �R+
> and A′ : σG �R+

> such that ξσ = θ

with ξ normalized, and in each corresponding reduction step of both derivations

the same rewrite rule is employed at the same position of the same equation. If A is

standard then A′ is standard.

Proof

By the induction on the length of the derivation. We only have to note that no new

redex is created by lifting from A to A′.

Theorem 4.3 (Standardization theorem for NC-derivations)

Let R be an OTRS and G be a right-normal goal. If there exists a successful NC-

derivation G
NC θ>, then there exists an LOI NC-derivation G

NC σ> such that

σ � θ[V(G)].

Proof

By Proposition 4.3 the substitution η = θ �V(G) is non-narrowable. By the corre-

spondence of narrowing and reduction derivations, there exists a reduction deriva-

tion ηG �R+
>. By Theorem 4.1 there exists a standard reduction derivation

A : ηG �R+
>. By Lifting Lemma 4.9, we obtain a successful NC-derivation

B : G
NC σ> such that ξσ = η[V(G)] for some normalized substitution ξ. Let B′ be

the reduction derivation σG�R+
> that corresponds to B. Applying Lemma 4.10 to

the reduction derivations A and B′, we can conclude that B′ is standard, and hence

B is standard by definition. By Theorem 4.2, the above NC-derivation is LOI.

Example 4.3

Let R be an OTRS{
f(g(d), z)→ a,

g(c)→ g(d).

The NC-derivation

f(g(x), g(y)) = a
n {x 7→ c} f(g(d), g(y)) = a

n {y 7→ c} f(g(d), g(d)) = a

n {z 7→ g(d)} a = a
f ∅ true

yields a solution θ = {x 7→ c, y 7→ c}. This NC-derivation is not LOI, since the

NC-derivation

true, g(y) = z, a = a
n {y 7→ c} true, g(d) = z, a = a

f {z 7→ g(d)} >

is not LOI. Of course, the reduction derivation

f(g(c), g(c)) = a→ f(g(d), g(c)) = a→ f(g(d), g(d)) = a→ a = a→ true

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

150 T. Ida and K. Nakahara

is not standard, since the position 1.2 in f(g(d), g(c)) = a for the reduction derivation

starting from this equation is not external.

The LOI NC-derivation that yields a solution σ = {x 7→ c} � θ is the following:

f(g(x), g(y)) = a
n {x 7→ c} f(g(d), g(y)) = a

n {z 7→ g(y)} a = a
f ∅ true.

The above NC-derivation is not the only LOI NC-derivation. The following NC-

derivation

f(g(x), g(y)) = a
n {x 7→ d, z 7→ g(y)} a = a

f ∅ true

that yields a solution {x 7→ d} is also LOI.

To obtain the solution {x 7→ c}, narrowing of g(x) is needed. However, to obtain

a solution {x 7→ d}, narrowing of g(x) is not needed.

So needed-ness of a narrowing step depends on the rewrite rule to be applied, and

hence on the solution to be computed. Antoy et al. (1994) observed this, and defined

a notion of needed narrowing with respect to the computed solution via Huet and

Lévy’s notion of needed redex.

4.6 Completeness of LOI NC

We now show that LOI narrowing is complete with respect to normalizable solutions

for OTRSs.

The completeness of narrowing is formally stated as follows:

Definition 4.16

Let R be an arbitrary TRS and G a goal.

• A substitution σ is called a correct answer substitution of G if there exists a

reduction derivation σG�R+ >.

• NC is said to be complete with respect to a certain class of correct answer

substitutions of a goal G for a TRS R if for every correct answer substitution

σ of G in that class, there exists a successful NC-derivation G
NC θ> such that

θ �R σ[V(G)]. Here, �R is defined as follows: let θ1 and θ2 be substitutions.

θ1 =R θ2 if θ1x =R θ2x for all x ∈ V, θ1 �R θ2 if ρθ1 =R θ2 for some

substitution ρ, and θ1 �R θ2[V] if ρθ1 =R θ2[V] for some substitution ρ.

