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TWISTS OF MATRIX ALGEBRAS AND SOME SUBGROUPS OF
BRAUER GROUPS II

WENCHEN CHI

We consider some subgroups of Brauer groups arising from twists of matrix algebras
by some continuous characters. Explicit descriptions of these subgroups are given
in terms of Gauss sums of Dirichlet characters.

1. INTRODUCTION

Let Q bea fixed algebraic closure of the field of rational numbers <Q>, and let GQ =
Gal (Q/Q) be the Galois group furnished with the Krull topology. For an arbitrary
field F in Q, we take Q as an algebraic closure of F and denote the Galois group Q
over F by Gp • Throughout this article, F will be an algebraic number field and E
will be a finite Galois extension of F sitting inside (Q>.

In [4], we studied certain subgroups of Brauer groups arising from the twists of
matrix algebras. More precisely, let Homon. (GQ, E*/F*) be the group of all continu-
ous characters from GQ to E*/F*, where the multiplicative group E*/F* is given the
discrete topology. Let Br (E/F) be the subgroup of the Brauer group Bi(F) consisting
of all classes of central simple F-algebras split by E. The theory of twists of matrix
algebras defines a natural group homomorphism

$ B / F : H O D W C G Q , E*/F*) -+ BT{E/F).

Our main interest is to find out what the image H(E/F) of $E/F is-
In this article, we shall first give explicit descriptions of the groups H(E/F) for

some cyclic extensions E/F in terms of cyclic algebras defined by Gauss sums of Dirich-
let characters. Secondly, as an extension of Theorem 5.1 in [4], we shall show that
# ( Q ( \ / S ) / Q ) = Br ( ( ^ ( v ^ / Q ) for any quadratic field Q(Vd) . Finally, we shall
give examples where H(E/F) are nontrivial proper subgroups of Br (E/F).
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2. TWISTS OF MATRIX ALGEBRAS

In this section, we shall recall some basic results on the twists of matrix algebras.
For general references, we refer to Section 1, 2 of [2] and Section 2 of [4].

Let F be an algebraic number field contained in Q and take F — Q as an algebraic

closure of F. Let Horricon. (GQ, F /F*J be the group of all continuous characters from

GQ to F /F*, where the multiplicative group F /F* is given the discrete topology.

For each a in HomcOn. (GQ, F*/F*J , one can choose a finite Galois extension E of

F in Q such that the group E*/F* contains all the values of a. Let ap — a\GF • Then
one has the twists (Endf E)(a) (respectively (EndpE)(aF)) of the matrix algebra
Endj? E by a (respectively ap ) (see Section 1 of [2]). Moreover, it is known that
the central simple F-algebras (Endp E)(a) and (Endp E)(ap) are isomorphic (see [2,
Proposition (1.2)]).

Let M(n, ~F) be the algebra of n X n matrices over F. Then, by the Skolem-

Noether theorem, one can identify the automorphism group Aut^r(M(n, ~F~)) with the

projective linear group PGL(n, ~F) . Let An : H
1 (GF, PGL(n, F~)) -> H2 (GF, F*} =

Br(i;l) be the coboundary operator defined by the following exact sequence of Gp-

modules:

1 -> ~F* -> GL(n, T) -> PGL(n, F) -> 1.

It is a well-known fact that An is injective (see [8, Theorem 1]). Let {a} be the class de-

termined by aF in H1 (GF, PGL(n, f ) ) . Then the cohomology class of (Endp E)(a)

in H2(GF, F*) = Br(F) is equal to An({a}), where n - [E: F]. Notice that {a}

is in fact in H1(GF, PGL(n, F)). Hence the central simple F-algebra (Endj? E)(a) is

split by E.

If E' is a finite Galois extension of F containing E in Q with [E': F) = m, then

the class ATO({a}) in H2 (Gal(E'/F), EU) is equal to the inflation of An({a}). This

shows that the map $ F : Hoirw. (GQ, F*/F*) -> H2(GF, F*) = Br(f) defined by

a i—> the class of (Endj? E)(a) is well-defined. Moreover, one has the following:

PROPOSITION 2 . 1 . <J>j?: Home,,. (G^IP'/F*) -> Br (F) is a group homo-

morphism. In particuiar, if E/F is a Unite Galois extension, then the subgroup

Homcon. (GQ, E*/F*) of the source is mapped by $ F into the subgroup Bi (E/F)

of the target.

