
J. Aust. Math. Soc. 93 (2012), 85–90
doi:10.1017/S1446788712000614

ON A VARIATION OF A CONGRUENCE OF SUBBARAO

ANDREJ DUJELLA ˛ and FLORIAN LUCA

(Received 18 December 2010; accepted 1 February 2012; first published online 4 February 2013)

Communicated by F. Pappalardi

Dedicated to the memory of Alf van der Poorten

Abstract

We study positive integers n such that nφ(n) ≡ 2 modσ(n), where φ(n) and σ(n) are the Euler function and
the sum of divisors function of the positive integer n, respectively. We give a general ineffective result
showing that there are only finitely many such n whose prime factors belong to a fixed finite set. When
this finite set consists only of the two primes 2 and 3 we use continued fractions to find all such positive
integers n.
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1. Introduction

We write φ(n) and σ(n) respectively for the Euler function and the sum of divisors
function of the positive integer n. There are many open problems concerning the
characterization of the positive integers n fulfilling certain congruences involving φ(n)
and σ(n). For example, a known open problem due to Lehmer asks if there are
any composite integers n such that n ≡ 1 mod φ(n) (see [6]). A different problem
due to Subbarao concerns finding composite integers n such that nσ(n) ≡ 2 mod φ(n)
(see [8]). See also [3, Section B37] for other problems and results of a similar kind.

In this paper, we study a congruence similar to Subbarao’s congruence, namely

nφ(n) ≡ 2 mod σ(n). (1)

Congruence (1) was recently proposed and investigated by Díaz (unpublished). It
is easy to see that prime numbers n satisfy (1). Diaz showed that the only positive
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integers n which are prime powers but not primes that satisfy (1) are n = 8, 9. It was
also shown that if n is a composite integer satisfying (1) and if we put

k :=
nφ(n) − 2
σ(n)

,

then n can be bounded in terms of k. This follows from the minimal order φ(n)�
n/ log log n of the Euler function, as well as the maximal order σ(n)� n log log n of
the sum of divisors function, which together imply that

k =
nφ(n) − 2
σ(n)

�
nφ(n)
σ(n)

�
n

(log log n)2
,

yielding that n� k(log log k)2.
Here, we prove two results about congruence (1). First, we letP = {p1, . . . , pk} be a

finite set of primes and let SP = {pa1
1 · · · p

ak
k : ai ≥ 0} be the set of all positive integers

whose prime factors belong to P. Our first result is the following theorem.

T 1. For any finite set of primes P there are only finitely many positive integers
n ∈ SP satisfying congruence (1).

For a positive integer n let P(n) be the largest prime factor of n. Theorem 1 has the
following immediate corollary.

C 2. P(n)→∞ as n goes to infinity through solutions of congruence (1).

The proof of Theorem 1 uses a result of Hernández and Luca [5] whose proof uses
Schmidt’s subspace theorem and finiteness results about the number of nondegenerate
solutions to S-unit equations. As such, it is ineffective. That is, given P, we do not
know how to write down a specific upper bound depending onP on the largest solution
n ∈ SP of congruence (1). Our next result is an effective version of Theorem 1 when
P = {2, 3}. Quite likely, our method of proof extends to all sets P consisting of only
two primes but we have not worked out the details of such an extension.

T 3. If P = {2, 3}, then the only n ∈ SP satisfying congruence (1) are 1, 2, 3, 8
and 9.

2. The proof of Theorem 1

First we comment on the situation when n = pa for some prime p and exponent a
greater than 1. Put

D := σ(pa) =
pa+1 − 1

p − 1
.

Then pa+1 ≡ 1 mod D. But also nφ(n) ≡ 2 mod D, or p2a−1(p − 1) ≡ 2 mod D. Hence,
p2(a+1)(p − 1) ≡ 2p3 mod D. Using also pa+1 ≡ 1 mod D, we see that 2p3 ≡ p − 1 mod
D. Thus, D | 2p3 − p + 1. The expression 2p3 − p + 1 is never 0, so D ≤ 2p3 − p + 1.
Thus,

pa+1 − 1 ≤ (p − 1)(2p3 − p + 1).
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If a ≥ 4, then p5 − 1 ≤ pa+1 − 1 ≤ (p − 1)(2p3 − p + 1), which is impossible. Thus,
a ∈ {2, 3}. If a = 2, then p2 + p + 1 | 2p3 − p + 1, which leads to p2 + p + 1 | p − 3.
This is possible only when p = 3, which gives the solution n = 9. If a = 3, then
p3 + p2 + p + 1 | 2p3 − p + 1, from which we see that p3 + p2 + p + 1 | 2p2 + 3p + 1.
Thus, p3 ≤ p2 + 2p, so p ≤ 2. This leads to the solution n = 8 to congruence (1).