• In particular, let R be an OTRS and G be a proper goal. LOI NC is said to be

complete for a certain class of correct answer substitutions if for every correct

answer substitution σ of G in that class, there exists an LOI NC-derivation

G
NC θ> such that θ �R σ[V(G)].

Using the following well-known completeness theorem of narrowing for con-

fluent TRSs (Hullot, 1980; Middeldorp and Hamoen, 1994)11, we can obtain the

completeness result of LOI narrowing.

11 Theorem 4.4 is given in Middeldorp and Hamoen (1994). Hullot first proved the complete-
ness of NC for complete (confluent and strongly normalizing) TRSs. It is straightforward
to extend the result for confluent TRSs, since Hullot’s proof relies on the lifting lemma.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 151

Theorem 4.4 (Completeness of NC)

NC is complete with respect to normalizable correct answer substitutions of an

arbitrary goal for a confluent TRS.

Theorem 4.4 can be proved easily using lifting lemma 4.9.

Theorem 4.5 (Completeness of LOI NC)

LOI NC is complete with respect to normalizable correct answer substitutions of

right-normal goals for OTRSs.

Proof

For every normalizable correct answer substitution σ of a right-normal goal G, there

exists an NC-derivation G
NC θ> such that θ �R σ[V(G)] by Theorem 4.4. By

Theorem 4.3 there exists an LOI NC-derivation G
NC θ′> such that θ′ � θ[V(G)].

It is easy to see that θ′ �R σ[V(G)].

5 Calculus OINC

In this section we present a calculus OINC that generates LOI NC-derivations. In

the calculus OINC the inference rules [n] and [f] of NC are decomposed into several

more primitive inference rules. Furthermore, a computation rule by which to locate

narexes is built-in in OINC. Standardization Theorem 4.3 for NC-derivations allows

us to deal only with LOI NC-derivations for the completeness of OINC. Hence in

OINC, all the goals are proper and the equations in the goals are solved from left

to right.

5.1 Definition of OINC

As in NC, we give the calculus OINC in the form of an inference system.

Definition 5.1 (OINC)

Let R be an OTRS. A calculus OINC for R is a pair (G,OINC), where

• G is a set of proper goals, and

• OINC is a set of the following inference rules.

— [on] outermost narrowing

f(s1, . . . , sn) = t, E

s1 = l1, . . . , sn = ln, r = t, E
t 6∈ V

if there exists a new variant f(l1, . . . , ln)→ r of a rewrite rule in R.

— [d] decomposition

f(s1, . . . , sn) = f(t1, . . . , tn), E

s1 = t1, . . . , sn = tn, E

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

152 T. Ida and K. Nakahara

— [v] variable elimination

– [v1]

t = x, E

σE,where σ={x 7→ t}
– [v2]

x = t, E

σE,where σ={x 7→ t} t 6∈ V

Note:

• There exists indeterminacy between the choice of [on] and [d]. We will see an

example of this in Example 5.1.

• We do not need an inference rule

t = f(s1, . . . , sn), E

s1 = l1, . . . , sn = ln, t = r, E

if there exists a new variant f(l1, . . . , ln)→ r of a rewrite rule in R,

since a narrowable term is never generated on the right-hand side of the

equations in a goal by Proposition 4.2.

• The term true is never generated in the inference steps of OINC. Hence, unless

true’s are in an initial goal, true’s do not appear in the goals. Since true’s are

superfluous in the calculus OINC, we remove true’s in initial goals and assume

that all goals (including initial goals) of OINC do not contain true’s.

• By Proposition 4.2 we have x 6∈ V(t) in [v1] and [v2]. Hence, the so-called

occur check (i.e. the check of x 6∈ V(t)) is unnecessary in applying the inference

rules [v1] and [v2].

