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Abstract

In this paper, we give an explicit computable algorithm for the Zelevinsky–Aubert
duals of irreducible representations of p-adic symplectic and odd special orthogonal
groups. To do this, we establish explicit formulas for certain derivatives and socles. We
also give a combinatorial criterion for the irreducibility of certain parabolically induced
representations.
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1. Introduction

Let F be a local non-Archimedean field. In 1980, Zelevinsky [Zel80] defined an involution τ �→ τ̂
on the Grothendieck group of finite-length smooth representations of GLn(F ) and conjectured
that this involution should preserve irreducibility. Assuming this conjecture, in 1986, Mœglin and
Waldspurger [MW86] studied the involution and gave an algorithm for computing the Langlands
(or Zelevinsky) data of τ̂ for every irreducible representation τ of GLn(F ). Later, another explicit
formula was given by Knight and Zelevinsky [KZ96].

Motivated by the Alvis–Curtis duality for finite groups [Alv79, Alv82, Cur80], Kato [Kat93]
defined an involution on the Grothendieck group of smooth finite-length Iwahori-fixed represen-
tations of a split reductive group over F . In 1996, Aubert showed that Kato’s involution could be
extended to the category of finite-length smooth representations of any reductive group G and

Received 6 October 2021, accepted in final form 29 August 2022, published online 20 February 2023.
2000 Mathematics Subject Classification 22E50 (primary), 11S37 (secondary).
Keywords: Zelevinsky–Aubert duality, derivatives, socles.

© 2023 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited. Compositio Mathematica is
© Foundation Compositio Mathematica.

https://doi.org/10.1112/S0010437X22007904 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1112/S0010437X22007904


The explicit Zelevinsky–Aubert duality

proved that it indeed preserves irreducibility. Furthermore, using different approaches, Schneider
and Stuhler [SS97], as well as Bernstein, Bezrukavnikov and Kazhdan [Ber92, BBK18, Bez04],
defined involutions on the category of smooth representations of G. For irreducible representa-
tions of GLn(F ), all these involutions coincide (up to the contragredient and up to a sign) with
the involution defined by Zelevinsky.

For simplicity, when restricted to the set of irreducible smooth representations of a reductive
group G, this involution is commonly known as the Zelevinsky–Aubert duality , and it is the main
topic of this article. This duality has many interesting applications to Koszul duality (see [MR15])
and to the Langlands program (see for example [Tad18] or [Wal18]). One important property of
the Zelevinsky–Aubert duality is that it does not preserve the fact of being tempered. For this
reason, in the proof of Arthur’s local classification, the first step beyond tempered representations
is to consider the Zelevinsky–Aubert dual of tempered representations [Art13, § 7]. However, one
expects that the duality will preserve unitarity, so it should be an important tool for determining
the unitary dual of classical groups [Tad22].

Our goal is to extend the result of Mœglin and Waldspurger to the Zelevinsky–Aubert dual-
ity, that is, we give an algorithm for computing the Langlands data of π̂ in terms of those of
π, for every irreducible representation π of G. As we will use the endoscopic classification of
Arthur [Art13] and Mœglin’s construction of the local packets [Mœg11], we focus on the case
where F is a local non-Archimedean field of characteristic 0 and G is either a symplectic or an
odd special orthogonal group.

There have been several attempts to explicitly describe the Zelevinsky–Aubert duality. There
are some partial results due to Mœglin [Mœg06], Matić [Mat17, Mat19], Jantzen [Jan18a] and
the first author of the present paper [Ato22b]. In order to explain the novelties of the present
article, let us introduce some notation.

Let G be a connected algebraic reductive group defined over F . Fix a minimal parabolic
subgroup P0 of G. We denote by IndGP the normalized parabolic induction and by JacGP its left
adjoint functor, the Jacquet functor.

Let Π be a smooth finite-length representation of G. We consider the virtual semisimple
representation

DG(Π) =
∑
P

(−1)dimAM
[
IndGP (JacGP (Π))

]
,

where P = MN runs over all standard parabolic subgroups of G and AM is the maximal split
torus of the center of M . Then Aubert [Aub95] showed that if π is irreducible, there exists a sign
ε ∈ {±1} such that π̂ = ε ·DG(π) is also an irreducible representation. We call the map π �→ π̂
the Zelevinsky–Aubert duality.

This map has the following important properties.

(1) The dual of π̂ is equal to π, i.e. the map π �→ π̂ is an involution.
(2) If π is supercuspidal, then π̂ = π.
(3) The duality commutes with Jacquet functors (see (2.1)).

Let us now restrict ourselves to the case where G = Gn is either the split special orthogonal
group SO2n+1(F ) or the symplectic group Sp2n(F ) of rank n. In this case, when π (respectively τi)
is a smooth representation of Gn0 (respectively GLdi(F )), with d1 + · · · + dr + n0 = n, we
denote by

τ1 × · · · × τr � π

the normalized parabolically induced representation of τ1 � · · ·� τr � π from the standard
parabolic subgroup P of Gn with Levi subgroup isomorphic to GLd1(F ) × · · · × GLdr(F ) ×Gn0 .
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Given an irreducible representation π of Gn and a supercuspidal non-self-dual representation
ρ of GLd(F ), there exists a unique k ≥ 0 and a unique irreducible representation π0 of Gn0 , with
n = dk + n0, such that

• π is a unique irreducible subrepresentation of

ρ× · · · × ρ︸ ︷︷ ︸
k times

�π0; (1.1)

• k is maximal, in the sense that for every irreducible representation π′0 of Gn0−d, π0 is not a
subrepresentation of ρ� π′0.

We call π0 the highest ρ-derivative of π and denote it by Dmax
ρ (π). An important consequence

of the commutativity of the Zelevinsky–Aubert duality with Jacquet functors is that

Dmax
ρ (π)̂ = Dmax

ρ∨ (π̂), (1.2)

where ρ∨ denotes the contragredient of ρ.
We can now describe the main idea of the algorithm for explicating the Zelevinsky–Aubert

dual of an irreducible representation π of Gn. It is a two-step procedure as follows.

Step 1. If there exists a supercuspidal non-self-dual representation ρ of GLd(F ) such that
Dmax
ρ (π) �= π, then we give an explicit formula for the Langlands data of Dmax

ρ (π) in terms
of those of π. By induction we can compute the Langlands data of Dmax

ρ (π)̂ . We finally give an
explicit formula for the Langlands data of π̂ in terms of those of Dmax

ρ (π)̂ = Dmax
ρ∨ (π̂).

Step 2. Assume finally that for all supercuspidal representations ρ of GLd(F ) such that π is a
subrepresentation of ρ× π0 for some irreducible representation π0 of Gn−d, we have that ρ is
self-dual. Then the following hold.

• If π is tempered, then π is ‘almost supercuspidal’, and we can compute its Zelevinsky–Aubert
dual explicitly (see § 5.3, in particular Proposition 5.4).

• If π is not tempered, then we show that there exists a supercuspidal self-dual representation
ρ of GLd(F ) such that π is a unique irreducible subrepresentation of

Δρ[0,−1] × · · · × Δρ[0,−1]︸ ︷︷ ︸
k times

�π0

for some irreducible representation π0 of Gn0 , with n = 2dk + n0, and some positive integer
k maximal as above, where Δρ[0,−1] is a Steinberg representation (see § 2.3 for a precise
definition). We call π0 the highest Δρ[0,−1]-derivative and denote it by Dmax

Δρ[0,−1](π). Similar
to (1.2), this derivative satisfies a formula

Dmax
Δρ[0,−1](π)̂ = Dmax

Zρ[0,1](π̂),

where Dmax
Zρ[0,1](π̂) is the highest Zρ[0, 1]-derivative of π̂ (see § 3.4). As in Step 1, this allows us

to compute by induction the Zelevinsky–Aubert dual of π. The precise algorithm is explained
in § 4.

Let us first remark on the self-duality condition on ρ. When ρ is self-dual, a representation
of the form (1.1) may have several irreducible subrepresentations and there is no simple way
of distinguishing them. The same problem was already observed by Jantzen [Jan18a]. For these
reasons he just considered what is called the half-integral case.

This also explains one of the differences between the case of GLn(F ) and the case of classical
groups that we treat in this article. In the former case, induced representations of the form ρ× π0,
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with ρ supercuspidal, always have a unique irreducible subrepresentation. The second difference
is that for GLn(F ) it is much easier to explicate the Langlands data of this subrepresentation
in terms of those of π. However, the most intricate part of this article is to explicitly describe,
in terms of Langlands data, the correspondence π ↔ Dmax

τ (π) for τ either supercuspidal non-
self-dual or of the form Zρ[0, 1]; see Theorems 7.1, 7.4 and 8.1. To explicate these formulas, we
use matching functions as in [LM16] and A-parameters. These results are interesting in their
own right. In particular, we get a combinatorial criterion for the irreducibility of parabolically
induced representations of the form ρ� π0 with ρ non-self-dual supercuspidal and π0 irreducible;
see Corollary 7.2. Moreover, the explicit formulas established in this paper are used in [Ato22a]
to make Mœglin’s construction of local A-packets more computable.

The paper is organized as follows. In § 2, we recall some general results on representation
theory of p-adic classical groups. In § 3, we define ρ-derivatives and other derivatives, and we prove
some general results about them, in particular their compatibility with the Zelevinsky–Aubert
duality. In § 4 we give our algorithm for computing the Zelevinsky–Aubert dual using derivatives
and socles. We will prove explicit formulas for these derivatives and socles in several situations
in §§ 6–8. To do this, we review Arthur’s theory of endoscopic classification in § 5 and the theory
of matching functions at the beginning of § 6.

2. Notation and preliminaries

In this section we introduce some notation, in particular the functors of induction and restriction,
Tadić’s formula and Jantzen’s decomposition.

2.1 Notation
Throughout this article, we fix a non-Archimedean locally compact field F of characteristic zero
with normalized absolute value | · |. Let G be the group of F -points of a connected reductive
group defined over F , with the usual topology. We will only consider smooth representations of
G, that is, representations such that the stabilizer of every vector is an open subgroup of G,
and we write Rep(G) for the category of smooth complex representations of G of finite length.
Denote by Irr(G) the set of equivalence classes of irreducible objects of Rep(G). Let R(G) be
the Grothendieck group of Rep(G). The canonical map from the objects of Rep(G) to R(G) will
be denoted by π �→ [π].

For π, π′ ∈ Rep(G) we write π ↪→ π′ (respectively π � π′) if there exists an injective
(respectively surjective) morphism from π to π′.

Fix a minimal F -parabolic subgroup P0 of G. A parabolic subgroup P of G is said to be
standard if it contains P0. Henceforth, the letter P will always denote a standard parabolic
subgroup of G with an implicit standard Levi decomposition P = MU . Let Σ denote the set
of roots of G with respect to P0, and let Δ be a basis of Σ. For Θ ⊂ Δ let PΘ denote the
standard parabolic subgroup of G corresponding to Θ and let MΘ be a corresponding standard
Levi subgroup. Let W be the Weyl group of G.

Let τ be a representation of M , regarded as a representation of P on which U acts trivially.
We denote by IndGP τ the representation of G parabolically induced from τ . (We will always mean
the normalized induction.) We view IndGP as a functor. Its left adjoint, the Jacquet functor with
respect to P , will be denoted by JacGP .

An irreducible representation π of G is said to be supercuspidal if it is not a composition
factor of any representation of the form IndGP (τ) with P a proper parabolic subgroup of G and
τ a representation of M . We write C (G) for the subset of Irr(G) consisting of supercuspidal
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representations. For any π ∈ Rep(G), we denote by π∨ the contragredient of π. (The sets Irr(G)
and C (G) are invariant under ∨.)

Let Π be a smooth representation ofG of finite length. The socle of Π is the largest semisimple
subrepresentation of Π. It is denoted by soc(Π). We say that Π is socle irreducible (SI ) if soc(Π)
is irreducible and occurs with multiplicity one in [Π].

2.2 The Zelevinsky–Aubert duality
We consider the map

DG : R(G) −→ R(G)

π �−→
∑
P

(−1)dimAM
[
IndGP (JacGP (π))

]
,

where P = MN runs over all standard parabolic subgroups of G. Aubert [Aub95] showed that if
π is irreducible, then there exists a sign ε ∈ {±1} such that π̂ = ε ·DG(π) is also an irreducible
representation. We call the map

Irr(G) → Irr(G)

π �→ π̂

the Zelevinsky–Aubert duality.
It has the following important properties.

(1) For any π ∈ Irr(G), the dual of π̂ is equal to π, that is, the map π �→ π̂ is an involution
[Aub95, Théorème 1.7(3)].

(2) If π ∈ C (G), then π̂ = π [Aub95, Théorème 1.7(4)].
(3) Let Θ ⊂ Δ and consider the standard parabolic subgroup P = PΘ with Levi decomposition

P = MN . Let w0 be the longest element in the set {w ∈W | w−1(Θ) > 0} and let P ′ be the
standard parabolic subgroup with Levi subgroup M ′ = w−1(M). Then we have (cf. [Aub95,
Théorème 1.7(2)])

JacGP ◦DG = Ad(w0) ◦DM ′ ◦ JacGP ′ . (2.1)

2.3 Representations of general linear groups
Set IrrGL :=

⋃
n≥0 Irr(GLn(F )), and let C GL ⊂ IrrGL be the subset of supercuspidal representa-

tions of GLn(F ) for every n > 0. We write RGL :=
⊕

n≥0 R(GLn(F )).
Let d1, . . . , dr be some positive integers. Let τi ∈ Rep(GLdi(F )) for 1 ≤ i ≤ r. It is customary

to denote the normalized parabolically induced representation by

τ1 × · · · × τr := Ind
GLd1+···+dr (F )

P (τ1 � · · ·� τr).
This product induces a Z-graded ring structure on RGL. We denote the multiplication by m. If
τ1 = · · · = τr = τ , we will write τ r = τ × · · · × τ (r times).

The Jacquet functor for GLm(F ) along the maximal parabolic subgroup P(d,m−d) with Levi

subgroup isomorphic to GLd(F ) × GLm−d(F ) is denoted by Jac(d,m−d) = JacGLm(F )
P(d,m−d) . It induces

a co-multiplication, that is, a ring homomorphism

m∗ : RGL −→ RGL ⊗ RGL

τ �−→
∑
n≥0

( ∑
n1+n2=n

[
Jac(n1,n2)(τ)

])
.
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We finally take

M∗ : RGL −→ RGL ⊗ RGL

to be the composition M∗ = (m⊗ 1) ◦ (·∨ ⊗m∗) ◦ s ◦m∗, where s : RGL ⊗ RGL → RGL ⊗ RGL

denotes the transposition s(
∑

i τi ⊗ τ ′i) =
∑

i τ
′
i ⊗ τi.

If τ ∈ IrrGL, there exist ρ1, . . . , ρr ∈ C GL such that τ is a subrepresentation of ρ1 × · · · × ρr.
The set scusp(π) := {ρ1, . . . , ρr} is uniquely determined by π and is called the supercuspidal
support of τ .