PROOF: This follows directly from the definition of $/? (see [4, Proposition

(2.2)]). D
In a recent joint work with Tan [5], it has been shown that $j? is surjective for

any algebraic number field F. In this article, we are interested in studying the group
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homomorphism $E/F '• HomcOn. (GQ, E* /F*) —> Br (E/F). As we shall see in Section
is n ° t surjective in general.

3. CYCLIC EXTENSIONS E/F

For a finite Galois extension E/F with Gal(E/F) = T, recall that one can asso-
ciate each a in Homer,. ( G Q , E*/F*) to a 2-cocycle j a on F with values in E* as
follows:

For each 7 G F , one defines

X-y(9) = y^jjy for all g in GQ,

where a(g) is a lift of a(g) to E*. Then each x-y ls a n -E*-valued Dirichlet character
on GQ.

Let X(E) = Hom(GQ, E*) be the F-module of all E*-valued Dirichlet characters.
For x in X(E) of conductor / , we define the Gauss sum T(X) by

r(x) =

where (f is the primitive / - t h root of unity e2mlf in Q . For Xi x' m X(E), the
Jacobi sum j(x, x') i s defined by j(x, x') = r ( x ) T ( x ' ) / T ( x x ' ) - ^ ' s e a s y to check that
the Jacobi sum takes values in E*.

As is well-known [2, Proposition (4.5)], the map j a : F x F —> 22* defined by

Ja(7, *) = J ' f o 1 . X77) is a 2-cocycle.
In what follows, we assume that E/F is a finite cyclic extension of degree n with

Gal (E/F) = F = {<r). Denote by x^.a the E*-valued Dirichlet character defined by

X*A9) = ^ ^ for all g in GQ.

LEMMA 3 . 1 . (EndF^)(a) is isomorphic to the cyclic algebra (E/F, a, a),
n-l / _ j \

where a = FJ rf xZ% ) JS a n algebraic integer in F.
i=o ^ ' '

PROOF: See [4, Lemma 4.1]. D

For a cyclic algebra (E/F, a, a), we denote by [E/F, a, a] its class in the Brauer
group Br(.F). As an immediate consequence, one has the following:

COROLLARY 3 . 2 . Let E/F be a finite cyclic extension of degree n with
Gal(E/F) = F = (a). Then

H(E/F) = { [E/F, a, J ] T(XJ£ )] I a G
0t = 0
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For each n ^ 1, let fin = (£„) be the group of ra-th roots of unity, where £n is a
primitive n-th root of unity. For an algebraic number field F, let fi(F) be the group of
roots of unity in F. For the rest of this section, we shall consider the following special
types of cyclic extensions.

Assume that /*„ C F. Let a E F* be such that [F(ny/a): F] = n. Then F^^/a)
is a cyclic extension of F of degree n and <r: ny/a i—> ny/aC,n is the generating
automorphism of the Galois group Gal(F(ny/a)/F).

Consider the map

V>: Honicon . (GQ, F(ny/S)*/F') -> X(F(ny/S))

defined by

LEMMA 3 . 3 . If (i(F(ny/a)) = fj.(F) = (£„), then ip is surjective.

PROOF: For any ir(n
v/a)*-valued Dirichlet character x, let kerx = Gal (Q/H)

such that x : Gal (H/<Q) -—* ((£) for some integer h, O ^ f e ^ n — 1.
Let Gal(JT/Q) = (T) and let n: GQ —* Gal(H/Q) be the canonical surjection.

Define the map /3: Gal(.ff/Q) ^ F(ny/£f/F* by sending r to {ny/a)h m o d f .
Then a = /3 o TT is a continuous character from GQ to the discrete group F(ny/a) /F*.
By definition, it is easy to see that x<r,a = X- "

REMARK. Under the assumption of Lemma 3.3, X(F(n
x/

ra)) = X(F).

THEOREM 3 . 4 . Suppose that niFC1^)) = /x(f) = (^n) and [F(ny/E): F] = n.
Then H(F(ny/o)/F) = {[F(ny/a)/F, <r, r(x)n] | x e X(F)}.