An equation of the form t = x is always processed by the inference rule [v1].

In our context, this is the meaning of lazy narrowing. In some implementation of

OINC, substitutions are maintained separately, and terms are essentially represented

in directed acyclic graphs (dag). The inference rule [v1] coupled with the dag

representation of terms may also be regarded the essence of the lazy narrowing.

Relations over goals
on , d , v1 , v2 , OI and their reflexive and transitive closures

are defined as in the calculus NC. The relations
v1 , v2 , OI and their reflexive and

transitive closures may be subscripted by the substitutions that are formed in the

inference steps.

We should note the correspondence between
on , d , v1 , v2 and

OI , and
on
B,

d
B,

v1
B,

v2
B, and

OI
B, respectively. By the definition of the relation

OI , it is clear that if G is

proper and G
OI G′, then G′ is proper. An OINC-derivation G0

OI θ1
G1

OI θ2
. . .

OI θk2

is defined as in NC. The OINC-derivation G0
OI θ1

G1
OI θ2

. . .
OI θk2 yields a solution

(θk · · · θ2θ1)�V(G0) of G0.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 153

Example 5.1

We use the OTRS in Example 4.3. The following are OINC-derivations that yield

solutions {x 7→ c} and {x 7→ d}, respectively:

f(g(x), g(y)) = a
on g(x) = g(d), g(y) = z, a = a
on x = c, g(d) = g(d), g(y) = z, a = a
v2 {x 7→ c} g(d) = g(d), g(y) = z, a = a
d d = d, g(y) = z, a = a
d g(y) = z, a = a
v1 {z 7→ g(y)} a = a
d 2.

f(g(x), g(y)) = a
on g(x) = g(d), g(y) = z, a = a
d x = d, g(y) = z, a = a
v2 {x 7→ d} g(y) = z, a = a
v1 {z 7→ g(y)} a = a
d 2.

Before we proceed further with OINC, we make sure that OINC computes a

correct solution.

Proposition 5.1 (Soundness of OINC)

Let R be an OTRS, and G be a proper goal. A solution θ �V(G) of G yielded by an

OINC-derivation G
OI θ 2 is a correct answer substitution of G.

Proof

By the induction on the length of the OINC-derivation.

5.2 Completeness of OINC

The calculus OINC is a complete implementation of NC. The completeness of

OINC states that given a right-normal goal G, for any successful NC-derivation

G
NC θ> there exists an OINC-derivation

G
OI σ 2, such that σ � θ[V(G)].

The solution θ �V(G) is non-narrowable (hence normalized) by Proposition 4.3.

The proof of the completeness of OINC proceeds as follows:

1. We have already seen that for any successful NC-derivation there exists an

LOI NC-derivation.

2. We transform an LOI NC-derivation A to another LOI NC-derivation A′ that

is simpler than A.

3. We connect A and A′ by an inference step of OINC.

4. By an inductive argument, we show that A is replaced by an OINC-derivation.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

154 T. Ida and K. Nakahara

This proof method was employed by Hölldobler in proving the completeness of an

inference system TRANS (Hölldobler, 1989).

The key to the completeness proof is the following lemma:

Lemma 5.1

Let R be an OTRS, and G be a proper goal. If there exists an LOI NC-derivation

G
NC θ>, then there exists an OINC-derivation G

OI σ 2, such that σ ∼ θ, where

G is a goal obtained from G by removing true’s in G.

Proof

By the induction on
OI
B. Obviously, the result holds for the base case. Let G be a

proper goal >, s = t, E and A : G
NC θ> be an LOI NC-derivation. Assume that the

result holds for any NC-derivation B such that A
OI
B B. We distinguish the following

four cases:

(1) t is a variable x.

A is written as

A : >, s = x, E
f θ1(={x 7→ s})>, θ1E

NC θ′>.

Note that the term s does not contain a variable x by the property (G1).