For π ∈ Rep(GLn(F )) and a character χ of F×, we denote by π · χ the representation
obtained from π by twisting by the character χ ◦ det. If ρ ∈ C GL, we denote by Zρ = {ρ| · |a |
a ∈ Z} the line of ρ.

A segment [x, y]ρ is a sequence of supercuspidal representations of the form

ρ| · |x, ρ| · |x−1, . . . , ρ| · |y,
where ρ ∈ C GL and x, y ∈ R with x− y ∈ Z and x ≥ y.

One can associate with a segment [x, y]ρ two irreducible representations of GLd(x−y+1)(F ).
We denote by Δρ[x, y] the Steinberg representation of GLd(x−y+1)(F ), i.e. the unique irreducible
subrepresentation of

ρ| · |x × ρ| · |x−1 × · · · × ρ| · |y,
and we also write Zρ[y, x] for its unique irreducible quotient. For example, when ρ = 1GL1(F ),
we have Zρ[−(n− 1)/2, (n− 1)/2] = 1GLn(F ).

The Steinberg representation Δρ[x, y] is an essentially discrete series, and all essentially
discrete series are of this form [Zel80, Theorem 9.3]. By convention, we take Δρ[x, x+ 1] =
Zρ[x+ 1, x] to be the trivial representation of the trivial group GL0(F ).

If the segments [x1, y1]ρ1 , . . . , [xr, yr]ρr are such that xi ≥ yi and x1 + y1 ≤ · · · ≤ xr + yr, then
the socle (Langlands subrepresentation)

L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]) := soc(Δρ1 [x1, y1] × · · · × Δρr [xr, yr])

is irreducible. When ρ1 = · · · = ρr, x1 < · · · < xr, y1 < · · · < yr and x1 ≡ · · · ≡ xr mod Z, we call
it a ladder representation. As a special case, when xi = x1 + i− 1 and yi = y1 + i− 1 for 1 ≤
i ≤ r, the ladder representation L(Δρ[x1, y1], . . . ,Δρ[xr, yr]) is also called a Speh representation.

The Jacquet modules of Δρ[x, y] and Zρ[y, x] are given by

Jac(d,d(x−y))(Δρ[x, y]) = ρ| · |x �Δρ[x− 1, y],

Jac(d,d(x−y))(Zρ[y, x]) = ρ| · |y � Zρ[y + 1, x],

respectively (see [Zel80, Propositions 3.4 and 9.5]). For Jacquet modules of ladder representa-
tions, see [KL12, Theorem 2.1].

2.4 Representations of classical groups
In this paper, we let Gn be either the split special orthogonal group SO2n+1(F ) or the symplectic
group Sp2n(F ) of rank n. Set IrrG :=

⋃
n≥0 Irr(Gn) and RG :=

⊕
n≥0 R(Gn), where the union

and the direct sum are taken over groups of the same type. Let CG ⊂ IrrG be the subset of
supercuspidal representations of Gn for every n ≥ 0 of the same type.

Fix a rational Borel subgroup of Gn. Let P be the standard parabolic subgroup of Gn
with Levi subgroup isomorphic to GLd1(F ) × · · · × GLdr(F ) ×Gn0 . Let π ∈ Rep(Gn0) and
let τi ∈ Rep(GLdi(F )) for 1 ≤ i ≤ r. We denote the normalized parabolically induced
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representation by

τ1 × · · · × τr � π := IndGnP (τ1 � · · ·� τr � π).

As in the case of general linear groups, the Jacquet functors give rise, at the level of Grothendieck
groups, to a map

μ∗ : RG −→ RGL ⊗ RG

R(Gn)  π �−→
n∑
k=0

[
JacGnPk (π)

]
,

where Pk is the standard parabolic subgroup of Gn with Levi subgroup isomorphic to GLk(F ) ×
Gn−k. The geometric lemma at the level of Grothendieck groups is commonly known in this case
as Tadić’s formula.

Proposition 2.1 (Tadić’s formula [Tad95]). For τ ∈ RGL and π ∈ RG, we have

μ∗(τ � π) = M∗(τ) � μ∗(π).

We will also use the MVW-functor [MVW87]. It is a covariant functor

MVW: Rep(Gn) −→ Rep(Gn)

Π �−→ ΠMVW

satisfying the following properties:

• if π ∈ Irr(Gn), then πMVW is isomorphic to π∨;
• (τ � π)MVW ∼= τ � πMVW for any π ∈ Rep(Gn0) and any τ ∈ Rep(GLd(F )) with n = n0 + d.

The Zelevinsky–Aubert duality extends by linearity to a map DG : RG → RG. With this
notation, the compatibility of the duality with Jacquet functors in (2.1) stands:

μ∗ ◦DG = dG ◦ μ∗, (2.2)

where

dG : RGL ⊗ RG −→ RGL ⊗ RG∑
i

τi ⊗ πi �−→
∑
i

τ̂∨i ⊗ π̂i.

Let [x1, y1]ρ1 , . . . , [xr, yr]ρr be some segments with ρi ∈ C (GLdi(F )) being unitary for 1 ≤
i ≤ r, and let πtemp be an irreducible tempered representation of Gn0 . A parabolically induced
representation of the form

Δρ1 [x1, y1] × · · · × Δρr [xr, yr] � πtemp

is called a standard module if x1 + y1 ≤ · · · ≤ xr + yr < 0.
The Langlands classification says that any standard module is SI, and that any irreducible

representation π of Gn is the unique irreducible subrepresentation (Langlands subrepresentation)
of a standard module Δρ1 [x1, y1] × · · · × Δρr [xr, yr] � πtemp with n = n0 +

∑r
i=1 di(xi − yi + 1),

which is unique up to isomorphism. For more details, see [Kon03]. In this case, we write
π = L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr];πtemp) and refer to (Δρ1 [x1, y1], . . . ,Δρr [xr, yr];πtemp) as the
Langlands data of π.
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2.5 The Jantzen decomposition
If π ∈ Irr(Gn), there exist ρ1, . . . , ρr ∈ C GL and σ ∈ CG such that π is a subrepresentation of
ρ1 × · · · × ρr � σ. The set

scusp(π) := {ρ1, . . . , ρr, ρ
∨
1 , . . . , ρ

∨
r , σ}

is uniquely determined by π and is called the supercuspidal support of π. For σ ∈ CG, we put
Irrσ := {π ∈ IrrG | σ ∈ scusp(π)}.

In this paragraph, we fix a supercuspidal representation σ ∈ CG.

Definition 2.2. Recall that Zρ = {ρ| · |a | a ∈ Z} is the line of ρ for ρ ∈ C GL.

• We say that ρ is good if Zρ = Zρ∨ and ρ′ � σ is reducible for some ρ′ ∈ Zρ.
• We say that ρ is bad if Zρ = Zρ∨ and ρ′ � σ is irreducible for all ρ′ ∈ Zρ.
• We say that ρ is ugly if Zρ �= Zρ∨ .

Every supercuspidal representation is either good, bad or ugly.

Remark 2.3. It is known that

• the notions of good and bad are independent of σ;
• if ρ′| · |z is good or bad with ρ′ unitary and z ∈ R, then ρ′ is self-dual and z ∈ (1/2)Z;
• if ρ′| · |z1 , ρ′| · |z2 are both good or both bad, then z1 − z2 ∈ Z.

See Remark 5.1 below.

Definition 2.4.

(1) We say that two good (respectively bad) supercuspidal representations ρ and ρ′ are line
equivalent if Zρ = Zρ′ . We denote by C good (respectively C bad) a set of representatives of
good (respectively bad) representations under this equivalence relation.

(2) Similarly, we say that two ugly representations ρ and ρ′ are line equivalent if Zρ ∪ Zρ∨ =
Zρ′ ∪ Zρ′∨ . We denote by C ugly a set of representatives of ugly representations under this
equivalence relation.

Definition 2.5. Let π ∈ Irrσ.

(1) If

scusp(π) ⊂
( ⋃
ρ∈C good

Zρ

)
∪ {σ},

we say that π is of good parity. We write Irrgood
σ for the set of such representations.

(2) If scusp(π) ⊂ Zρ ∪ {σ} for some bad representation ρ, we say that π is of bad parity (or of
ρ-bad parity if we want to specify ρ). We write Irrρ-bad

σ for the set of such representations.
(3) If scusp(π) ⊂ (Zρ ∪ Zρ∨) ∪ {σ} for some ugly representation ρ, we say that π is ugly (or

ρ-ugly if we want to specify ρ). We write Irrρ-ugly
σ for the set of such representations.

Ugly representations are easy to deal with owing to the following proposition, which reduces
every problem to a similar problem for general linear groups.

Proposition 2.6. Let π ∈ Irrρ-ugly
σ . Then there exists an irreducible representation τ of GLm(F )

with scusp(τ) ⊂ Zρ such that π = τ � σ (irreducible induction).
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Proof. We can write

π ↪→ ρ| · |x1 × · · · × ρ| · |xr × ρ∨| · |−y1 × · · · × ρ∨| · |−ys � σ

for some xi, yj ∈ Z. There exist irreducible subquotients τ1 of ρ| · |x1 × · · · × ρ| · |xr and τ2 of
ρ∨| · |−y1 × · · · × ρ∨| · |−ys such that this inclusion factors through π ↪→ τ1 × τ2 � σ. As ρ is ugly,
we can apply [LT20, Lemma 6.2] to τ2 � σ and see that τ2 � σ is irreducible. Hence π ↪→ τ1 ×
τ∨2 � σ. Take an irreducible subquotient τ of τ1 × τ∨2 such that π ↪→ τ � σ. Then by [LT20,
Lemma 6.2] again, we conclude that τ � σ is irreducible. �

Remark 2.7. More precisely, by the Langlands classification, one can take τ1 and τ2 in the proof
of this proposition so that

τ1 = L(Δρ[x′1, y
′
1], . . . ,Δρ[x′r′ , y

′
r′ ]), τ2 = L(Δρ∨ [x′′1, y

′′
1 ], . . . ,Δρ∨ [x′′r′′ , y

′′
r′′ ])

with x′1 + y′1 ≤ · · · ≤ x′r′ + y′r′ ≤ 0 and x′′1 + y′′1 ≤ · · · ≤ x′′r′′ + y′′r′′ ≤ 0. Then since τ∨2 =
L(Δρ[−y′′r′′ ,−x′′r′′ ], . . . ,Δρ[−y′′1 ,−x′′1]) and π = soc(τ1 × τ∨2 � σ) ↪→ soc(τ1 × τ∨2 ) � σ, one can
take τ to be

τ := soc(τ1 × τ∨2 ) = L(Δρ[x′1, y
′
1], . . . ,Δρ[x′r′ , y

′
r′ ],Δρ[−y′′r′′ ,−x′′r′′ ], . . . ,Δρ[−y′′1 ,−x′′1]).

Let π ∈ Irrσ. Then Jantzen [Jan97] defined representations πgood ∈ Irrgood
σ , πρ-bad ∈ Irrρ-bad

σ

and πρ-ugly ∈ Irrρ-ugly
σ as follows:

• πgood is the unique representation in Irrgood
σ such that π ↪→ τ × πgood with no good

representations in scusp(τ);
• if ρ is a bad supercuspidal representation, then πρ-bad is the unique representation in Irrρ-bad

σ

such that π ↪→ τ × πρ-bad with scusp(τ) ∩ Zρ = ∅;
• if ρ is an ugly supercuspidal representation, then πρ-ugly is the unique representation in Irrρ-ugly

σ

such that π ↪→ τ × πρ-ugly with scusp(τ) ∩ (Zρ ∪ Zρ∨) = ∅.
The following theorem is a special case of Jantzen’s decomposition.

Theorem 2.8 [Jan97, Theorem 9.3]. The map

Ψ: Irrσ −→ Irrgood
σ �

( ⊔
ρ∈C bad

Irrρ-bad
σ

)
�
( ⊔
ρ∈C ugly

Irrρ-ugly
σ

)
π �−→ (

πgood, {πρ-bad}ρ, {πρ-ugly}ρ
)

is bijective. Moreover, it commutes with the Zelevinsky–Aubert duality in the sense that

Ψ(π̂) =
(
π̂good, {π̂ρ-bad}ρ, {π̂ρ-ugly}ρ

)
.

In practice, this theorem enables us to reduce the problem of making the Zelevinsky–Aubert
duality explicit to the case where the representation is either ugly or of good or bad parity.

3. The theory of ρ-derivatives

Let d > 0 be an integer. In this section, we fix ρ ∈ C (GLd(F )). We recall the definition of
ρ-derivatives in [LT20] and introduce the notions of Δρ[0,−1]-derivative and Zρ[0, 1]-derivative.
One should not confuse these notions with the Bernstein–Zelevinsky notion of derivatives.
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3.1 Definitions
We treat first the case of general linear groups. For τ ∈ Rep(GLn(F )), define semisimple
representations L(k)

ρ (τ) and R(k)
ρ (τ) of GLn−dk(F ) so that[

Jac(dk,n−dk)(τ)
]

= ρk � L(k)
ρ (τ) +

∑
i

τi � σi,

[
Jac(n−dk,dk)(τ)

]
= R(k)

ρ (τ)� ρk +
∑
i

σ′i � τ ′i ,

where τi and τ ′i are irreducible representations of GLdk(F ) which are not isomorphic to ρk. We call
L

(k)
ρ (τ) (respectively R

(k)
ρ (τ)) the kth left ρ-derivative (respectively the kth right ρ-derivative)

of τ .

Definition 3.1.

(1) If L(k)
ρ (τ) �= 0 but L(k+1)

ρ (τ) = 0, we say that L(k)
ρ (τ) is the highest left ρ-derivative. We

define the highest right ρ-derivative similarly.
(2) When L

(1)
ρ (τ) = 0 (respectively R

(1)
ρ (τ) = 0), we say that τ is left ρ-reduced (respec-

tively right ρ-reduced).

Similarly we now treat the case of Gn. Again let k ≥ 0, and now let Pdk be the standard
parabolic subgroup of Gn with Levi subgroup of the form GLdk(F ) ×Gn−dk. For Π ∈ Rep(Gn),
define a semisimple representation D(k)

ρ (Π) of Gn−dk so that[
JacGnPdk(Π)

]
= ρk �D(k)

ρ (Π) +
∑
i

τi �Πi,

where τi is an irreducible representation of GLdk(F ) which is not isomorphic to ρk. We call
D

(k)
ρ (Π) the kth ρ-derivative of Π.

Definition 3.2.

(1) If D(k)
ρ (Π) �= 0 but D(k+1)

ρ (Π) = 0, we say that D(k)
ρ (Π) is the highest ρ-derivative.

(2) When D(1)
ρ (Π) = 0, we say that Π is ρ-reduced.

3.2 The non-self-dual case
If π is irreducible and ρ is not self-dual, then the highest ρ-derivative D

(k)
ρ (π) is irreducible

and π is isomorphic to the unique irreducible subrepresentation of ρk �D
(k)
ρ (π) (see [Jan14,

Lemma 3.1.3] and [Ato22b, Proposition 2.7]). Using these properties, we can show the following.

Proposition 3.3. Let π be an irreducible representation of Gn and r a non-negative integer. If
ρ is not self-dual, then ρr � π is SI.

