A UNITARY RELATION BETWEEN A MATRIX AND ITS TRANSPOSE

BY
WILLIAM R. GORDON

It is well known that if A is an $n \times n$ complex matrix and A^{T} is its transpose, then there is an invertible $n \times n$ complex matrix S such that $A^{T}=S^{-1} A S$. In this note we wish to point out another simple relation between A and A^{T}.

Theorem 1. If A is an $n \times n$ complex matrix and A^{T} is its transpose then there are unitary $n \times n$ complex matrices U and V such that $A^{T}=U A V$.

We shall deduce Theorem 1 from Theorem 2 below. Before stating Theorem 2, we remind the reader that the singular values of an $m \times n$ complex matrix A are the nonnegative square roots of the characteristic values of the matrix $A^{*} A$ (in this note A^{*} denotes the conjugate transpose of A).

Theorem 2. Two $n \times n$ complex matrices A and B have the same singular values if and only if there are unitary $n \times n$ complex matrices U and V such that $B=U A V$.

Proof. If there are unitary U and V such that $B=U A V$, then $B^{*} B=V^{*}\left(A^{*} A\right) V$ and so $B^{*} B$ and $A^{*} A$ being similar have the same characteristic values and hence A and B have the same singular values.

In [1] Carl Eckart and Gale Young showed that if C is an $m \times n$ complex matrix then there are unitary $m \times m$ and $n \times n$ complex matrices U and V, respectively, such that the matrix $U C V=D=\left(d_{i j}\right)$ satisfies:

```
\(d_{i j}=0\) for \(i \neq j\)
\(d_{i i}\) is real and nonnegative for \(i=1, \ldots, \min \{m, n\}\).
```

It is easily checked that the $d_{i i}$ are the singular values of C.
Thus if the $n \times n$ complex matrices A and B have the same singular values d_{1}, \ldots, d_{n} and if D denotes the diagonal matrix diag $\left(d_{1}, \ldots, d_{n}\right)$, then it follows from the result of Eckart and Young that there are unitary $n \times n$ complex matrices $U_{1}, V_{1}, U_{2}, V_{2}$ such that $U_{1} A V_{1}=D=U_{2} B V_{2}$. Thus $B=U A V$ where U and V are the unitary matrices $U_{2}^{*} U_{1}$ and $V_{1} V_{2}^{*}$ respectively.

Theorem 1 now follows immediately from Theorem 2 since it is easily checked that an $n \times n$ complex matrix and its transpose have the same singular values.

We point out that Theorem 1 can be deduced directly from [1]. However, Theorem 2 seems to us to be interesting in itself.

[^0]
Reference

1. C. Eckart and G. Young, A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc. 45 (1939), 118-121.

University of Victoria,
Victoria, British Columbia

[^0]: $8+$ с.м.в.
 279