There exists an LOI NC-derivation B : θ1E
NC θ′> such that A

OI
B B. By the

induction hypothesis, there exists an OINC-derivation

θ1E
OI σ′2,

such that σ′ ∼ θ′. By the inference rule [v1] of OINC, we have an OINC-

derivation

s = x, E
v1 θ1

θ1E.

Therefore, we have an OINC-derivation

s = x, E
v1 θ1

θ1E
OI σ′2.

Here, we have σ = σ′θ1 ∼ θ′θ1 = θ.

(2) t is a non-variable term.

(2-1) s is a variable x.

A is written as

A : >, x = t, E
f θ1(={x 7→ t})>, θ1E

NC θ′>,
since t is not narrowable by the property (G2), and t does not contain x by

the property (G1). The rest of the proof is the same as that of the case (1).

(2-2) s is a term f(s1, . . . , sn).

We further distinguish the following two cases:

(2-2a) A is written as

A : >, f(s1, . . . , sn) = t, E
NC θ>,

where a descendant of the equation f(s1, . . . , sn) = t is narrowed at the

position 1 with a new variant f(l1, . . . , ln)→ r of a rewrite rule in R.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 155

By Lemma 4.7, there exists an LOI NC-derivation

B : s1 = l1, . . . , sn = ln, r = t, E
NC θ′>,

such that θ′ ∼ θ and A
OI
B B. By the induction hypothesis and the

inference rule [on], there exists an OINC-derivation

f(s1, . . . , sn) = t, E
on s1 = l1, . . . , sn = ln, r = t, E

OI σ′2,

such that σ′ ∼ θ′.
(2-2b) A is written as

A : >, f(s1, . . . , sn) = f(t1, . . . , tn), E
NC >.

where the descendants of the equation f(s1, . . . , sn) = f(t1, . . . , tn) are not

narrowed at the position 1 or 2.

By Lemma 4.6, there exists an LOI NC-derivation

B : s1 = t1, . . . , sn = tn, E
NC θ′>,

such that θ′ ∼ θ and A
OI
B B. Hence, we have an OINC-derivation

f(s1, . . . , sn) = f(t1, . . . , tn), E
d s1 = t1, . . . , sn = tn, E

OI σ′ 2

such that σ′ ∼ θ′ by the induction hypothesis.

Theorem 5.1 (Completeness of OINC)

OINC is complete with respect to normalizable correct answer substitutions of

right-normal goals for OTRSs.

Proof

Similar to the proof of Theorem 4.5. Use Theorems 4.3 and 4.4 and Lemma 5.1.

Moreover, from Proposition 4.3, Theorem 4.3 and Theorem 5.1, we can see that

the solutions obtained by OINC is non-narrowable.

6 Calculus s-OINC

In section 4 we restricted ourselves to solving right-normal goals, and in section 5.2

we have obtained the completeness result of OINC for right-normal goals. Further-

more, we can obtain all the normalized solutions of a right-normal goal.

Readers might wonder whether right-normal goals are too restrictive. This re-

striction is justified from the programming language point of view. In functional

programming we are interested in computing normal forms, in particular constructor

terms, since they are the values we want to obtain as the result of computation.

For example, by giving a functional program 1+2+3, we want to compute a value

6, not 3+2+1 nor 3+3. In functional-logic programming, the computation is equa-

tion solving rather than reduction. Nevertheless, we are still interested in obtaining

values (i.e. constructor terms) which we can get in the form of constructor term

substitutions.12 One way to achieve this is to restrict the goals as sequences of strict

12 A substitution is called a constructor term substitution if its codomain contains only
constructor terms.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

156 T. Ida and K. Nakahara

equations. As Proposition 4.3 shows, the solutions of right-normal goals by OINC

are normalized for OTRSs. Furthermore, if the OTRSs are constructor-based, the

solutions of strict equations are constructor term substitutions.

6.1 Strict equations

We will define a strict equality as a function whose meaning is given by rewrite rules.