Proof. Consider the highest ρ-derivative D(k)
ρ (π). If π′ ↪→ ρr � π, then π′ ↪→ ρk+r �D

(k)
ρ (π). In

particular, D(k+r)
ρ (π′) = D

(k)
ρ (π). However, since

D(k+r)
ρ

(
ρk+r �D(k)

ρ (π)
)

= D(k)
ρ (π)

by Tadić’s formula (Proposition 2.1), we see that π′ is determined uniquely. Hence soc(ρr � π)
is irreducible and satisfies

D(k+r)
ρ

(
soc(ρr � π)

)
= D(k+r)

ρ

(
ρr � π

)
= D(k)

ρ (π).

These equations imply that soc(ρr � π) appears with multiplicity one in [ρr � π]. �
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We set

S(r)
ρ (π) = S(1)

ρ ◦ · · · ◦ S(1)
ρ︸ ︷︷ ︸

r times

(π) = soc(ρr � π)

for any π ∈ Irr(Gn).

3.3 The self-dual case
Recall from [Ato22b, Proposition 2.7] that the highest ρ-derivative D

(k)
ρ (π) of an irreducible

representation is isotypic, i.e. D(k)
ρ (π) = m · π0 with some irreducible representation π0 and a

certain multiplicity m > 0. In this case, we have π ↪→ ρk � π0, but soc(ρk � π0) can be reducible.
We give a criterion for ρr � π being SI.

Proposition 3.4. Suppose that ρ is self-dual. Let π ∈ Irr(Gn), and let r be a positive integer.
The following are equivalent:

(a) ρr � π is SI;
(b) ρr � π is irreducible;

(c) ρr � π has an irreducible subquotient π′ such that D
(k+r)
ρ (π′) = 2r ·D(k)

ρ (π), where D
(k)
ρ (π)

is the highest ρ-derivative of π.

Proof. We use here the MVW-functor; see § 2.4. As we assume that ρ is self-dual, if an irreducible
representation π′ satisfies π′ ↪→ ρr � π, by taking the MVW-functor and the contragredient
functor we have ρr � π � π′.

Now we assume that soc(ρr � π) is irreducible but ρr � π is reducible. The above remark
implies that the quotient (ρr � π)/soc(ρr � π) has an irreducible quotient isomorphic to
soc(ρr � π). This means that soc(ρr � π) appears with multiplicity greater than one in [ρr � π].
Hence (a) implies (b). As the opposite implication is obvious, (a) and (b) are equivalent.

Note that D(k+r)
ρ (ρr � π) = 2r ·D(k)

ρ (π). In particular, (b) implies (c). On the other hand,
let π′ be an irreducible subquotient of ρr � π such that D(k+r)

ρ (π′) = 2r ·D(k)
ρ (π). Then π′ must

be a subrepresentation of ρr � π, and (ρr � π)/π′ has no irreducible quotient. Hence π′ = ρr � π
so that ρr � π is irreducible. �

3.4 Δρ[0, −1]-derivatives and Zρ[0, 1]-derivatives
In the case where ρ is self-dual, ρ-derivatives are difficult. Therefore, we define some other
derivatives in this paragraph. These will be key ingredients in making the Zelevinsky–Aubert
duality explicit. In this subsection we assume that ρ ∈ C (GLd(F )) is self-dual.

Let Π ∈ Rep(Gn). Define the Δρ[0,−1]-derivative D
(k)
Δρ[0,−1](Π) and the Zρ[0, 1]-derivative

D
(k)
Zρ[0,1](Π) by the semisimple representations of Gn−2dk satisfying[

JacGnP2dk
(π)
]

= Δρ[0,−1]k �D(k)
Δρ[0,−1](π) + Zρ[0, 1]k �D(k)

Zρ[0,1](π) +
∑
i

τi � πi,

where τi ∈ Irr(GL2dk(F )) such that τi �∼= Δρ[0,−1]k, Zρ[0, 1]k.
Typically, when the supercuspidal representation ρ is clear from the context, we will

write [0,−1]-derivative for short instead of Δρ[0,−1]-derivative, and [0, 1]-derivative instead
of Zρ[0, 1]-derivative. We also write D

(k)
[0,−1](Π) := D

(k)
Δρ[0,−1](Π) and D

(k)
[0,1](Π) := D

(k)
Zρ[0,1](Π).

Similar to Definition 3.2, we define the notion of highest [0,−1]-derivative (respectively highest
[0, 1]-derivative) and the property of being Δρ[0,−1]-reduced (respectively Zρ[0, 1]-reduced).

390

https://doi.org/10.1112/S0010437X22007904 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007904


The explicit Zelevinsky–Aubert duality

Lemma 3.5. Fix ρ ∈ C (GLd(F )) and ε ∈ {±1}. Let π ∈ Irr(Gn). Suppose that π is ρ| · |ε-
reduced. Let D

(k0)
ρ (π) = m · π0 be the highest ρ-derivative of π (with multiplicity m > 0) and let

π1 = D
(k1)
ρ|·|ε (π0) be the highest ρ| · |ε-derivative of π0. Then the following hold:

(1) k0 ≥ k1;

(2) D
(k1)
[0,ε](π) is the highest [0, ε]-derivative;

(3) D
(k1)
[0,ε](π) is ρ| · |ε-reduced.

Proof. Note that π ↪→ ρk0 × (ρ| · |ε)k1 � π1. If k1 > k0, then no irreducible subquotient of ρk0 ×
(ρ| · |ε)k1 is left ρ| · |ε-reduced. Since π is ρ| · |ε-reduced, we must have k0 ≥ k1 and

π ↪→
{
Zρ[0, 1]k1 × ρk0−k1 � π1 if ε = 1,
Δρ[0,−1]k1 × ρk0−k1 � π1 if ε = −1.

Now we claim that π1 is ρ-reduced. This is trivial when k1 = 0. If k1 > 0 and π1 is not
ρ-reduced, since π0 is ρ-reduced, we can find a representation π′1 �= 0 such that

π0 ↪→
{

Δρ[1, 0] � π′1 if ε = 1,
Zρ[−1, 0] � π′1 if ε = −1.

Since π ↪→ ρk0 � π0, this implies that D(1)
ρ|·|ε(π) �= 0, which is a contradiction, so we obtain the

claim.
Since π1 is ρ-reduced and ρ| · |ε-reduced, we see that D

(1)
[0,ε](ρ

k0−k1 � π1) = 0 by Tadić’s

formula (Proposition 2.1). Hence D(k1)
[0,ε](π) is the highest [0, ε]-derivative. Since it is a subrepre-

sentation of [ρk0−k1 � π1], we see that D(k1)
[0,ε](π) is ρ| · |ε-reduced. �

In the next proposition, we will use the following simple lemma on representations of general
linear groups.

Lemma 3.6. Let k > 0 and let τ ∈ Rep(GL2dk(F )). Suppose that

• τ is left ρ| · |−1-reduced (respectively left ρ| · |1-reduced);
• [τ ] contains Δρ[0,−1]k (respectively Zρ[0, 1]k).

Then there is a surjection τ � Δρ[0,−1]k (respectively τ � Zρ[0, 1]k).

Proof. We may assume that all irreducible constituents of τ have the same supercuspidal sup-
port. They are all left ρ| · |−1-reduced (respectively left ρ| · |1-reduced), as is τ . By [Zel80,
Example 11.3], the irreducible representations of GL2dk(F ) which have the same supercus-
pidal support as Δρ[0,−1]k (respectively Zρ[0, 1]k) are of the form Δρ[0,−1]a × Zρ[−1, 0]b

(respectively Δρ[1, 0]a × Zρ[0, 1]b) for some a, b ≥ 0 with a+ b = k. Among them, Δρ[0,−1]k

(respectively Zρ[0, 1]k) is characterized as the only left ρ| · |−1-reduced (respectively left ρ| · |1-
reduced) representation. Therefore, we have τ � Δρ[0,−1]k (respectively τ � Zρ[0, 1]k). �

Now we can prove the irreducibility of the highest [0,±1]-derivatives of ρ| · |±1-reduced
irreducible representations.

Proposition 3.7. Let π ∈ Irr(Gn). Suppose that π is ρ| · |−1-reduced (respectively ρ| · |1-
reduced). Then the highest [0,−1]-derivative D

(k)
[0,−1](π) (respectively the highest [0, 1]-derivative

D
(k)
[0,1](π)) is irreducible. Moreover, Δρ[0,−1]r � π (respectively Zρ[0, 1]r � π) is SI.
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Proof. We prove the assertions only for [0, 1]. By the previous lemma, there exists an irreducible
subrepresentation of π[0,1] of the highest [0, 1]-derivative D(k)

[0,1](π) such that

JacGnP2dk
(π)� Zρ[0, 1]k � π0

or, equivalently,

π ↪→ Zρ[0, 1]k � π0.

Since π is ρ| · |1-reduced, so is π0. Hence, by Tadić’s formula (Proposition 2.1) for

[JacGnP2dk
(Zρ[0, 1]k � π0)],

we see that

D
(k)
[0,1](Zρ[0, 1]k � π0) = π0.

Therefore, 0 �= D
(k)
[0,1](π) ⊂ π0 so that D(k)

[0,1](π) = π0. Moreover, this implies that Zρ[0, 1]k � π0

is SI.
When π′ is an irreducible subrepresentation of Zρ[0, 1]r � π, we have π′ ⊂ soc(Zρ[0, 1]k+r

� π0). In particular, π′ is unique and appears with multiplicity one in [Zρ[0, 1]k+r � π0] and
hence in [Zρ[0, 1]r � π]. Therefore, Zρ[0, 1]r � π is SI. �

For simplicity, we set

S
(r)
[0,1](π) = S

(r)
Zρ[0,1](π) := soc(Zρ[0, 1]r � π)

for an irreducible representation π of Gn which is ρ| · |1-reduced.
The highest [0,−1]-derivatives are easy in a special case.

Proposition 3.8. Let π = L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr];πtemp) be an irreducible representation
of Gn. Suppose that π is ρ| · |z-reduced for all z �= 0 and that there exists i ∈ {1, . . . , r} such that

ρi ∼= ρ. Then min{xi | ρi ∼= ρ} = 0, and the highest [0,−1]-derivative D
(k)
[0,−1](π) of π is given by

D
(k)
[0,−1](π) = L(Δρ1 [z1, y1], . . . ,Δρr [zr, yr];πtemp)

with

zi =

{
−2 if ρi ∼= ρ, xi = 0,
xi otherwise.

In particular,

k =
∣∣{i ∈ {1, . . . , r} | ρi ∼= ρ, xi = 0}∣∣ ≥ 1.

Proof. With x := min{xi | ρi ∼= ρ}, we see that π is not ρ| · |x-reduced. Hence we must have
x = 0. Moreover, we note that if ρi ∼= ρ and xi = 0, then yi ≤ −1 since xi + yi < 0.

We remark that D(l)
ρ (πtemp) is tempered since ρ is self-dual (see [Ato20, Theorem 4.2(1)

and (4)]), so D
(l)
ρ (πtemp) is ρ| · |−1-reduced by Casselman’s criterion (see e.g. [Kon03,

Lemma 2.4]). Hence by Lemma 3.5, with k as in the statement, D(k)
[0,−1](π) is the highest

[0,−1]-derivative.
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Set τ := L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]). Then π ↪→ τ � πtemp. Since min{xi | ρi ∼= ρ} = 0 and
yi < 0, we see that τ ↪→ Δρ[0,−1]k × τ ′ with τ ′ := L(Δρ1 [z1, y1], . . . ,Δρr [zr, yr]). Hence

π ↪→ Δρ[0,−1]k × τ ′ � πtemp.

By the Frobenius reciprocity, we have a non-zero map

JacGnP2dk
(π) → Δρ[0,−1]k � (τ ′ � πtemp),

which must factor through a non-zero map

Δρ[0,−1]k �D(k)
[0,−1](π) → Δρ[0,−1]k � (τ ′ � πtemp).

Since D(k)
[0,−1](π) is irreducible by Proposition 3.7 and since τ ′ � πtemp is SI, we deduce that

D
(k)
[0,−1](π) = soc(τ ′ � πtemp).

This completes the proof. �

3.5 The Zelevinsky–Aubert duality and derivatives
We deduce the following compatibility between derivatives and duality.

Proposition 3.9. Let π ∈ Irr(Gn) and ρ ∈ C (GLd(F )).

(1) If D
(k)
ρ (π) is the highest ρ-derivative, then

D(k)
ρ (π)̂ = D

(k)
ρ∨ (π̂).

(2) If ρ is self-dual, π is ρ| · |−1-reduced and D
(k)
Δρ[0,−1](π) is the highest Δρ[0,−1]-derivative,

then

D
(k)
Δρ[0,−1](π)̂ = D

(k)
Zρ[0,1](π̂).

Proof. This is a consequence of the commutativity of the Jacquet functor with the duality;
see (2.2). �

4. The algorithm

In this section we give an algorithm for computing the Zelevinsky–Aubert dual of an irreducible
representation π. Thanks to Jantzen’s decomposition (see § 2.5), we can reduce π to the case
where π is either ugly or of good or bad parity. Then we proceed as follows.

Algorithm 4.1. Assume that we can compute π̂0 for all irreducible representations of Gn0 for
n0 < n. Let π be an irreducible representation of Gn.

(1) If there exists ρ ∈ C GL such that ρ is not self-dual and such that D(k)
ρ (π) is the highest

ρ-derivative with k ≥ 1, then

π̂ = S
(k)
ρ∨
(
D(k)
ρ (π)̂

)
.

(2) Otherwise, and if π is not tempered, one can find ρ ∈ C GL such that ρ is self-dual and
D

(k)
Δρ[0,−1](π) is the highest Δρ[0,−1]-derivative with k ≥ 1. Then

π̂ = S
(k)
Zρ[0,1]

(
D

(k)
Δρ[0,−1](π)̂

)
.

(3) Otherwise, and if π is tempered, one can use an explicit formula for π̂ (Proposition 5.4
below).
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In order to run the algorithm, we need the following formulas.

• Explicit formulas for the highest ρ-derivativeD(k)
ρ (π) and for the socle S(k)

ρ (π) for any ρ ∈ C GL

which is not self-dual: these are given in Proposition 6.1 if ρ is ugly or if the exponent of ρ is
negative, and in Theorem 7.1 (respectively Theorem 7.4) if the exponent of ρ is positive and
ρ is in the good (respectively bad) case.

• Explicit formulas for the Δρ[0,−1]-derivative D(k)
Δρ[0,−1](π) and the socle S(k)

Zρ[0,1](π) when ρ

is self-dual and π is non-tempered and ρ| · |z-reduced for all z �= 0: these are established in
Proposition 3.8 for the Δρ[0,−1]-derivative and in Theorem 8.1 for the socle, respectively.

• An explicit formula for π̂ when π is tempered such that π is ρ| · |z-reduced for all z �= 0: this
is given in Proposition 5.4.

In the rest of the paper, we will prove all these formulas.