Now let P = {p1, . . . , pk}. We assume that p1 < p2 < · · · < pk. There is no loss of
generality in assuming that P consists of all primes p ≤ pk, and hence p j is just the
jth prime number. Now suppose that n = pa1

i1
· · · pas

is
∈ SP satisfies the congruence (1),

where 1 ≤ i1 < · · · < is ≤ k and the a j are nonnegative for j = 1, . . . , s. There is no loss

of generality in assuming that s ≥ 2. Put u j := p
a j+1
i j

for j = 1, . . . , s and put

v := nφ(n)/2 = p2a1−1
i1

· · · p2as−1
s (pi1 − 1) · · · (pis − 1)/2.

Observe that u j and v are all members of SP for j = 1, . . . , s. Moreover, u j and v are
multiplicatively independent, namely there do not exist integers x and y not both zero
such that ux

j = vy, because u j is a prime power and v has at least two distinct prime
factors, namely pi1 and pi2 . Let j be such that u j = max{ut : 1 ≤ t ≤ s}. We may
assume that a j ≥ 3, otherwise ut ≤ p3

k , for all i = 1, . . . , s, so there are only finitely
many possibilities for n. Then

v < p2a1
i1
· · · p2as

is
< u2

1 · · · u
2
s < u2k

j ,

giving that u j > v1/2k. Since (u j − 1)/(pi j − 1) divides 2(v − 1), it follows that

gcd(u j − 1, v − 1) ≥
u j − 1

2(pi j − 1)
> u1/2

j > v1/4k,

where we used the fact that a j ≥ 3. However, a result of Hernández and Luca from [5]
asserts that if ε > 0 is fixed, then there are only finitely many pairs of elements (u, v)
in SP such that

gcd(u − 1, v − 1) < max{u, v}ε,

and such that u and v are multiplicatively independent. Note that u j < v for a j ≥ 3.
Since we have already established that u j and v are multiplicatively independent, the
above result applied with ε := 1/4k gives us only finitely many possibilities for v.
Hence, there are only finitely many possibilities for nφ(n), and in particular for n,
which is what we wanted to prove. Theorem 1 is therefore proved.

3. Proof of Theorem 3

We assume that n = 2a3b, where a and b are positive integers. Let M := 2a+1 − 1
and N := (3b+1 − 1)/2. Then 2a+1 ≡ 1 mod M and 3b+1 ≡ 1 mod N. But also nφ(n) ≡
2 mod MN, which gives 22a32b−1 ≡ 2 mod MN. Thus, 22(a+1)32(b+1) ≡ 216 mod MN.
Since 2a+1 ≡ 1 mod M, we see that 32(b+1) ≡ 216 mod M. Also, since 3b+1 ≡ 1 mod N,
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it follows that 22(a+1) ≡ 216 mod N. Since M divides 22(a+1) − 1 and N divides
32(b+1) − 1, it follows that both M and N divide

22(a+1) + 32(b+1) − 217.

Let us now show that a and b are both even and that M and N are coprime. Let
D := gcd(M, N). Then 2a+1 ≡ 3b+1 ≡ 1 mod D, so D divides 1 + 1 − 217 = −215 =

−5 × 43. But if 5 divides M, then 4 | a + 1, so, in particular, 2 | a + 1, which implies
that 3 | M. This leads to 3 | nφ(n) − 2 = 22a32b−1 − 1, which is false. Hence, D cannot
be a multiple of 5 and a + 1 is odd, therefore a is even. If 43 divides M, then
2a+1 ≡ 1 mod 43, which implies again that a + 1 is even, which is a contradiction.
Hence, M and N are coprime and a is even. Let us show that b is also even. If not,
then b + 1 is even, so 3b+1 − 1 is a multiple of 8. Thus, 4|N|22a32b−1 − 2, which is
impossible. Hence, b + 1 is odd and therefore both M and N are odd. Since MN
divides 22(a+1) + 32(b+1) − 217 and this last number is even, we deduce that this last
number is a multiple of 2MN = (2a+1 − 1)(3b+1 − 1). Let x := 2a+1 and y := 3b+1. Then
the equation

x2 + y2 − 217 = c(x − 1)(y − 1) (2)

holds, for some positive integer c. Since a and b are even, we have the following
congruences: x ≡ 0 mod 8, y ≡ 3 mod 8, y2 ≡ 9 mod 16, x ≡ 2 mod 3, x2 ≡ 1 mod 3,
y ≡ 0 mod 3. Using these congruences, from (2), we conclude that c ≡ 0 mod 8 and
c ≡ 0 mod 3; that is, c ≡ 0 mod 24.