Definition 6.1

• A strict equality ≡ is a function13 defined as follows:

s ≡ t =

{
true if s, t ∈ T(FC, ∅), and s and t are the same terms,

undefined otherwise.

• A strict equation is an equation of the form s ≡ t = true, where s and t are

arbitrary terms.

A strict equation is obviously right-normal.

To cope with the strict equations, we extend a TRS R with rewrite rules that

define the strict equality for each constructor symbol c ∈ FC,

Rc =

{c ≡ c→ true}

if the arity of c is 0,

{c(x1, . . . , xn) ≡ c(y1, . . . , yn)→ x1 ≡ y1 ∧ . . . ∧ xn ≡ yn}
if the arity of c is n > 0,

and with the rewrite rule: true∧ x→ x, where ∧ is a right-associative infix function

symbol. Let R≡ = R ∪
⋃
c∈FC Rc ∪ {true ∧ x → x}. The calculus OINC and its

completeness result remain valid for R≡ since R≡ is an OTRS.

Furthermore, abbreviating an equation s ≡ t = true in a goal as s ≡ t, we can

treat s ≡ t as if it were an ordinary (non-strict) equation. Solving a strict equation

s ≡ t with OINC, we can obtain a normalized substitution θ such that θs and θt

have a common reduct that is a constructor term.

The idea of using a strict equation in functional-logic programming languages

originates in a logic plus functional language K-LEAF (Giovannetti et al., 1991) and

has been exploited by several researchers (Antoy et al., 1994; Loogen et al., 1993;

Narain, 1986).

6.2 Extension of OINC

To handle strict equations efficiently, we next extend OINC. To motivate the exten-

sion let us take an example.

13 We use ≡ in the infix form to denote the strict equality. The symbol ≡ is used in two
ways in this paper; to denote the syntactic equality over terms and the strict equality. The
distinction should be clear from the context.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 157

Example 6.1

Let R be a TRS given in Example 3.1. With respect to R≡, we solve a goal

f(g(x)) ≡ f(y) in OINC. Let R be {f(w) → w, g(1) → 1}. We solve the following

goal, with respect to R≡.

A1 : f(g(x)) ≡ f(y)
on f(g(x)) = 1, f(y) = 1, true = true

on g(x) = z1, z1 = 1, f(y) = 1, true = true

v1 {z1 7→ g(x)} g(x) = 1, f(y) = 1, true = true
OI {x 7→ 1,z2 7→ 1,y 7→ 1} 2.

This OINC-derivation appears to be very redundant. With some insight we can

think of an inference step that can bypass some of the above steps. Let us try to

apply a kind of
on -step on the strict equation directly.

f(g(x)) ≡ f(y) g(x) = z, z ≡ f(y).

We denote this step by
ons . Then we can obtain a new derivation:

A2 : f(g(x)) ≡ f(y)
ons g(x) = z1, z1 ≡ f(y)

v1 {z1 7→ g(x)} g(x) ≡ f(y)

OI {x 7→ 1,...} 1 ≡ f(y)
ons y = z2, 1 ≡ z2 · · · 2.

We see that in the derivation A2 the equation g(x) = z1 is generated in one step,

whereas in the derivation A1 it is generated in two
on -steps.

The problem with OINC in handling the strict equations is not only the number

of redundant steps, but the difficulty of choosing an adequate rewrite rule for strict

equations when there are many constructor symbols c ∈ FC. In the above example,

in the derivation A1 we select the rewrite rule 1 ≡ 1→ true immediately in the first

step of the derivation. In practice, this is impossible without trials-and-backtracks.

We will circumvent these difficulties in the following way. A basic idea for taking

the shortcut that we saw above is to narrow the left- and right-hands of the strict

equations independently. Suppose that a goal s ≡ t is given. We narrow s and t

independently until s and t become constructor terms, say c(s′) and c(t′), respectively

(if t becomes c′(t′) where c 6≡ c′, this derivation will never become successful). Then

we repeat this process with s′ and t′.