5. The endoscopic classification

In §§ 7.1 and 8.3 below, we will give explicit formulas for several derivatives and socles in the good-
parity case. In these formulas, certain special irreducible representations πA play an important
and mysterious role. These special representations πA are of Arthur type, and the mystery comes
from Arthur’s theory of the endoscopic classification [Art13]. In this section, we review his theory.

5.1 A-parameters
We denote by WF the Weil group of F . A homomorphism

ψ : WF × SL2(C) × SL2(C) → GLn(C)

is called an A-parameter for GLn(F ) if

• ψ(Frob) ∈ GLn(C) is semisimple and all its eigenvalues have absolute value 1, where Frob is
a fixed (geometric) Frobenius element;

• ψ|WF is smooth, i.e. has an open kernel;
• ψ|SL2(C) × SL2(C) is algebraic.

The local Langlands correspondence for GLd(F ) asserts that there is a canonical bijection
between the set of irreducible unitary supercuspidal representations of GLd(F ) and the set of
irreducible d-dimensional representations of WF of bounded image. We identify these two sets
and use the symbol ρ for their elements.

Any such irreducible representation of WF × SL2(C) × SL2(C) is of the form ρ� Sa � Sb,
where Sa is the unique irreducible algebraic representation of SL2(C) of dimension a. We write ρ�
Sa = ρ� Sa � S1 and ρ = ρ� S1 � S1 for short. For an A-parameter ψ, the multiplicity of ρ�
Sa � Sb in ψ is denoted by mψ(ρ� Sa � Sb). When ψ =

⊕
i∈I ρi � Sai � Sbi is an A-parameter

of GLn(F ), we define τψ by the product of Speh representations (see § 2.3)

τψ := �
i∈I

L

(
Δρi

[
ai − bi

2
,−ai + bi

2
+ 1
]
, . . . ,Δρi

[
ai + bi

2
− 1,−ai − bi

2

])
.

Now we consider a split odd special orthogonal group SO2n+1(F ) or a symplectic group
Sp2n(F ). We call ψ an A-parameter for SO2n+1(F ) if it is an A-parameter for GL2n(F ) of
symplectic type, i.e.

ψ : WF × SL2(C) × SL2(C) → Sp2n(C).
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Similarly, ψ is called an A-parameter for Sp2n(F ) if it is an A-parameter for GL2n+1(F ) of
orthogonal type with the trivial determinant, i.e.

ψ : WF × SL2(C) × SL2(C) → SO2n+1(C).

For Gn = SO2n+1(F ) (respectively Gn = Sp2n(F )), we let Ψ(Gn) be the set of Ĝn-conjugacy
classes of A-parameters for Gn, where Ĝn = Sp2n(C) (respectively Ĝn = SO2n+1(C)). We say
that

• ψ ∈ Ψ(Gn) is tempered if the restriction of ψ to the second SL2(C) is trivial;
• ψ ∈ Ψ(Gn) is of good parity if ψ is a sum of irreducible self-dual representations of the same

type as ψ.

We denote by Ψtemp(Gn) := Φtemp(Gn) (respectively Ψgp(Gn)) the subset of Ψ(Gn) con-
sisting of tempered A-parameters (respectively A-parameters of good parity). Also, we put
Φgp(Gn) := Φtemp(Gn) ∩ Ψgp(Gn). Set Ψ∗(G) :=

⋃
n≥0 Ψ∗(Gn) and Φ∗(G) :=

⋃
n≥0 Φ∗(Gn) for

∗ ∈ {∅, temp, gp}.
For ψ ∈ Ψ(G), a component group Sψ is defined. We recall the definition only in the

case where ψ ∈ Ψgp(G). Hence we can write ψ =
⊕r

i=1 ψi, where ψi is an irreducible self-dual
representation of the same type as ψ. We define an enhanced component group Aψ as

Aψ :=
r⊕
i=1

(Z/2Z)αψi .

Specifically, Aψ is a free Z/2Z-module of rank r with a basis {αψi} associated with the irre-
ducible components {ψi}. Define the component group Sψ as the quotient of Aψ by the subgroup
generated by the elements

• zψ :=
∑r

i=1 αψi ; and
• αψi + αψi′ such that ψi ∼= ψi′ .

Let Ŝψ and Âψ be the Pontryagin duals of Sψ and Aψ, respectively. Via the canonical surjection
Aψ � Sψ, we may regard Ŝψ as a subgroup of Âψ. For η ∈ Âψ, we write η(αψi) = η(ψi).

Let Irrunit(Gn) (respectively Irrtemp(Gn)) be the set of equivalence classes of irre-
ducible unitary (respectively tempered) representations of Gn. For ψ ∈ Ψ(Gn), Arthur [Art13,
Theorem 2.2.1] defined a multiset Πψ over Irrunit(Gn), which is called the A-packet for Gn
associated with ψ. It has the following properties.

• The multiset Πψ is actually a (multiplicity-free) subset of Irrunit(Gn) (Mœglin [Mœg11]).
• There exists a map Πψ → Ŝψ, π �→ 〈· , π〉ψ. If φ ∈ Φtemp(G), it is a bijection. When π ∈ Πφ

corresponds to η ∈ Ŝφ, we write π = π(φ, η).
• There is a canonical decomposition into a disjoint union

Irrtemp(Gn) =
⊔

φ∈Φtemp(Gn)

Πφ.

• If ψ = ψ1 ⊕ ψ0 ⊕ ψ∨
1 for some irreducible representation ψ1, then there exists a canonical

injection Sψ0 ↪→ Sψ, and

τψ1 � π0
∼=

⊕
π∈Πψ

〈· ,π〉ψ |Sψ0
=〈· ,π0〉ψ0

π

for every π0 ∈ Πψ0 (see [Art13, Proposition 2.4.3]).
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Remark 5.1. Let ρ ∈ C GL be unitary and x ≥ 0 a real number. Then the following statements
are equivalent.

(1) For any π(φ, η) with φ ∈ Φgp(G) and η ∈ Ŝφ, there exists m ∈ Z such that ρ| · |x+m � π(φ, η)
is reducible.

(2) For some π(φ, η) with φ ∈ Φgp(G) and η ∈ Ŝφ, there exists m ∈ Z such that ρ| · |x+m �

π(φ, η) is reducible.
(3) We have that x ∈ (1/2)Z and ρ� S2x+1 is self-dual of the same type as elements of Φgp(G),

i.e.
• x ∈ Z and ρ is self-dual of the same type as elements of Φgp(G); or
• x ∈ (1/2)Z\Z and ρ is self-dual of the opposite type to elements of Φgp(G).

This follows, for example, from [MW12, Théorème (i)] and [Jan18b, Theorem 4.7]. In particular,
ρ| · |x is good in the sense of Definition 2.2 if and only if ρ� S2x+1 is self-dual of the same type as
elements of Φgp(G). Also, an irreducible representation π = L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr];πtemp)
is of good parity if and only if πtemp = π(φ, η) with φ ∈ Φgp(G) and ρi � S2|xi|+1 is self-dual of
the same type as φ for all i = 1, . . . , r.

5.2 A special example
Now we consider a special A-parameter of the form

ψ = φ⊕ (ρ� S2x � S2)t

for t ≥ 1, φ ∈ Φgp(G) and x ∈ (1/2)Z with x > 0 such that ρ� S2x+1 is self-dual of the same
type as φ.

For l ∈ Z/2Z and for η in a certain subset Ŝψ,l of Ŝψ (depending on l), we define π(ψ, l, η)
as follows. When l = 1, we set Ŝψ,1 := Ŝφ = {η ∈ Ŝψ | η(ρ� S2x � S2) = 1} and

π(ψ, 1, η) := L(Δρ[x− 1,−x]t;π(φ, η)).

When l = 0 and x ≥ 1, we let Ŝψ,0 be the subset of Ŝψ consisting of η that satisfy

• η(ρ� S2x � S2) = η(ρ� S2x−1) if ρ� S2x−1 ⊂ φ;
• η(ρ� S2x � S2) = (−1)tη(ρ� S2x+1) if ρ� S2x+1 ⊂ φ;
• η(zφ) = (−1)t.

When l = 0 and x = 1/2, we let Ŝψ,0 be the subset of Ŝψ consisting of η that satisfy

• η(ρ� S1 � S2) = −1;
• η(ρ� S2) = (−1)t if ρ� S2 ⊂ φ;
• η(zφ) = (−1)t.

For η ∈ Ŝψ,0, we define

π(ψ, 0, η) := L
(
Δρ[x− 1,−x]t−1;π(φ+ ρ� (S2x−1 + S2x+1), η)

)
.

Here, we regard η as a character of the component group of φ+ ρ� (S2x−1 + S2x+1) by setting{
η(ρ� S2x−1) = (−1)tη(ρ� S2x+1) = η(ρ� S2x � S2) if x ≥ 1,
η(ρ� S2) = (−1)t if x = 1/2.

By specifying Mœglin’s construction of Πψ, we have the following.
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Proposition 5.2. Let ψ = φ⊕ (ρ� S2x � S2)t ∈ Ψgp(G) with t ≥ 1. Then

Πψ =
{
π(ψ, l, η)

∣∣ l ∈ Z/2Z, η ∈ Ŝψ,l
}
.

Moreover, the map Πψ → Ŝψ is given by 〈· , π(ψ, l, η)〉ψ = εl,η, where

εl,η(ρ� Sd) = η(ρ� Sd),

εl,η(ρ� S2x � S2) =

{
(−1)l−1 if x ≥ 1,
η(ρ� S1 � S2) if x = 1/2.

Proof. The A-packet Πψ was constructed by Mœglin explicitly; see [Xu17a, § 8] for details. For
x ≥ 1, its construction was computed in [Ato22b, Proposition 3.13]. The same calculation can be
applied to x = 1/2. By [Xu17a, Corollary 8.10], the map Πψ → Ŝψ is given by 〈· , π(ψ, l, η)〉ψ =

εl,η · εM/W
ψ for some character ε

M/W
ψ ∈ Ŝψ. By definition (see [Xu17a, Definitions 5.2, 5.5

and 8.1]), one can easily see that εM/W
ψ = 1 in our case. �

Using this description, we obtain the formula for the highest ρ| · |x-derivatives and socles.

Theorem 5.3. Fix φ ∈ Φgp(G) and write m = mφ(ρ� S2x+1) and m′ = mφ(ρ� S2x−1).
Consider ψ = φ⊕ (ρ� S2x � S2)t ∈ Ψgp(G) with t ≥ 0. Let π(ψ, l, η) ∈ Πψ be such that η(ρ�
S2x−1)η(ρ� S2x+1) = (−1)t if mm′ �= 0. Here, if x = 1/2, we formally understand that m′ = 1
and η(ρ� S0) = 1. Let s be a non-negative integer such that s = 0 if x = 1/2. Then the highest
ρ| · |x-derivative of soc((ρ| · |−x)s � π(ψ, l, η)) is given by

D
(m+max{s−m′,0})
ρ|·|x

(
soc
(
(ρ| · |−x)s � π(ψ, l, η)

))
= soc

(
(ρ| · |−x)min{s,m′} � π

(
ψ − (ρ� S2x+1)m + (ρ� S2x−1)m, l +m, η

))
,

where we set η(ρ� S2x−1) = (−1)tη(ρ� S2x+1) if needed. In particular,

S
(1)
ρ|·|x
(
soc
(
(ρ| · |−x)s � π(ψ, l, η)

))
=

{
soc
(
(ρ| · |−x)s � π(ψ − ρ� S2x−1 + ρ� S2x+1, l − 1, η)

)
if s < m′,

soc
(
(ρ| · |−x)s+1 � π(ψ, l, η)

)
if s ≥ m′,

where we set η(ρ� S2x+1) = (−1)tη(ρ� S2x−1).

Proof. When x ≥ 1 (respectively x = 1/2), the formula for the highest ρ| · |x-derivatives was
obtained in [Ato22b, Theorem 4.1] (respectively in [Jan18a, Theorem 3.3]). It implies the formula
for socles. �

5.3 Zelevinsky–Aubert duals of certain tempered representations
The initial step of our algorithm for computing the Zelevinsky–Aubert duals (Algorithm 4.1(3))
is to compute π̂ for tempered π such that π is ρ′-reduced for every non-self-dual ρ′ ∈ C GL. If
π = π(φ, η) for φ ∈ Φgp(G), then π satisfies this condition if and only if

(∗) if ρ� Sd ⊂ φ with d ≥ 2, then mφ(ρ� Sd) = 1, ρ� Sd−2 ⊂ φ and η(ρ� Sd) �= η(ρ� Sd−2).

See [Ato20, Theorem 4.2]. Here, we formally understand that ρ� S0 ⊂ φ and η(ρ� S0) = +1 if
ρ is self-dual of the opposite type to φ.
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Proposition 5.4. Let π = π(φ, η) with φ ∈ Φgp(G). Assume that π satisfies the above
condition (∗). Write

{ρ | mφ(ρ) > 0, mφ(ρ) ≡ 0 mod 2} = {ρ1, . . . , ρr}
and set

yi := max
{
di − 1

2

∣∣∣∣ ρi � Sdi ⊂ φ

}
.

Suppose that y1 ≥ · · · ≥ yt > 0 = yt+1 = · · · = yr. Then

π̂ = L
(
Δρ1 [0,−y1], . . . ,Δρt [0,−yt];π(φ′, η′)

)
,

where

φ′ = φ−
t⊕
i=1

ρi � (S1 + S2yi+1)

and

η′(ρ� Sd) =

{
−η(ρ� Sd) if ρ ∈ {ρ1, . . . , ρr},
η(ρ� Sd) otherwise.

Proof. Set

{ρ | mφ(ρ) > 0, mφ(ρ) ≡ 1 mod 2} = {ρ′1, . . . , ρ′r′}.
Write mφ(ρi) = 2ki > 0 and mφ(ρ′j) = 2k′j + 1. Then, by [Ato20, Theorem 4.2], we have(

◦r′j=1D
(k′j)
ρ′j

)
◦
(
◦ri=1D

(1)
ρi|·|yi ◦ · · · ◦D

(1)
ρi|·|1 ◦D

(ki)
ρi

)
(π) �= 0.

This is π(φ′′, η′′) up to multiplicity, where

φ′′ = φ−
( r′⊕
j=1

ρ′j
2k′j
)
−
( r⊕
i=1

ρi � (S2ki−1
1 + S2yi+1)

)
and

η′′(ρ� Sd) =

{
−η(ρ� Sd) if ρ ∈ {ρ1, . . . , ρt},
η(ρ� Sd) if ρ �∈ {ρ1, . . . , ρr}.