We shall next ‘diagonalize’ equation (2). Namely, let

X := cy − c − 2x, (3)

Y := cy − c − 2y. (4)

Then

(c + 2)Y2 − (c − 2)X2 − (−860c + 1736)

= −4(c − 2)(x2 + y2 − 217 − c(x − 1)(y − 1)) = 0.

Hence, we arrive at the Pellian equation

(c + 2)Y2 − (c − 2)X2 = −860c + 1736. (5)

From (5), we see that X/Y is a good rational approximation of the irrational number
√

(c + 2)/(c − 2). More precisely,∣∣∣∣∣XY −
√

c + 2
c − 2

∣∣∣∣∣ =
860c − 1736

(
√

c + 2Y +
√

c − 2X)
√

c − 2Y
≤

860(c − 2)
√

c2 − 4Y2
<

860
Y2

.

The rational approximation of the form∣∣∣∣∣XY −
√

c + 2
c − 2

∣∣∣∣∣ < 860
Y2

(6)
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is not good enough to conclude that X/Y is a convergent of continued fraction
expansion of

√
(c + 2)/(c − 2), but by Worley’s theorem [9, Theorem 1] (see also [1,

Theorem 1]), we know that
X
Y

=
rpk+1 ± upk

rqk+1 ± uqk
,

where k ≥ −1 and r and u are nonnegative integers such that ru < 2 × 860 = 1720.
Since c is even, we have the continued fraction expansion√

c + 2
c − 2

= [1, (c − 2)/2, 2]

(see, for example, [4]). Let X = d(rpk+1 ± upk), Y = d(rqk+1 ± uqk), where d2ru <
1720. Then, by [2, Lemma],

(c + 2)Y2 − (c − 2)X2 = d2(−1)k(u2tk+1 + 2rusk+1 − r2tk+2), (7)

where {sk}k≥−1 and {tk}k≥−1 are sequences of integers appearing in the continued
fraction algorithm for quadratic irrational

√
(c + 2)/(c − 2). From [4], we learn that

sk = c − 2, t2k = c − 2, t2k+1 = 4. Let us check whether it is possible that the expression
on the right-hand side of (7) is identically equal to the right-hand side of (5); that is,
to −860c + 1736. If k is even, then d2((4u2 − 2ru + 2r2) + c(2ruc − r2)), while if k is
odd, then −d2(c(u2 + 2ru) − (4r2 + 4ru + 2u2)). Comparing these two expression with
−860c + 1736, we first see that d = 1 or d = 2, and then that in both cases the resulting
system of two equations has no integer solutions.

It remains to consider all possible triples of integers d, r, u satisfying d2ru < 1720,
and check whether the corresponding right-hand sides of (7) have nonempty integer
intersection with −860c + 1736, and lastly compute the corresponding positive integer
c. There are many such c (the largest is 739 586), but only three of them satisfy the
condition c ≡ 0 mod 24. These c are 48, 288 and 23 328.

Let us solve the corresponding three Pellian equations. The equations are:

25Y2 − 23X2 = −19 772, (8)

145Y2 − 143X2 = −122 972, (9)

11 665Y2 − 11 663X2 = −10 030 172. (10)

Using bounds for the fundamental solutions of Pellian equations (see, for
example, [7]), we find that all solutions of equation (8) are given by (X0, X1) =

(58, 192) or (192, 58) and Xk = 48Xk−1 − Xk−2 for all k ≥ 2, and by (Y0, Y1) = (48, 182)
or (182, 48) and Yk = 48Yk−1 − Yk−2 for all k ≥ 2. Assume now that for X and Y defined
by (3) and (4) there exists an index k such that X = Xk and Y = Yk. Then (X, Y) ≡
(10, 0), (0, 38), (0, 10) or (38, 0) modulo 48. But on the other hand, X ≡ 0 mod 16 and
Y ≡ 0 mod 6, and none of these four pairs satisfies this condition.

Completely analogous arguments apply to the other two equations, since both other
c are also divisible by 24. The fundamental solutions of (9) are (X0, X1) = (38, 1992)
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and (Y0, Y1) = (24, 1978), and we see that (X, Y) ≡ (14, 0), (0, 10), (0, 14) or (10, 0)
modulo 24, while the fundamental solutions of (10) are (X0, X1) = (218, 23 112) and
(Y0, Y1) = (216, 23 110), and so (X, Y) ≡ (2, 0), (0, 22), (0, 2) or (22, 0) modulo 24. In
both cases, none of the pairs modulo 24 satisfies the conditions X ≡ 0 mod 16 and
Y ≡ 0 mod 6. This completes the proof of Theorem 3. �
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