We are now ready to give the inference rules for strict equations.

6.3 Inference-rules for strict equations

• [ons] outermost narrowing for strict equations

f(s1, . . . , sn) ≡ t, E
s1 = l1, . . . , sn = ln, r ≡ t, E

and
s ≡ f(t1, . . . , tn), E

t1 = l1, . . . , tn = ln, s ≡ r, E
if there exist a new variant f(l1, . . . , ln)→ r of a rewrite rule in R.

• [ds] decomposition for strict equations

c(s1, . . . , sn) ≡ c(t1, . . . , tn), E
s1 ≡ t1, . . . , sn ≡ tn, E

c ∈ FC

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

158 T. Ida and K. Nakahara

• [ims] imitation for strict equations

c(s1, . . . , sn) ≡ y, E
θ(s1 ≡ y1, . . . , sn ≡ yn, E)

c ∈ FC and

y ≡ c(t1, . . . , tn), E
θ(y1 ≡ t1, . . . , yn ≡ tn, E)

c ∈ FC

where θ = {y 7→ c(y1, . . . , yn)}.

• [ts] elimination of trivial strict equations

x ≡ y, E
σE

where σ =

{
{x 7→ y} if x 6≡ y
∅ otherwise.

Since the strict equations are symmetrical in narrowing, we need two rules in the

inference rules [ons] and [ims]. Note also that thanks to the inference rules for the

strict equations we no longer need the set of rewrite rules for the strict equations.

Relations
ons ,

ds ,
ims , and

ts are defined as in the calculus OINC. Let
s-OI =

OI ∪ ons ∪ ds ∪ ims ∪ ts . Except for the inference rule [ims], the new inference rules

are easy to understand. The inference rule [ims] is used to narrow the subterms of

a head-constructor term when the other side of the strict equation is a variable. Let

us take an example.

Example 6.2

Let FC = {1, c1}, where c1 is a constructor symbol of arity one. We use the TRS

R of Example 3.1, and solve a goal G , c1(f(x)) ≡ y. A successful derivation is as

follows.

G
ims {y 7→ c1(y1)} f(x) ≡ y1

ons x = z, z ≡ y1
v1 {z 7→ x}x ≡ y1

ts {x 7→ y1}2.

The solution obtained in this derivation is {y 7→ c1(y1), x 7→ y1}.

Let s-OINC = {[ons], [ds], [ims], [ts]}∪ OINC. We define a new calculus s-OINC

= (G, s-OINC), where G is a set of proper goals as in OINC. The initial goal is a

sequence of a right-normal equations, some of which may be a strict equation.

6.4 Soundness and completeness of s-OINC

The soundness of s-OINC restricted to constructor ground instances is easy to prove.

The completeness theorem for s-OINC is obtained from the following proposition:

Proposition 6.1

Let R be an OTRS, and G be a proper goal. If there exists an OINC-derivation

with respect to R≡

G
OI θ 2

then there exists an s-OINC-derivation with respect to R

G
s-OI σ 2, such that σ � θ[V(G)].

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 159

Proof

By the induction on the length of the OINC-derivation. The structure of the proof

is similar to the proof of Lemma 5.1 used to prove the completeness of OINC.

Since the completeness of OINC is already established, the completeness of s-

OINC follows immediately from Proposition 6.1.

Theorem 6.1 (Completeness of s-OINC)

s-OINC is complete with respect to normalizable correct answer substitutions of

right-normal goals for OTRSs.

7 Conclusion

We have presented leftmost outside-in narrowing and the narrowing calculus OINC

based on the leftmost outside-in narrowing. The calculus OINC realizes lazy eval-

uation in narrowing in that it delays narrowing on narrowable terms that are to

be bound to variables. Furthermore, it enjoys the property of completeness for

orthogonal TRSs with respect to normalizable answers.