For t < i ≤ r, we note that ρi �⊂ φ′′ so that η′′(ρi � Sd) does not appear. In particular, π(φ′′, η′′)
is supercuspidal. By [Ato22b, Theorem 2.13], with φ′ as in the statement, we have

π̂ = L(Δρ1 [0,−y1], . . . ,Δρt [0,−yt];π(φ′, η′))

for some η′ ∈ Aφ′ such that η′′ = η′|Aφ′′ via the canonical inclusion Aφ′′ ↪→ Aφ′ . Since Sφ′ is
generated by Sφ′′ and the image of {αρi | i > t}, the remaining task is to determine η′(ρi0) for
i0 > t. To do this, by replacing π with(

◦r′j=1D
(k′j)
ρ′j

)
◦
(
◦1≤i≤r
i
=i0

D
(1)
ρi|·|yi ◦ · · · ◦D

(1)
ρi|·|1 ◦D

(ki)
ρi

)
(π),

we may assume that π ⊂ ρk � σ with σ supercuspidal such that ρ� σ is semisimple of length
two. If we write ρ� σ = π+ ⊕ π−, then ρk−1 � π± is irreducible and its Zelevinsky–Aubert dual
is given by ρk−1 � π̂±. By [Aub95, Corollaire 1.10], we know that π̂± = π∓. Hence we see that
η′(ρi0) = −η(ρi0), as desired. �
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If π is tempered, of ρ-bad parity and ρ| · |z-reduced for all z �= 0, then π must be of the form
π = ρm � σ for some m ≥ 0 and σ supercuspidal. In particular, we have π̂ = π. Similarly, if π is
tempered, ugly and ρ′-reduced for all non-self-dual ρ′ ∈ C GL, then π must be supercuspidal so
that π̂ = π.

6. Best matching functions: the ugly and negative cases

To give formulas for derivatives and socles, following [LM16, § 5.3] we introduce the notion of
best matching functions. We then use these functions to explicate the ugly and the negative case.

6.1 Best matching functions
Let A and B be totally ordered finite sets with respect to ≥A and ≥B, respectively. For a ∈ A,
write A>a := {a′ ∈ A | a′ >A a}. We consider a relation � between B and A such that

∀ a1 ≥A a2 ∈ A and ∀ b1 ≥B b2 ∈ B,

b1 � a1 and b2 � a1 and b2 � a2 =⇒ b1 � a2.

We say that such a relation is traversable. In this case, we define a subset A0 of A and an injective
map f : A0 → B recursively by

a ∈ A0 ⇐⇒ ∃ b ∈ B \ f(A0 ∩A>a) such that b� a,

in which case f(a) := min{b ∈ B \ f(A0 ∩A>a) | b� a}.
Let B0 := f(A0) be the image of f . We call the bijection f : A0 → B0 the best matching function
between A and B. By [LM16, Lemma 5.7], the domain A0 is equal to A if and only if Hall’s
criterion is satisfied, i.e. for any subset A′ ⊂ A,∣∣{b ∈ B | b� a for some a ∈ A′}∣∣ ≥ |A′|.
When one of A or B is the empty set, note that we have A0 = B0 = ∅. We set Ac = A \A0 and
Bc = B \B0.

6.2 Derivatives and socles in the ugly and negative cases
Fix ρ ∈ C GL and x ∈ R. In this subsection, we give explicit formulas using the best matching
functions for the highest ρ| · |x-derivatives D(k)

ρ|·|x(π) and the socles S(1)
ρ|·|x(π) = soc(ρ| · |x � π) in

the case where ρ| · |x is ugly or where ρ is self-dual and x is negative.
Let π ∈ Irr(Gn). By Remark 2.7 and the Langlands classification, we can write π =

soc(L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]) � πtemp), where

• if ρ| · |x is ugly, then ρi = ρ for all i = 1, . . . , r, x1 + y1 ≤ · · · ≤ xr + yr and πtemp = σ is
supercuspidal;

• if ρ is self-dual and x is negative, then x1 + y1 ≤ · · · ≤ xr + yr < 0 and πtemp is tempered.

To unify the notation, let us call (Δρ1 [x1, y1], . . . ,Δρr [xr, yr];πtemp) the inducing data.
Define an ordered set Aρ|·|x by

Aρ|·|x := {i ∈ {1, . . . , r} | ρi ∼= ρ, xi = x}
with

a ≥ a′ ⇐⇒ ya ≥ ya′ .

We define a relation � between Aρ|·|x and Aρ|·|x−1 by

Aρ|·|x  a′ � a ∈ Aρ|·|x−1 ⇐⇒ ya′ > ya.
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Namely, a′ � a if and only if L(Δρ[xa, ya],Δρ[xa′ , ya′ ]) is a ladder representation. Note that
this relation is traversable. Let f : A0

ρ|·|x−1 → A0
ρ|·|x be the best matching function. In the next

proposition, we obtain explicit formulas for the highest ρ| · |x-derivative D(k)
ρ|·|x(π) and the socle

S
(1)
ρ|·|x(π).

Proposition 6.1. Suppose that ρ| · |x is ugly or that ρ is self-dual and x is negative. With nota-

tion as above, the highest ρ| · |x-derivative D
(k)
ρ|·|x(π) is the unique irreducible subrepresentation

of L(Δρ1 [x
′
1, y1], . . . ,Δρr [x′r, yr]) � πtemp, where

x′i =

{
x− 1 if i ∈ Ac

ρ|·|x ,
xi otherwise.

In particular, k = |Ac
ρ|·|x |. Moreover, the following hold.

(a) If Ac
ρ|·|x−1 �= ∅, then the inducing data of S

(1)
ρ|·|x(π) can be obtained from those of π by

replacing xa = x− 1 with x, where a is the minimum element of Ac
ρ|·|x−1 .

(b) If Ac
ρ|·|x−1 = ∅, then the inducing data of S

(1)
ρ|·|x(π) can be obtained from those of π by

inserting ρ| · |x = Δρ[x, x].

Proof. Since ρ| · |x is ugly or ρ is self-dual and x negative, we have

D
(k)
ρ|·|x(π) = soc

(
L

(k)
ρ|·|x(L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr])) � πtemp

)
,

S
(1)
ρ|·|x(π) = soc

(
soc(ρ| · |x × L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr])) � πtemp

)
.

Therefore, the proposition is essentially a problem for general linear groups, which was treated
in [LM16, Theorem 5.11]. �

7. Explicit formulas for derivatives and socles: the positive case

In this section, we give explicit formulas for the highest derivatives and the socles of several
parabolically induced representations in the positive case. The main results are Theorem 7.1,
where we describe derivatives and socles in the good-parity case, and Theorem 7.4, in which
the bad-parity case is treated. In Corollary 7.2 we deduce a result on irreducibility of certain
parabolic inductions.

Throughout this section we fix ρ ∈ C GL self-dual and x ∈ (1/2)Z with x > 0.

7.1 The good-parity case
In this subsection, we assume that π ∈ Irr(Gn) is of good parity and that ρ� S2x+1 is self-dual
of the same type as elements in Φgp(G). Write π = L(Δρ1 [x1, y1], . . . ,Δρr′ [xr′ , yr′ ];π(φ, η)) as a
Langlands subrepresentation so that x1 + y1 ≤ · · · ≤ xr′ + yr′ < 0 and φ ∈ Φgp(G). Set

t =
∣∣{i ∈ {1, . . . , r′} | Δρi [xi, yi] ∼= Δρ[x− 1,−x]}∣∣

and r = r′ − t. Then we can rewrite

π = soc
(
L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]) � πA

)
,

where we set πA := L(Δρ[x− 1,−x]t;π(φ, η)).
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If mφ(ρ� S2x+1) �= 0, mφ(ρ� S2x−1) �= 0 and η(ρ� S2x+1)η(ρ� S2x−1) = (−1)t+1, set

ψ := φ− ρ� (S2x+1 + S2x−1) + (ρ� S2x � S2)t+1

and l := 0. Otherwise, set ψ := φ+ (ρ� S2x � S2)t and l := 1. Then πA = π(ψ, l, η) ∈ Πψ by
Proposition 5.2. Set m := mψ(ρ� S2x+1) and m′ := mψ(ρ� S2x−1). Then the highest ρ| · |x-
derivative of soc((ρ| · |−x)s � πA) is described in Theorem 5.3.

Note that xi ≥ yi for all i = 1, . . . , r. Define ordered sets

Aρ|·|x := {i ∈ {1, . . . , r} | ρi ∼= ρ, xi = x},
Bρ|·|x := {i ∈ {1, . . . , r} | ρi ∼= ρ, yi = −x}

with

a ≥ a′ ⇐⇒ ya ≥ ya′ for a, a′ ∈ Aρ|·|x ,

b ≥ b′ ⇐⇒ xb ≤ xb′ for b, b′ ∈ Bρ|·|x .

Notice that any two of Aρ|·|x−1 , Aρ|·|x , Bρ|·|x−1 and Bρ|·|x have no intersection. Define relations �
between Aρ|·|x and Aρ|·|x−1 and between Bρ|·|x and Bρ|·|x−1 by

Aρ|·|x  a′ � a ∈ Aρ|·|x−1 ⇐⇒ ya′ > ya,

Bρ|·|x  b′ � b ∈ Bρ|·|x−1 ⇐⇒ xb′ < xb,

respectively. Note that these relations are traversable. Let f : A0
ρ|·|x−1 → A0

ρ|·|x and g : B0
ρ|·|x−1 →

B0
ρ|·|x be the best matching functions. Write Bc

ρ|·|x = {i1, . . . , is} with i1 < · · · < is. Notice that
s > 0 only if x > 1.

Theorem 7.1. With notation as above, suppose that x > 0, x ∈ (1/2)Z and ρ� S2x+1 is self-

dual of the same type as φ. Then the highest ρ| · |x-derivative D
(k)
ρ|·|x(π) is the unique irreducible

subrepresentation of L(Δρ1 [x
′
1, y

′
1], . . . ,Δρr [x′r, y′r]) � π′A, where

x′i =

{
−1 if i ∈ Ac

ρ|·|x ,
xi otherwise,

y′i =

{
−(x− 1) if i = ij , j > m′ + max{|Ac

ρ|·|x−1 | −m, 0},
yi otherwise,

and π′A = π(ψ′, l′, η) with

ψ′ = ψ − (ρ� S2x+1)
max{m−|Ac

ρ|·|x−1 |, 0} + (ρ� S2x−1)
max{m−|Ac

ρ|·|x−1 |, 0}

and

l′ = l + max{m− |Ac
ρ|·|x−1 |, 0}.

In particular,

k = |Ac
ρ|·|x | + max

{
m+ max{|Bc

ρ|·|x | −m′, 0} − |Ac
ρ|·|x−1 |, 0

}
.

Moreover, the following hold.

(a) If m+ max{|Bc
ρ|·|x | −m′, 0} < |Ac

ρ|·|x−1 |, then the Langlands data of S
(1)
ρ|·|x(π) can be

obtained from those of π by replacing xa = x− 1 with x, where a is the minimum element
of Ac

ρ|·|x−1 .
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(b) If |Bc
ρ|·|x | < m′ and m ≥ |Ac

ρ|·|x−1 |, the Langlands data of S
(1)
ρ|·|x(π) can be obtained from

those of π by replacing πA = π(ψ, l, η) with

S
(1)
ρ|·|x(πA) = π

(
ψ − (ρ� S2x−1) + (ρ� S2x+1), l − 1, η

)
.

(c) If |Bc
ρ|·|x | ≥ m′,m+ |Bc

ρ|·|x | −m′ ≥ |Ac
ρ|·|x−1 | and Bc

ρ|·|x−1 �= ∅, the Langlands data of S
(1)
ρ|·|x(π)

can be obtained from those of π by replacing yb = −(x− 1) with −x, where b is the minimum
element of Bc

ρ|·|x−1 .

(d) If |Bc
ρ|·|x | ≥ m′, m+ |Bc

ρ|·|x | −m′ ≥ |Ac
ρ|·|x−1 | and Bc

ρ|·|x−1 = ∅, then the Langlands data of

S
(1)
ρ|·|x(π) can be obtained from those of π by inserting ρ| · |−x = Δρ[−x,−x].

Proof. To obtain the formula for the highest derivative, we use Jantzen’s algorithm [Jan18a,
§ 3.3] together with [LM16, Theorem 5.11] and Theorem 5.3.

(1) Recall that
π = soc

(
L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]) � πA

)
with πA = L(Δρ[x− 1,−x]t;π(φ, η)) and Δρi [xi, yi] �∼= Δρ[x− 1,−x] for all i = 1, . . . , r.

(2) By [LM16, Theorem 5.11], we can compute the highest right ρ| · |−x-derivative

R
(s)
ρ|·|−x(L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr])) = L(Δρ1 [x1, y

′′
1 ], . . . ,Δρr [xr, y

′′
r ]),

where

y′′i =

{
−(x− 1) if i ∈ Bc

ρ|·|x ,
yi otherwise.

In particular, s = |Bc
ρ|·|x |. Claim 1 in [Jan18a, § 3.3] says that

π = soc
(
L(Δρ1 [x1, y

′′
1 ], . . . ,Δρr [xr, y

′′
r ]) � π1

)
with π1 := soc((ρ| · |−x)s � πA).

(3) By Theorem 5.3, the highest ρ| · |x-derivative π2 := D
(k1)
ρ|·|x(π1) of π1 is

π2 = soc
(
(ρ| · |−x)min{s,m′} � π(ψ − (ρ� S2x+1)m + (ρ� S2x−1)m, l +m, η)

)
with k1 = m+ max{s−m′, 0}. Claim 2 in [Jan18a, § 3.3] says that

π = soc
(
L(Δρ1 [x1, y

′′
1 ], . . . ,Δρr [xr, y

′′
r ], (ρ| · |x)k1) � π2

)
.

(4) We will apply [LM16, Theorem 5.11] to compute the highest left ρ| · |x-derivative of
L(Δρ1 [x1, y

′′
1 ], . . . ,Δρr [xr, y′′r ], (ρ| · |x)k1). To do this, we have to replace Aρ|·|x with Aρ|·|x ∪ {r +

1, . . . , r + k1}, where we set Δρi [xi, yi] = ρ| · |x for i = r + 1, . . . , r + k1. Note that any a′ ∈ {r +
1, . . . , r + k1} is bigger than any element of Aρ|·|x with respect to the order of Aρ|·|x ∪ {r +
1, . . . , r + k1}, and a′ � a for every a ∈ Aρ|·|x−1 . Hence the image of the resulting best matching
function is

A0
ρ|·|x ∪

{
r + i

∣∣ 1 ≤ i ≤ min{k1, |Ac
ρ|·|x−1 |}

}
.

Therefore, with k2 = min{k1, |Ac
ρ|·|x−1 |} and k = |Ac

ρ|·|x | + k1 − k2, the highest left ρ| · |x-
derivative is

L
(k)
ρ|·|x
(
L(Δρ1 [x1, y

′′
1 ], . . . ,Δρr [xr, y

′′
r ], (ρ| · |x)k1)

)
= L(Δρ1 [x

′
1, y

′′
1 ], . . . ,Δρr [x

′
r, y

′′
r ], (ρ| · |x)k2),
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where x′i is as in the statement of this theorem. Then the highest ρ| · |x-derivative of π is

D
(k)
ρ|·|x(π) = soc

(
L(Δρ1 [x

′
1, y

′′
1 ], . . . ,Δρr [x

′
r, y

′′
r ], (ρ| · |x)k2) � π2

)
.

(5) Claim 3 in [Jan18a, § 3.3] says that

D
(k)
ρ|·|x(π) = soc

(
L(Δρ1 [x

′
1, y

′′
1 ], . . . ,Δρr [x

′
r, y

′′
r ]) � S

(k2)
ρ|·|x(π2)

)
.