PROOF: By Corollary 3.2, each class in H(F(ny/a)IF) is represented by a cyclic
algebra of the form

n-l

t=0

n \

)/F, a, H T(X'£) I for some a G Honw. (GQ, F(ny/a)'/F").

By the assumption that (i(F(n<ya)) = p(F), one has that Xa,a = X<r,a ^or e a cb * =
0, 1, • • • , n — 1. The assertion follows immediately from Lemma 3.3.

For a, b in F*, let (a,b)/F be the quaternion algebra generated by a, b (see [6,

p.78]). Denote by [ ( ^ ) ] its class in Br(F). D

COROLLARY 3 . 5 . Let F be a totally real number Held and let a £ F* - F**
be such that (i(F) = /i(F(y/E)) = {±1}. Tien
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PROOF: By Theorem 3.4,

H(F(s/a)/F) = {[F(y/a)/F, a, T (X) 2 ] | X runs over all quadratic Dirichlet characters}.

On the other hand, it is well known that T ( X ) 2 rims over the set of integers
{± odd primes, ± 8, - 4 } (see [9, p.28, Exercise 3.5] and [1, p.349, Theorem 7]). Our
assertion follows immediately from elementary facts on cyclic algebras (see [7, p.260,
Theorem (30.4)] and [6, p.79, Lemma 2]). D

COROLLARY 3 . 6 . Let <Q>(v£) be a quadratic field suci that d ^ - 1 , - 3 . Tien

PROOF: Let Gal (®(\/d\/<Q) = {a, id.}. By Br (®(\/d)/<Q\ ~

where N is the norm from Q( \/d) to Q, each class in Br (QI \ /<M/Q) is represented
by a cyclic algebra of the form

, a, n\, where n e Z.

Hence the assertion follows from Corollary 3.5 and an elementary fact on cyclic algebras
(see [6, p.79, Lemma 2]). D

Although d — —1, —3 were excluded in Corollary 3.6, one may prove the following
theorem directly without using (3.3) ~ (3.5).

THEOREM 3 . 7 . For any quadratic £eld Q(\/d\, .ff(<Q>(\/d)/<QA =

Br(Q(>/3)/Q).

PROOF: Let Gal ( Q ^ V ^ V Q ) = {<r, id.}, where <r(\/d\ = -y/d. Recall that each

class in Br (QfVdl/Qj is represented by a cyclic algebra of the form (QfvdJ/Q, o", nj
for some n € Z.

For any quadratic field <tjf vDj of discriminant D, one considers the continu-

ous character a in Homcon. {GQ, Qf\/5) /Q*j defined by the natural map GQ —>

Gal ( Q ( N / Z ? ) / Q ) and the natural embedding TI—* \fd mod Q* of Gal ( Q ( \ / I > ) / Q )

into Qfy/dY/Q*, where T £ Gal (Q(>/D\/Q\ is such that T(\/D\ = -VD. Let

X<r,a be the Dirichlet character defined by

for a l l , 6 GQ,
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where a(g) is a lift of a(g). Then it is easy to see that x<j,a is the quadratic character

associated to the quadratic field Q( y/Dj.

On the other hand, by Lemma 3.1, (EndQ<Q>( y/dj )(a) is isomorphic to the cyclic

algebra (Q(Vd)/Q, or, r(xa,a)2) • As we have mentioned above, it is well-known that

T(xcr,a) — D and D runs over the set of integers {± odd primes, ± 8, —4}. Our

assertion follows from elementary facts on cyclic algebras. 0

4. EXAMPLES

Let n ^ 1 be an integer such that <p{n) (the Euler ^-function) has an odd prime

factor p. Let E = Q(C) and F - Q. For a quadratic subfield <Q>(\/d) in Q(£n), it is

easy to see that H(Q(\/d)/Q\ C H(Q((n)/Q). On the other hand, it is known that

where 5(Q) = Br2 (Q) is the Schur subgroup of Br(Q) (see [3, Theorem 3.1] and [10,

Theorem 7.2]). Moreover, the group Br(Q(£n)/<Q>) clearly has an element of order p.

One concludes that .ff(Q(Cn)/Q) is a nontrivial proper subgroup of Br(Q(£n)/Q).
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