To use the calculus OINC as a model of computation for functional-logic pro-

gramming we extended OINC to incorporate strict equality. The extension results in

a new narrowing calculus s-OINC. It has been also shown that the calculus s-OINC

enjoys the same completeness property as OINC. The calculus s-OINC was used

for the design and implementation of a higher-order functional-logic programming

language based on applicative term rewriting systems (Hamana et al., 1995).

Our completeness results are restricted to orthogonal TRSs. The orthogonality is

used critically in the definition of proper goals and in the standardization theorem

of Huet and Lévy. Recently, more abstract treatment of the standardization theorem

was reported, and the standardization theorem has been extended to some class of

ambiguous TRSs (Gonthier et al., 1992). One possible extension of our results would

be to a class of TRSs for which the standardization theorem holds.

A Switching lemma

The switching lemma presented without a proof in this appendix is used in the proof

of Lemma 4.5.

Lemma A1 [Switching lemma]

Let R be an arbitrary TRS, G , E1, e1, E2, e2, E3 be a goal, and u1 and u2 are

positions such that u1 ∈ O(e1) and u2 ∈ O(e2). If there exists an NC-derivation

A : G
n θ1

(G1 ,) θ1(E1, e1[r1]u1
, E2, e2, E3)

n θ2
(G2 ,) θ2θ1(E1, e1[r1]u1

, E2, e2[r2]u2
, E3)

NC θ′ >,

where a new variant l1 → r1 of a rewrite rule in R and a new variant l2 → r2

of a rewrite rule in R are employed in the first and second steps, respectively,

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

160 T. Ida and K. Nakahara

then there exists an NC-derivation

A′ : G
n σ1

(G′1 ,) σ1(E1, e1, E2, e2[r2]u2
, E3)

n σ2
(G′2 ,) σ2σ1(E1, e1[r1]u1

, E2, e2[r2]u2
, E3)

NC σ′ >,

such that θ′θ2θ1 ∼ σ′σ2σ1,

where the rewrite rules l2 → r2 and l1 → r1 are employed in the first and

second steps, respectively.

This result is applicable to a TRS that contains a rewrite rule x = x → true.

Hence, we can consider R+, in which the rewrite rule x = x → true is applied to

the root position of an equation. Therefore, this switching lemma also implies the

following:

• Adjacent
n -step and

f -step (in this order) contracting different equations

can be switched. Note, however, that adjacent
f -step and

n -step (in this

order) cannot be switched in general.

• Adjacent
f -steps can be switched.

Acknowledegments

We thank Aart Middeldorp, Toshiyuki Yamada and the referees for many valuable

suggestions of improvements.

This research was supported in part by Grant-in-Aid for Scientific Research (C)

06680300 of the Ministry of Education, Science, Sports and Culture of Japan.

References

Antoy, S., Echahed, R. and Hanus, M. (1994) A needed narrowing strategy. Proceedings 21st

ACM Symposium on Principles of Programming Languages, pp. 268–279.

Bockmayr, A., Krischer, S. and Werner, A. (1992) An optimal narrowing strategy for general

canonical systems. Proceedings 3rd International Workshop on Conditional Term Rewriting

Systems, pp. 483–497. Lecture Notes in Computer Science 656. Springer-Verlag.

Darlington, J. and Guo, Y.-K. (1989) Narrowing and unification in functional programming

– an evaluation mechanism for absolute set abstraction. Proceedings Rewriting Techniques

and Applications, pp. 92–108. Lecture Notes in Computer Science 355. Springer-Verlag.

Dershowitz, N. and Jouannaud, J.-P. (1990) Rewrite systems. In: van Leeuwen, J. (ed),

Handbook of Theoretical Computer Science, vol. B, pp. 243–320. MIT Press/Elsevier.

Echahed, R. (1988) On completeness of narrowing strategies. Proceedings 13th Colloquium

on Trees in Algebra and Programming, pp. 89–101. Lecture Notes in Computer Science 299.