By Theorem 5.3, we have

S
(k2)
ρ|·|x(π2) = soc((ρ| · |−x)s′ � π′A),

where π′A is as in the statement of this theorem and s′ = min{s,m′} + max{k2 −m, 0}. Note
that s′ ≤ s.

(6) Finally, note that

• if s′ = s, then m′ + max{|Ac
ρ|·|x−1 | −m, 0} ≥ s, so that y′i = yi for all i = 1, . . . , r;

• if s′ < s, then s > m′ and k1 = m+ s−m′ > k2 = |Ac
ρ|·|x−1 |, so that s′ = m′ + max{|Ac

ρ|·|x−1 | −
m, 0}.

By [LM16, Theorem 5.11], we have

soc
(
L(Δρ1 [x

′
1, y

′′
1 ], . . . ,Δρr [x

′
r, y

′′
r ]) × (ρ| · |−x)s′)

= L(Δρ1 [x
′
1, y

′
1], . . . ,Δρr [x

′
r, y

′
r]),

where y′i is as in the statement of this theorem. Claim 4 in [Jan18a, § 3.3] says that

D
(k)
ρ|·|x(π) = soc

(
L(Δρ1 [x

′
1, y

′
1], . . . ,Δρr [x

′
r, y

′
r]) � π′A

)
.

This gives the Langlands data of D(k)
ρ|·|x(π).

Recall that S(1)
ρ|·|x(π) is an irreducible representation determined by the relation

D
(k+1)
ρ|·|x

(
S

(1)
ρ|·|x(π)

)
= D

(k)
ρ|·|x(π).

One can easily check this equation for the representations given in (a), (b), (c) and (d). �
As an application of Proposition 6.1 and Theorem 7.1, we have a combinatorial irreducibility

criterion for ρ| · |x � π as follows.

Corollary 7.2. With notation as above, suppose that x > 0, x ∈ (1/2)Z and ρ� S2x+1 is self-
dual of the same type as φ. Then the parabolically induced representation ρ| · |x � π is irreducible
if and only if all of the following conditions hold:

• Ac
ρ|·|−x−1 = ∅;

• |Bc
ρ|·|x | ≥ mψ(ρ� S2x−1);

• mψ(ρ� S2x+1) + |Bc
ρ|·|x | −mψ(ρ� S2x−1) ≥ |Ac

ρ|·|x−1 |;
• Bc

ρ|·|x−1 = ∅.

Proof. Since ρ| · |x is not self-dual, by Proposition 3.3, ρ| · |x � π is SI so that both S
(1)
ρ|·|x(π)

and S
(1)
ρ|·|−x(π) occur with multiplicity one in [ρ| · |x � π]. Hence ρ| · |x � π is irreducible if and

only if S(1)
ρ|·|x(π) ∼= S

(1)
ρ|·|−x(π). By Proposition 6.1 and Theorem 7.1, this is equivalent to the case

where the Langlands data of S(1)
ρ|·|−x(π) and S

(1)
ρ|·|x(π) are obtained from those of π by inserting

ρ| · |−x. �
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As a special case, when π = π(φ, η) is tempered, since Aρ∨|·|−x−1 , Aρ|·|x−1 , Aρ|·|x , Bρ|·|x−1 and
Bρ|·|x are all the empty set, we see that ρ| · |x � π if and only if mψ(ρ� S2x−1) = 0, which is
equivalent to

• φ �⊃ ρ� S2x−1; or
• mφ(ρ� S2x−1) = 1, mφ(ρ� S2x+1) > 0 and η(ρ� S2x−1) �= η(ρ� S2x+1).

This special case was already known to Jantzen [Jan18b, Theorem 4.7].

7.2 The bad-parity case
We now treat the bad-parity case. Specifically, we assume that ρ� S2x+1 is self-dual of the
opposite type to elements in Φgp(G), and we take π ∈ Irr(Gn) such that scusp(π) ⊂ Zρ|·|x ∪ {σ}
for some σ ∈ CG.

We remark that Jantzen’s algorithm [Jan18a, § 3.3] for computing the highest ρ| · |x-
derivatives can be applied to the bad-parity case. According to this algorithm (see (2) in the
proof of Theorem 7.1), we have to deal with a ρ| · |x-bad representation of the form

π1 = L
(
(ρ| · |−x)s,Δρ[x− 1,−x]t;π(φ, η)

)
with φ ∈ Φtemp(Gn) and s, t ≥ 0. Here, we may assume that s = 0 if x = 1/2 since ρ| · |−1/2 =
Δρ[−1/2,−1/2]. By the assumption of bad parity, if we write σ = π(φσ, ησ), then φ = φσ ⊕
(
⊕r

i=1(ρ� S2xi+1)mi) with xi ∈ x+ Z so that Sφ ∼= Sφσ , and η = ησ. Moreover, the multiplicity
mi is even for all i. The following result is an extension of [Jan18a, Propositions 8.5 and 8.6].

Proposition 7.3. With notation as above, when x = 1/2, we assume here that s = 0. Set
m := mφ(ρ� S2x+1) and m′ := mφ(ρ� S2x−1), both of which are even. Take κ ∈ {0, 1} such

that t ≡ κ mod 2. Then the highest ρ| · |x-derivative D
(k)
ρ|·|x(π1) is equal to

L
(
(ρ| · |−x)min{s,m′+κ},Δρ[x− 1,−x]t−κ;π(φ− (ρ� S2x+1)m + (ρ� S2x−1)m+2κ, η)

)
with k = m+ κ+ max{s−m′ − κ, 0}.
Proof. If we write π0 := π(φ− (ρ� S2x+1)m − (ρ� S2x−1)m

′
, η), then

π(φ, η) = Δρ[x− 1,−(x− 1)]m
′/2 × Δρ[x,−x]m/2 � π0

is an irreducible induction. Moreover,

Δρ[x− 1,−x] × Δρ[x− 1,−(x− 1)]m
′/2 × Δρ[x,−x]m/2 � π0

is always irreducible by [MW12, Théorème (i)]. Also, any subquotient of Δρ[x− 1,−x] ×
Δρ[x,−(x− 1)] is Δρ[x− 1,−(x− 1)] × Δρ[x,−x] or L0 := L(Δρ[x− 1,−x],Δρ[x,−(x− 1)]),
both of which commute with all of Δρ[x− 1,−(x− 1)], Δρ[x,−x] and Δρ[x− 1,−x] (see for
example [Tad14, Theorem 1.1]).

First we assume that t is even. By considering the Langlands data, we have

soc
(
Δρ[x− 1,−x]t × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0

)
↪→ L

t/2
0 × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0

↪→ Δρ[x− 1,−x]t × Δρ[x− 1,−(x− 1)]m
′/2 × Δρ[x,−x]m/2 � π0.

Since the middle induced representation is unitary and the last induced representation is a
standard module and so is SI, we see that the first inclusion map is an isomorphism. In particular,
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π1 is equal to the socle of

(ρ| · |−x)s × L
t/2
0 × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0

∼= L
t/2
0 × (ρ| · |−x)s × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0.

Therefore, we may replace (ρ| · |−x)s × Δρ[x− 1,−(x− 1)]m
′/2 with

(ρ| · |−x)max{s−m′/2, 0} × L
min{s,m′/2}
1 × Δρ[x− 1,−(x− 1)]max{m′/2−s, 0}, (∗)

where L1 := L(ρ| · |−x,Δρ[x− 1,−(x− 1)]). Moreover, since ρ| · |−x × Δρ[x,−x]m/2 � π0 is irre-
ducible by [MW12, Théorème (i)], if s ≥ m′/2, then we may replace (∗) with

(ρ| · |−x)max{s−m′, 0} × L
min{s−m′/2,m′/2}
2 × L

max{m′−s, 0}
1 , (∗∗)

where L2 := L(ρ| · |−x,Δρ[x− 1,−(x− 1)], ρ| · |x). Note that if x ≥ 1, then by [LM16,
Proposition 5.15(3)] the ladder representations L0, L1 and L2 commute with all of

Δρ[x,−x], Δρ[x− 1,−x], Δρ[x,−(x− 1)], Δρ[x− 1,−(x− 1)].

Therefore, with

k = m+ max{s−m′, 0},

the ρ| · |x-derivative D(k)
ρ|·|x(π) is the highest and is a subrepresentation of⎧⎪⎨⎪⎩

L
t/2
0 × Ls1 × Δρ[x− 1,−(x− 1)]m

′/2−s+m/2 � π0 if s ≤ m′/2,
L
t/2
0 × L

s−m′/2
2 × Lm

′−s
1 × Δρ[x− 1,−(x− 1)]m/2 � π0 if m′/2 < s ≤ m′,

L
t/2
0 × L

m′/2
2 × Δρ[x− 1,−(x− 1)]m/2 � π0 if s > m′.

Since L2 × L1
∼= L1 × L2 by [LM16, Corollary 6.2] and since L1 � σ is irreducible by [LT20,

Theorem 1.2], this representation is a subrepresentation of{
(ρ| · |−x)s × Δρ[x− 1,−x]t × Δρ[x− 1,−(x− 1)](m

′+m)/2 � π0 if s ≤ m′,
(ρ| · |−x)m′ × Δρ[x− 1,−x]t × Δρ[x− 1,−(x− 1)](m

′+m)/2 � π0 if s > m′.

Since Δρ[x− 1,−(x− 1)](m
′+m)/2 � π0 = π(φ− (ρ� S2x+1)m + (ρ� S2x−1)m, η), we obtain the

case where t is even.
Next, assume that t is odd. By considering the Langlands data, we have

soc
(
Δρ[x− 1,−x]t × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0

)
↪→ L

(t−1)/2
0 × Δρ[x− 1,−x] × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0

∼= L
(t−1)/2
0 × Δρ[x,−(x− 1)] × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0.

Note that the middle induced representation is SI since it is a subrepresentation of a standard
module. On the other hand, by taking the MVW-functor and the contragredient functor, we see
that the unique irreducible subrepresentation of the middle induced representation is also an
irreducible quotient of the last induced representation. By the last isomorphism, this means that
L

(t−1)/2
0 × Δρ[x,−(x− 1)] × Δρ[x− 1,−(x− 1)]m

′/2 × Δρ[x,−x]m/2 � π0 is irreducible. There-
fore, by the same argument as in the case where t is even, with k = m+ 1 + max{s−m′ − 1, 0},
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the ρ| · |x-derivative D(k)
ρ|·|x(π) is highest and is a subrepresentation of{

(ρ| · |−x)s × Δρ[x− 1,−x]t−1 × Δρ[x− 1,−(x− 1)](m
′+m)/2+1 � π0 if s ≤ m′ + 1,

(ρ| · |−x)m′+1 × Δρ[x− 1,−x]t−1 × Δρ[x− 1,−(x− 1)](m
′+m)/2+1 � π0 if s > m′ + 1.

Since Δρ[x− 1,−(x− 1)](m
′+m)/2+1 � π0 = π(φ− (ρ� S2x+1)m + (ρ� S2x−1)m+2, η), we obtain

the case where t is odd. �

Now we consider the general case. Let π = L(Δρ[x1, y1], . . . ,Δρ[xr′ , yr′ ];π(φ, η)) with x1 +
y1 ≤ · · · ≤ xr′ + yr′ < 0 and φ ∈ Φtemp(G). If we define t, r ≥ 0 with t+ r = r′ as in § 7.1, we can
rewrite

π = soc
(
L(Δρ[x1, y1], . . . ,Δρ[xr, yr]) � πA

)
,

where

• x1 + y1 ≤ · · · ≤ xr + yr < 0;
• πA := L(Δρ[x− 1,−x]t;π(φ, η));
• [xi, yi] �= [x− 1,−x] for all i = 1, . . . , r.

Set m := mφ(ρ� S2x+1) and m′ := mφ(ρ� S2x−1), both of which are even. Take κ ∈ {0, 1} such
that t ≡ κ mod 2.

Define

Aρ|·|x := {i ∈ {1, . . . , r} | xi = x},
Bρ|·|x := {i ∈ {1, . . . , r} | yi = −x}.

As in the previous paragraph, we regard Aρ|·|x and Aρ|·|x−1 (respectively Bρ|·|x and Bρ|·|x−1) as
ordered sets and take the traversal relation�. Let f : A0

ρ|·|x−1 → A0
ρ|·|x (respectively g : B0

ρ|·|x−1 →
B0
ρ|·|x) be the best matching function. Write Bc

ρ|·|x = {i1, . . . , is} with i1 < · · · < is. Note that
s > 0 only if x > 1.

Theorem 7.4. With notation as above, suppose that x > 0, x ∈ (1/2)Z and ρ� S2x+1 is self-

dual of the opposite type to elements in Φgp(G). Then the highest ρ| · |x-derivative D
(k)
ρ|·|x(π) is

the unique irreducible subrepresentation of L(Δρ1 [x
′
1, y

′
1], . . . ,Δρr [x′r, y′r]) � π′A, where

x′i =

{
x− 1 if i ∈ Ac

ρ|·|x ,
xi otherwise,

y′i =

{
−(x− 1) if i = ij , j > m′ + κ+ max{|Ac

ρ|·|x−1 | −m− κ, 0},
yi otherwise

and

• if m+ κ ≤ |Ac
ρ|·|x−1 |, then π′A = πA;

• if m+ κ > |Ac
ρ|·|x−1 |, then

π′A =

{
L
(
Δρ[x− 1,−x]t−κ;π(φ− (ρ� S2x+1)m−v + (ρ� S2x−1)m−v+2κ, η)

)
,

L
(
Δρ[x− 1,−x]t−κ+1;π(φ− (ρ� S2x+1)m−v+1 + (ρ� S2x−1)m−v−1+2κ, η)

)
according to whether v = |Ac

ρ|·|x−1 | is even or odd.
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In particular,

k = |Ac
ρ|·|x | + max

{
m+ κ+ max{|Bc

ρ|·|x | −m′ − κ, 0} − |Ac
ρ|·|x−1 |, 0

}
.

Moreover, the following hold.

(a) If m+ κ+ max{|Bc
ρ|·|x | −m′ − κ, 0} < |Ac

ρ|·|x−1 |, then the Langlands data of S
(1)
ρ|·|x(π) can be

obtained from those of π by replacing xa = x− 1 with x, where a is the minimum element
of Ac

ρ|·|x−1 .

(b) If |Bc
ρ|·|x | < m′ + κ and m+ κ ≥ |Ac

ρ|·|x−1 |, the Langlands data of S
(1)
ρ|·|x(π) can be obtained

from those of π by replacing πA with

S
(1)
ρ|·|x(πA) =

{
L
(
Δρ[x− 1,−x]t+1;π(φ− (ρ� S2x−1)2, η)

)
if κ = 0,

L
(
Δρ[x− 1,−x]t−1;π(φ+ (ρ� S2x+1)2, η)

)
if κ = 1.

(c) If |Bc
ρ|·|x | ≥ m′ + κ, m+ |Bc

ρ|·|x | −m′ ≥ |Ac
ρ|·|x−1 | and Bc

ρ|·|x−1 �= ∅, the Langlands data of

S
(1)
ρ|·|x(π) can be obtained from those of π by replacing yb = −(x− 1) with −x, where b is

the minimum element of Bc
ρ|·|x−1 .

(d) If |Bc
ρ|·|x | ≥ m′ + κ, m+ |Bc

ρ|·|x | −m′ ≥ |Ac
ρ|·|x−1 | and Bc

ρ|·|x−1 = ∅, then the Langlands data

of S
(1)
ρ|·|x(π) can be obtained from those of π by inserting ρ| · |−x = Δρ[−x,−x].

Proof. By a similar argument to that for Theorem 7.1, we obtain the assertions by applying
Jantzen’s algorithm [Jan18a, § 3.3] together with [LM16, Theorem 5.11] and Proposition 7.3. �

As a consequence, one can obtain an analogous criterion to Corollary 7.2 for the irreducibility
of ρ| · |x � π. We leave the details to the reader.

8. Explicit formulas for derivatives and socles: a non-cuspidal case

Fix ρ ∈ C GL self-dual. In this section, we consider π ∈ Irr(Gn) of good or ρ-bad parity such
that

(a) π is ρ| · |1-reduced; and
(b) π is ρ| · |z-reduced for all z < 0.

Recall that if an irreducible representation π is ρ| · |1-reduced, Proposition 3.7 says that
Zρ[0, 1]k � π is SI. In this subsection, we determine the highest [0, 1]-derivative π′ = D

(k)
[0,1](π) of

π, and we show how to recover the Langlands data of π in terms of those of π′.

8.1 A reduction step
In this subsection, we reduce the computation to a particular case that will be treated at the
end of the section.

We write π = L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr],Δρ[0,−1]t;π(φ, η)) as a Langlands subrepresen-
tation, where

• φ ∈ Φtemp(G);
• t ≥ 0;
• x1 + y1 ≤ · · · ≤ xr + yr < 0;
• Δρi [xi, yi] �∼= Δρ[0,−1] for i = 1, . . . , r.

We know by the assumption (b) that xi ≥ 0 if ρi ∼= ρ. Also, by the last condition above, we have
yi �= −1 if ρi ∼= ρ. Set πA := L(Δρ[0,−1]t;π(φ, η)).
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To rephrase the assumption (a), we recall Jantzen’s algorithm [Jan18a, § 3.3]. Let π′A :=
D

(l)
ρ|·|1(πA) be the highest ρ| · |1-derivative of πA. It can be computed thanks to Theorem 5.3 and

Proposition 7.3. Then Claim 2 in [Jan18a, § 3.3] says that

π ↪→ L
(
Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l

)
� π′A.

According to Jantzen’s algorithm, π is ρ| · |1-reduced if and only if L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr],
(ρ| · |1)l) is left ρ| · |1-reduced. For i = r + 1, . . . , r + l, we set Δρi [xi, yi] = ρ| · |1. Define

Aρ := {i ∈ {1, . . . , r + l} | ρi ∼= ρ, xi = 0},
Aρ|·|1 := {i ∈ {1, . . . , r + l} | ρi ∼= ρ, xi = 1}.

As in § 6.2, we regard these sets as totally ordered sets, and we define a traversable rela-
tion � between Aρ|·|1 and Aρ. Let f : A0

ρ → A0
ρ|·|1 be the best matching function. Then by

[LM16, Theorem 5.11], L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l) is left ρ| · |1-reduced if and only if
Ac
ρ|·|1 = ∅. Let D(kA)

[0,1] (π
′
A) be the highest [0, 1]-derivative of π′A. We will explicitly compute it in

Propositions 8.3 and 8.4 below.

Theorem 8.1. Let π ∈ Irr(Gn) be of good or ρ-bad parity and satisfy the assumptions (a)

and (b). We use the above notation. Then the highest [0, 1]-derivative D
(k)
[0,1](π) is the unique

irreducible subrepresentation of

L(Δρ1 [x
′
1, y1], . . . ,Δρr [x

′
r, yr]) �D

(kA)
[0,1] (π

′
A),

where

x′i =

⎧⎪⎨⎪⎩
−1 if i ∈ A0

ρ,

0 if i ∈ Aρ|·|1 ,
xi otherwise.

In particular, k = kA + r1 with r1 := |Aρ|·|1 | = |A0
ρ|.

Proof. Since xi ≥ 0 if ρi ∼= ρ, we see that Δρi [xi, yi] × Zρ[0, 1] ∼= Zρ[0, 1] × Δρi [xi, yi] for all i =
1, . . . , r + l (see for example [Tad14, Theorem 1.1]). Hence

π ↪→ L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l) � π′A

↪→ L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l) × Zρ[0, 1]kA �D
(kA)
[0,1] (π

′
A)

∼= Zρ[0, 1]kA × L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l) �D
(kA)
[0,1] (π

′
A).

We claim that

L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l) ↪→ Zρ[0, 1]r1 × L(Δρ1 [x
′
1, y1], . . . ,Δρr [x

′
r, yr]).

To see this, by [LM16, Proposition 5.6] it is enough to show that

L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr], (ρ| · |1)l)
= soc

(
ρr1+k′ × soc

(
(ρ| · |1)r1 × L(k′)

ρ (L(Δρ1 [x
′
1, y1], . . . ,Δρr [x

′
r, yr]))

))
,

where L(k′)
ρ (L(Δρ1 [x

′
1, y1], . . . ,Δρr [x′r, yr])) is the highest left ρ-derivative. By our assumptions

and by the definition of x′i, we see that k′ = r0 − r1 with r0 = |Aρ| and that

L(r0−r1)
ρ

(
L(Δρ1 [x

′
1, y1], . . . ,Δρr [x

′
r, yr])

)
= L
(
Δρ1 [x

(1)
1 , y1], . . . ,Δρr [x

(1)
r , yr]

)
408
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with

x
(1)
i =

{
−1 if i ∈ Ac

ρ,

x′i otherwise

=

⎧⎪⎨⎪⎩
−1 if i ∈ Aρ,

0 if i ∈ Aρ|·|1 ,
xi otherwise.

Since x(1)
i �= 1 if ρi ∼= ρ, we have

soc
(
(ρ| · |1)r1 × L(r0−r1)

ρ (L(Δρ1 [x
′
1, y1], . . . ,Δρr [x

′
r, yr]))

)
= L(Δρ1 [x

(2)
1 , y1], . . . ,Δρr+l [x

(2)
r+l, yr+l])

with

x
(2)
i =

⎧⎪⎨⎪⎩
−1 if i ∈ Aρ,

1 if i ∈ Aρ|·|1 ,
xi otherwise.

In particular, we note that Δρi [x
(2)
i , yi] ∼= ρ| · |1 for i > r. Since x(2)

i �= 0 if ρi ∼= ρ, we have

soc
(
ρr0 � L(Δρ1 [x

(2)
1 , y1], . . . ,Δρr+l [x

(2)
r+l, yr+l])

)
= L
(
Δρ1 [x1, y1], . . . ,Δρr+l [xr+l, yr+l]

)
.

Hence we obtain the claim.
By the claim, we have

π ↪→ Zρ[0, 1]kA+r1 × L(Δρ1 [x
′
1, y1], . . . ,Δρr [x

′
r, yr]) �D

(kA)
[0,1] (π

′
A).

Moreover, by Tadić’s formula (Proposition 2.1) together with the facts that

• L(Δρ1 [x
′
1, y1], . . . ,Δρr [x′r, yr]) is left ρ| · |1-reduced;

• L(Δρ1 [x
′
1, y1], . . . ,Δρr [x′r, yr]) is right ρ-reduced and right ρ| · |−1-reduced; and

• D
(kA)
[0,1] (π

′
A) is Zρ[0, 1]-reduced and ρ| · |1-reduced

we see that L(Δρ1 [x
′
1, y1], . . . ,Δρr [x′r, yr]) �D

(kA)
[0,1] (π

′
A) is Zρ[0, 1]-reduced and ρ| · |1-reduced.

Therefore, D(kA+r1)
[0,1] (π) is the highest [0, 1]-derivative, and

D
(kA+r1)
[0,1] (π) ↪→ L(Δρ1 [x

′
1, y1], . . . ,Δρr [x

′
r, yr]) �D

(kA)
[0,1] (π

′
A).

Since the induced representation in the right-hand side is a subrepresentation of a standard
module, it is SI. In particular, D(kA+r1)

[0,1] (π) is the unique irreducible subrepresentation of this
induced representation. �

We give now the converse of Theorem 8.1. Namely, when π is of good or ρ-bad parity and
satisfies the assumptions (a) and (b), we will recover the Langlands data of π from those of
D

(k)
[0,1](π).

Write D
(k)
[0,1](π) = L(Δρ1 [x

′
1, y1], . . . ,Δρr [x′r, yr], (ρ| · |−1)s,Δρ[0,−1]t;π(φ′, η′)) as a Lang-

lands subrepresentation, where

• φ′ ∈ Φtemp(G);
• s, t ≥ 0;
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• x′1 + y1 ≤ · · · ≤ x′r + yr < 0;
• Δρi [x

′
i, yi] �∼= ρ| · |−1,Δρ[0,−1] for i = 1, . . . , r.

Set π′′A := L((ρ| · |−1)s,Δρ[0,−1]t;π(φ′, η′)). Define

Bρ|·|−1 := {i ∈ {1, . . . , r} | ρi ∼= ρ, x′i = −1},
Bρ := {i ∈ {1, . . . , r} | ρi ∼= ρ, x′i = 0}

with the best matching function f ′ : B0
ρ|·|−1 → B0

ρ . By Theorem 8.1, we see that x′i �= 1 if ρi ∼= ρ.
Also, if we set r1 := |Bρ|·|−1 |, kA := k − r1 and l := r1 − |B0

ρ |, then we have kA ≥ 0 and l ≥ 0.

Corollary 8.2. Let π ∈ Irr(Gn) be of good or ρ-bad parity and satisfy the assumptions (a)
and (b). Then π is the unique irreducible subrepresentation of

L(Δρ1 [x1, y1], . . . ,Δρr [xr, yr]) � πA,

where

xi =

⎧⎪⎨⎪⎩
0 if i ∈ Bρ|·|−1 ,

1 if i ∈ B0
ρ ,

x′i otherwise

and

πA := S
(l)
ρ|·|1 ◦ S

(kA)
[0,1] (π

′′
A).

Proof. This follows from Theorem 8.1. �

8.2 The representation πA in the bad-parity case
We use the same notation as in the previous subsection. It remains to give an explicit formula
for the highest [0, 1]-derivative of π′A and show how to recover the Langlands data of π′A from
those of its highest [0, 1]-derivative.

We treat the bad-parity case first, which is much simpler. Recall that πA =
L(Δρ[0,−1]t;π(φ, η)) with φ ∈ Φtemp(G). Let π′A := D

(l)
ρ|·|1(πA) be the highest ρ| · |1-derivative

of πA. By Proposition 7.3, π′A = L(Δρ[0,−1]t−κ;π(φ′, η′)) with κ ∈ {0, 1}, t ≡ κ mod 2 and
φ′ ∈ Φtemp(G) which does not contain ρ� S3. In particular, t− κ is even. Hence what we have
to prove is the following.

Proposition 8.3. Let π = L(Δρ[0,−1]t;π(φ, η)) be of ρ-bad parity with t even and φ ∈
Φtemp(G) such that φ �⊃ ρ� S3. Then the highest [0, 1]-derivative of π is

D
(t)
[0,1](π) = π(φ, η).

Proof. Write m := mφ(ρ), which is even. Since

π ↪→ ρt+m/2 � L((ρ| · |−1)t;π(φ− ρm, η))

∼= ρt+m/2 × (ρ| · |−1)t � π(φ− ρm, η)

∼= ρt+m/2 × (ρ| · |1)t � π(φ− ρm, η),

we see that D(t)
[0,1](π) is the highest [0, 1]-derivative and

D
(t)
[0,1](π) ↪→ ρm/2 � π(φ− ρm, η) = π(φ, η).

Since the right-hand side is irreducible, this inclusion is an isomorphism. �
By this proposition, it is easy to recover π from its highest [0, 1]-derivative.
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8.3 The representation πA in the good-parity case
To finish our algorithm we need to consider the case where π = L(Δρ[0,−1]t;π(φ, η)) with φ ∈
Φgp(G) and η ∈ Ŝφ, and ρ is self-dual of the same type as φ. Furthermore, we assume that
π is ρ| · |1-reduced, which is equivalent to the statement that if ρ� S3 ⊂ φ, then mφ(ρ) > 0,
mφ(ρ� S3) = 1 and η(ρ)η(ρ� S3) �= (−1)t. We determine the highest [0, 1]-derivative of π.

Proposition 8.4. Let π = L(Δρ[0,−1]t;π(φ, η)) with φ ∈ Φgp(G) and η ∈ Ŝφ. Suppose that ρ
is self-dual of the same type as φ and that π is ρ| · |1-reduced. Write m := mφ(ρ).

(1) If ρ� S3 ⊂ φ and m is odd, then the highest [0, 1]-derivative of π is

D
(t)
[0,1](π) =

{
π(φ, η) if t ≡ 0 mod 2,
L(ρ| · |−1;π(φ+ ρ− ρ� S3, η)) if t ≡ 1 mod 2.

(2) If ρ� S3 ⊂ φ and m is even, then the highest [0, 1]-derivative of π is

D
(t+1)
[0,1] (π) = π(φ− ρ� (S1 + S3), ηt+1).

(3) If ρ� S3 �⊂ φ and m is odd, then the highest [0, 1]-derivative of π is⎧⎪⎪⎨⎪⎪⎩
D

(0)
[0,1](π) = π(φ, η) if t = 0,

D
(t−1)
[0,1] (π) = L(ρ| · |−1;π(φ+ ρ2, η)) if t > 0, t ≡ 0 mod 2,

D
(t−1)
[0,1] (π) = L(Δρ[0,−1];π(φ, η)) if t > 0, t ≡ 1 mod 2.

(4) If ρ� S3 �⊂ φ and m is even, then the highest [0, 1]-derivative of π is

D
(t)
[0,1](π) = π(φ, ηt).

Here, in (2) and (4) we set

ηt(ρ′ � Sd) =

{
(−1)tη(ρ) if ρ′ � Sd ∼= ρ,

η(ρ′ � Sd) otherwise.

Proof. We note that π ↪→ ρt+u × L((ρ| · |−1)t;π(φ− ρ2u, η)) in all cases, where m = 2u+ 1 or
m = 2u. We will apply Theorem 7.1 to L((ρ| · |−1)t;π(φ− ρ2u, η)) and x = 1 in each case.

To show (1), write m = 2u+ 1. By Theorem 7.1, we have

π ↪→ ρt+u × (ρ| · |1)t �

{
π(φ− ρ2u, η) if t ≡ 0 mod 2,
L(ρ| · |−1;π(φ− ρ2u−1 − ρ� S3, η)) if t ≡ 1 mod 2.