Springer-Verlag.

Eder, E. (1985) Properties of substitutions and unifications. Journal of Symbolic Computation,

1, 31–46.

Fay, M. (1979) First-order unification in equational theories. Proceedings 4th International

Workshop on Automated Deduction, Austin, pp. 161–167.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

Leftmost outside-in narrowing calculi 161

Friborg, L. (1985) SLOG: a logic programming language interpreter based on clausal

superposition and rewriting. Proceedings 2nd IEEE Symposium on Logic Programming,

Boston, pp. 172–184.

Giovannetti, E., Levi, G., Moiso, C. and Palamidessi, C. (1991) Kernel-LEAF: A logic plus

functional language. Journal of Computer and System Sciences, 42(2), 139–185.

Gonthier, G., Lévy, J.-J. and Melliès, P.-A. (1992) An abstract standardisation theorem.

Proceedings of the 7th Annual Symposium on Logic in Computer Science, pp. 72–81.

Hamana, M., Nishioka, T., Nakahara, K., Middeldorp, A. and Ida, T. (1995) A design

and implementation of a functional-logic language based on applicative term rewriting

systems (in Japanese). Transactions of Information Processing Society of Japan, 30(8), pp.

1897–1995.

Hanus, M. (1990) Compiling logic programs with equality. Proceedings 2nd International

Symposium on Programming Language Implementation and Logic Programming, pp. 387–

401. Lecture Notes in Computer Science 456. Springer-Verlag.

Hölldobler, S. (1989) Foundations of equational logic programming. Lecture Notes in Artificial

Intelligence, 353.

Huet, G. and Lévy, J.-J. (1991) Computations in orthogonal rewriting systems, I. Lassez, J.-L.

and Plotkin, G. (eds), Computational Logic: Essays in honor of Alan Robinson. MIT Press,

pp. 395–414.

Hullot, J. (1980) Canonical forms and unification. Proceedings 5th Conference on Automated

Deduction, pp. 318–334. Lecture Notes in Computer Science 87. Springer-Verlag.

Klop, J. W. (1992) Term rewriting systems. Abramsky, S., Gabbay, D. and Maibaum, T.

(eds), Handbook of Logic in Computer Science, vol. 2. Oxford University Press, pp. 1–116.

Lock, H. C. R. (1992) The implementation of functional logic programming languages. PhD

thesis, Universität Karlsruhe. Published as GMD-Bericht Nr. 208, by R. Oldenbourg Verlag,

1993.

Loogen, R., Fraguas, F. L. and Rodrı́guez-Artalejo, M. (1993) A demand driven computation

strategy for lazy narrowing. Proceedings 5th International Symposium on Programming

Language Implementation and Logic Programming, pp. 184–200. Lecture Notes in Computer

Science 714. Springer-Verlag.

Middeldorp, A. and Hamoen, E. (1994) Completeness results for basic narrowing. Applicable

Algebra in Engineering, Communication and Computing, 5(3/4), 213–253.

Moreno-Navarro, J. J. and Rodrı́guez-Artalejo, M. (1992) Logic programming with functions

and predicates: The language BABEL. Journal of Logic Programming, 12, 191–223.

Narain, S. (1986) A technique for doing lazy evaluation in logic. Journal of Logic Programming,

3, 259–276.

Reddy, U. S. (1985) Narrowing as the operational semantics of functional languages. Pro-

ceedings of IEEE International Symposium on Logic Programming, pp. 138–151.

Slagle, J. R. (1974) Automatic theorem proving in theories with simplifiers, commutativity

and associativity. Journal of the ACM, 21, 622–642.

You, J.-H. (1989) Enumerating outer narrowing derivations for constructor-based term

rewriting systems. Journal of Symbolic Computation, 7, 319–341.

https://doi.org/10.1017/S0956796897002645 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002645