Note that ρu � π(φ− ρ2u, η) = π(φ, η) and ρu � L(ρ| · |−1;π(φ− ρ2u−1 − ρ� S3, η)) = L(ρ| · |−1;
π(φ+ ρ− ρ� S3, η)) are both irreducible by [Art13, Proposition 2.4.3] and Mœglin’s construc-
tion (see [Xu17a, § 8]). Hence

π ↪→ Zρ[0, 1]t �

{
π(φ, η) if t ≡ 0 mod 2,
L(ρ| · |−1;π(φ+ ρ− ρ� S3, η)) if t ≡ 1 mod 2.

This shows (1).
To show (2), write m = 2u. Note that u > 0 and η(ρ� S3) = (−1)t+1η(ρ). Hence

π ↪→ ρt+u × (ρ| · |1)t+1 � π(φ− ρ2u−1 − ρ� S3, ηt+1).
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This implies that

π ↪→ Zρ[0, 1]t+1 × ρu−1 � π(φ− ρ2u−1 − ρ� S3, ηt+1)

= Zρ[0, 1]t+1 � π(φ− ρ− ρ� S3, ηt+1),

which shows (2).
To show (3), note that when t = 0, it is clear that π is Zρ[0, 1]-reduced (Lemma 3.5). Suppose

that t > 0. Write m = 2u+ 1. Since

π ↪→ ρt+u × (ρ| · |1)t−1 � L
(
ρ| · |−1;π(φ− ρ2u, η)

)
,

we have

π ↪→ Zρ[0, 1]t−1 × ρu+1 � L
(
ρ| · |−1;π(φ− ρ2u, η)

)
.

By [Art13, Proposition 2.4.3] and Mœglin’s construction (see [Xu17a, § 8]), we have

ρu+1 � L
(
ρ| · |−1;π(φ− ρ2u, η)

)
= L
(
ρ| · |−1;π(φ+ ρ2, η)

)⊕ L
(
Δρ[0,−1];π(φ, η)

)
.

In particular, D(t−1)
[0,1] (π) is the highest [0, 1]-derivative and is isomorphic to one of the two

direct summands in the right-hand side. Now we note that L(Δρ[0,−1],Δρ[1, 0]) ∼= soc(Zρ[0, 1] ×
Zρ[−1, 0]). When t is odd, by [Art13, Proposition 2.4.3] we have

π ↪→ L
(
Δρ[0,−1],Δρ[1, 0]

)(t−1)/2
� L
(
Δρ[0,−1];π(φ, η)

)
.

Since L(Δρ[0,−1];π(φ, η)) is ρ| · |1-reduced and Zρ[0, 1]-reduced, by considering Tadić’s formula
(Proposition 2.1) we see that

D
(t−1)
[0,1]

(
L(Δρ[0,−1],Δρ[1, 0])(t−1)/2 � L(Δρ[0,−1];π(φ, η))

)
= L
(
Δρ[0,−1];π(φ, η)

)
,

which implies that D(t−1)
[0,1] (π) = L(Δρ[0,−1];π(φ, η)). When t = 2, by [Art13, Proposition 2.4.3],

we have

π ↪→ L(Δρ[0,−1],Δρ[1, 0]) � π(φ, η)
∼= soc(Zρ[0, 1] × Zρ[−1, 0]) � π(φ, η)

↪→ Zρ[0, 1] × ρ| · |−1 � π(φ+ ρ2, η),

which implies that D(1)
[0,1](π) = L(ρ| · |−1;π(φ+ ρ2, η)). When t > 2 is even, we have

π ↪→ L(Δρ[0,−1],Δρ[1, 0])(t−2)/2 � L(Δρ[0,−1]2;π(φ, η))

↪→ Zρ[0, 1] × L(Δρ[0,−1],Δρ[1, 0])(t−2)/2 � L
(
ρ| · |−1;π(φ+ ρ2, η)

)
.

Here, we note that Zρ[0, 1] × L(Δρ[0,−1],Δρ[1, 0]) is irreducible by [Tad14, Theorem 1.1]. Since
L(ρ| · |−1;π(φ+ ρ2, η)) is ρ| · |1-reduced and Zρ[0, 1]-reduced, by considering Tadić’s formula
(Proposition 2.1) we see that

D
(t−1)
[0,1]

(
Zρ[0, 1] × L(Δρ[0,−1],Δρ[1, 0])(t−2)/2 � L(ρ| · |−1;π(φ+ ρ2, η))

)
= L
(
ρ| · |−1;π(φ+ ρ2, η)

)
,

which implies that D(t−1)
[0,1] (π) = L(ρ| · |−1;π(φ+ ρ2, η)). Thus we obtain (3).
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To show (4), write m = 2u. Since

π ↪→ ρt+u × (ρ| · |1)t � π(φ− ρ2u, η),

we have

π ↪→ Zρ[0, 1]t × ρu � π(φ− ρ2u, η).

In particular, this shows (4) when u = 0. Hereafter we assume that u > 0. Then

ρu � π(φ− ρ2u, η) = π(φ, ηt) ⊕ π(φ, ηt+1).

To show π ↪→ Zρ[0, 1]t � π(φ, ηt), we use an argument inspired by Mœglin’s construction of
A-packets.

Write φ = ρm ⊕ (
⊕r

i=1 ρi � Sdi) with d1 ≤ · · · ≤ dr and di > 3 if ρi ∼= ρ. Choose φ> =
(
⊕m

j=1 ρ� S2xj+1) ⊕ (
⊕r

i=1 ρi � Sd′i) such that

• xj ∈ Z with xj > 1;
• d′i ≡ di mod 2 with d′i ≥ di;
• 2x1 + 1 < · · · < 2xm + 1 < d′1 < · · · < d′r.

Define η> ∈ Ŝφ> by η>(ρ� S2xj+1) = (−1)tη(ρ) and η>(ρi � Sd′i) = η(ρi � Sdi). Then π(φ, ηt) =
J2 ◦ J1(π(φ>, η>)) with

J1 = Jacρ|·|xm ,...,ρ|·|1 ◦ · · · ◦ Jacρ|·|x1 ,...,ρ|·|1 ,

J2 = Jac
ρt|·|(d′r−1)/2,...,ρt|·|(dr+1)/2 ◦ · · · ◦ Jac

ρ1|·|(d
′
1−1)/2,...,ρ1|·|(d1+1)/2 ,

where we set Jacρ|·|x,...,ρ|·|y = D
(1)
ρ|·|y ◦ · · · ◦D

(1)
ρ|·|x . Since φ> contains neither ρ nor ρ� S3, by the

argument in the previous paragraph we have

soc(Zρ[0, 1]t � π(φ>, η>)) = L(Δρ[0,−1]t;π(φ>, η>)).

By Theorem 7.1, using the assumption that m ≡ 0 mod 2, we see that

J2 ◦ J1(L(Δρ[0,−1]t;π(φ>, η>))) = L(Δρ[0,−1]t;π(φ, η)) = π.

On the other hand, since

π(φ>, η>) ↪→ Δρ[x1, 1] × · · · × Δρ[xm, 1] � J1(π(φ>, η>))

by [Xu17b, Lemma 5.7], and since Zρ[0, 1] × Δρ[x, 1] ∼= Δρ[x, 1] × Zρ[0, 1] if x ≥ 1, we see that

J2 ◦ J1(soc(Zρ[0, 1]t � π(φ>, η>)))

↪→ J2 ◦ J1(Zρ[0, 1]t � π(φ>, η>))

↪→ J2 ◦ J1(Δρ[x1, 1] × · · · × Δρ[xm, 1] × Zρ[0, 1]t � J1(π(φ>, η>)))

= J2(Zρ[0, 1]t � J1(π(φ>, η>))).

Finally, since (di + 1)/2 > 2 if ρi ∼= ρ, we have

J2

(
Zρ[0, 1]t � J1(π(φ>, η>))

)
= Zρ[0, 1]t � J2 ◦ J1

(
π(φ>, η>)

)
= Zρ[0, 1]t � π(φ, ηt).

Therefore we conclude that π ↪→ Zρ[0, 1]t � π(φ, ηt). This completes the proof of (4). �
Finally, we state the converse of Proposition 8.4 in terms of A-parameters.

Corollary 8.5. Let π = L(Δρ[0, 1]t;π(φ, η)) be the same as in Proposition 8.4, and

let D
(k)
[0,1](π) be the highest [0, 1]-derivative of π. Suppose that k > 0. Then one can
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write D
(k)
[0,1](π) = L((ρ| · |−1)s

′
,Δρ[0, 1]t

′
;π(φ′, η′)) with s′ + t′ +mφ′(ρ� S3) ≤ 1. Moreover, with

m′ := mφ′(ρ), the following hold.

(1) If s′ = 1, then m′ ≥ 2, k ≡ 1 mod 2 and

π = π(φ′ − ρ2 + (ρ� S2 � S2)k+1,m′, η′).

(2) If t′ = 1, then m′ ≡ 1 mod 2, k ≡ 0 mod 2 and

π = π(φ′ + (ρ� S2 � S2)k+1, 1, η′).

(3) If mφ′(ρ� S3) = 1, then m′ ≡ 1 mod 2, k ≡ 0 mod 2 and

π = π(φ′ + (ρ� S2 � S2)k, 1, η′).

(4) If s′ + t′ +mφ′(ρ� S3) = 0, then

π = π(φ′ + (ρ� S2 � S2)k,m′ + 1, η′k),

where η′k(ρ) = (−1)kη′(ρ).

Proof. This follows from Proposition 8.4. �

9. Some examples of Zelevinsky–Aubert duality

By the results in the previous sections, we have completed Algorithm 4.1 for computing the
Zelevinsky–Aubert duality. In this section, we give some examples. Here we set ρ := 1GL1(F ) and
drop ρ from the notation. For example, we write Δ[x, y] := Δρ[x, y] and Z[y, x] := Zρ[y, x]. When
φ =

⊕r
i=1 Sdi ∈ Φgp(G) and η(Sdi) = ηi ∈ {±1}, we write π(φ, η) = π(dη11 , . . . , d

ηr
r ).

9.1 Example 1
Let us compute the Zelevinsky–Aubert dual of

L(Δ[0,−2],Δ[0,−1];π(3+)) ∈ Irr(Sp12(F )).

Note that it is of good parity, and it is | · |z-reduced for z �= 0 by Theorem 7.1. By Algorithm 4.1,
we have the following commutative diagram.

L(Δ[0,−2],Δ[0,−1];π(3+))
�

D
(2)
Δ[0,−1]

��

� π �→π̂ �� L(Δ[0,−2],Δ[0,−1];π(3+))

L(| · |−2;π(3+))
�

D
(1)

|·|−2

��

� π �→π̂ �� L(Δ[−1,−2];π(1+))
�
S

(2)
Z[0,1]

��

π(3+)
�

D
(1)

|·|1
��

� π �→π̂ �� L(| · |−1;π(1+))
�
S

(1)

|·|2

��

π(1+) � π �→π̂ �� π(1+)
�
S

(1)

|·|−1

��

414

https://doi.org/10.1112/S0010437X22007904 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007904


The explicit Zelevinsky–Aubert duality

For the computation of S(2)
Z[0,1], by Corollaries 8.2 and 8.5 and Theorem 5.3, we have

S
(2)
Z[0,1]

(
L(Δ[−1,−2];π(1+))

)
= soc

(
Δ[0,−2] � S

(1)
|·|1 ◦ S

(1)
Z[0,1](π(1+))

)
= soc

(
Δ[0,−2] � S

(1)
|·|1(π(1−, 1−, 3+))

)
= L
(
Δ[0,−2],Δ[0,−1];π(3+)

)
.

In conclusion, we see that L(Δ[0,−2],Δ[0,−1];π(3+)) is fixed by the Zelevinsky–Aubert duality.

9.2 Example 2
Next, let us compute the Zelevinsky–Aubert dual of

π(1ε, 1ε, 3+, 5−, 5−) ∈ Irrtemp(Sp14(F ))

for ε ∈ {±}. First, we compute derivatives as follows.

π(1+, 1+, 3+, 5−, 5−)
�

D
(1)

|·|2
��

π(1−, 1−, 3+, 5−, 5−)
�

D
(1)

|·|2
��

L(Δ[1,−2];π(1+, 1+, 3+))
�

D
(2)

|·|1
��

L(Δ[1,−2];π(1−, 1−, 3+))
�

D
(1)

|·|1
��

L(Δ[0,−2];π(1+, 1+, 1+))
�

D
(1)

|·|2
��

L(Δ[0,−2];π(1−, 1−, 3+))
�

D
(1)
Δ[0,−1]

��

L(Δ[0,−1];π(1+, 1+, 1+))
�

D
(1)
Δ[0,−1]

��

L(| · |−2;π(1−, 1−, 3+))
�

D
(1)

|·|−2

��

π(1+, 1+, 1+) π(1−, 1−, 3+)

By Proposition 5.4, we have π̂(1+, 1+, 1+) = π(1+, 1+, 1+) and π̂(1−, 1−, 3+) = L(Δ[0,−1];π(1+)).
Next we compute socles as follows.

π(1+, 1+, 1+)
�

S
(1)
Z[0,1]

��

L(Δ[0,−1];π(1+))
�

S
(1)

|·|2
��

π(1−, 1−, 1−, 1−, 3+)
�

S
(1)

|·|−2

��

L(Δ[0,−2];π(1+))
�

S
(1)
Z[0,1]

��

L(| · |−2;π(1−, 1−, 1−, 1−, 3+))
�

S
(2)

|·|−1

��

L(Δ[0,−2];π(1−, 1−, 3+))
�

S
(1)

|·|−1

��

L(Δ[−1,−2], | · |−1;π(1−, 1−, 1−, 1−, 3+))
�

S
(1)

|·|−2

��

L(| · |−1,Δ[0,−2];π(1−, 1−, 3+))
�

S
(1)

|·|−2

��

L(| · |−2,Δ[−1,−2], | · |−1;π(1−, 1−, 1−, 1−, 3+)) L(| · |−2, | · |−1,Δ[0,−2];π(1−, 1−, 3+))
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Therefore, we conclude that

π̂(1+, 1+, 3+, 5−, 5−) = L
(| · |−2,Δ[−1,−2], | · |−1;π(1−, 1−, 1−, 1−, 3+)

)
,

π̂(1−, 1−, 3+, 5−, 5−) = L
(| · |−2, | · |−1,Δ[0,−2];π(1−, 1−, 3+)

)
.

Similarly, one can prove that π̂(3+, 5−, 5−) = L(| · |−2,Δ[−1,−2], | · |−1;π(1−, 1−, 3+)). Hence we
see that

1GL1(F ) � L
(| · |−2,Δ[−1,−2], | · |−1;π(1−, 1−, 3+)

)
∼= L
(| · |−2,Δ[−1,−2], | · |−1;π(1−, 1−, 1−, 1−, 3+)

)
⊕ L
(| · |−2, | · |−1,Δ[0,−2];π(1−, 1−, 3+)

)
.

In these computations we also proved, for example, that L(Δ[0,−2];π(1−, 1−, 3+)) is fixed by
the Zelevinsky–Aubert duality. This fact does not follow from results in [Ato22b]. As in this
example, even if π is tempered, we need to compute S(k)

Z[0,1] in general.
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spéciaux orthogonaux: le cas général. Sur les conjectures de Gross et Prasad. II, Astérisque
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