A NOTE ON THE GARADUS CLASS \mathfrak{F} OF BOUNDED LINEAR OPERATORS ON A COMPLEX BANACH SPACE

A. F. RUSTON

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class \mathfrak{F} of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class \mathfrak{F} if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in \mathfrak{F} if and only if it has a rational resolvent ($8, \mathrm{p} .314$).

Some ten years ago (in May, 1957), I discovered a property of the class \mathfrak{F} which may be of interest in connection with Caradus' work, and is the subject of the present note.
2. Theorem. Let X be a complex Banach space. If T belongs to the class \mathfrak{F}, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that $S=p(T)$.

Suppose that T and S satisfy the hypothesis of the theorem. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the points of the spectrum of T, which by hypothesis are poles of the resolvent of T, and let $\nu_{1}, \nu_{2}, \ldots, \nu_{n}$ be the orders of those poles, respectively. Let M_{r} be the kernel (or "null manifold") of ($T-\lambda_{r} I$) ${ }^{\nu}$ r $(r=1,2, \ldots, n)$. Then $X=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}(8, \mathrm{p} .317$, Theorem 5.9-E). For typographical convenience we write T_{r} for $T-\lambda_{T} I(r=1,2, \ldots, n)$.

Now let x be any member of M_{r} (where r is any integer with $1 \leqq r \leqq n$). Choose a bounded linear functional f on X such that

$$
\left(T_{r}^{*}\right)^{\nu r f}=0 \quad \text { but } \quad\left(T_{r}^{*}\right)^{\nu_{r}-1} f \neq 0 ;
$$

such an f exists since λ_{T} is also a pole of order ν_{τ} of the resolvent of the adjoint T^{*} of T (3, p. 568, Theorem VII.3.7). We now consider the bounded linear operator

$$
V=\sum_{s=1}^{\nu_{r}} T_{r}^{s-1}(x \otimes f) T_{r}^{\nu_{r}-s},
$$

where $x \otimes f$ denotes the operator $y \rightarrow f(y) x$ on X into itself; cf. (7, p. 110). In view of our choice of x and f, we have:

$$
\begin{aligned}
T_{r} V & =\sum_{s=1}^{\nu_{r-1}} T_{r}^{s}(x \otimes f) T_{r}^{\nu_{r-s}} \\
& =V T_{r},
\end{aligned}
$$

Received November 28, 1967.
so that V commutes with T_{r}, and thus with T. Hence (by hypothesis), V commutes with S.

Now

$$
f, T_{r}^{*} f,\left(T_{r}^{*}\right)^{2} f, \ldots,\left(T_{r}^{*}\right)^{\nu_{r}-1} f
$$

are clearly linearly independent (if $\sum_{s=1}^{\nu_{r}} \alpha_{s}\left(T_{r}\right)^{s-1} f=0$, then

$$
\sum_{s=1}^{\nu_{r}} \alpha_{s}\left(T_{r}^{*}\right)^{\nu_{r}+s-2} f=0,
$$

and hence $\alpha_{1}=0, \sum_{s=1}^{\nu_{r}} \alpha_{s}\left(T_{r}{ }^{*}\right)^{v_{r}+s-3} f=0$, and therefore $\alpha_{2}=0$, and so on), and thus a point y of X can be found such that

$$
\left[\left(T_{r}^{*}\right)^{\nu_{r}-1} f\right](y)=1, \quad\left[\left(T_{r}^{*}\right)^{s-1} f\right](y)=0 \quad\left(s=1,2, \ldots, \nu_{r}-1\right),
$$

that is,

$$
f\left(T_{r}^{\nu r-1} y\right)=1, \quad f\left(T_{r}^{\nu_{r}-s} y\right)=0 \quad\left(s=2,3, \ldots, \nu_{r}\right)
$$

(cf. 2, p. 6, Theorem I.2.2, Corollary 2). Then $S V y=V S y$, and therefore

$$
\sum_{s=1}^{\nu_{r}} S T_{r}^{s-1}(x \otimes f) T_{r}^{\nu_{r}-s} y=\sum_{s=1}^{\nu_{r}} T_{T}^{s-1}(x \otimes f) T_{r}^{\nu_{r}-s} S y,
$$

that is,

$$
\begin{aligned}
S x & =\sum_{s=1}^{\nu_{r}} f\left(T_{r}^{\nu_{r}-s} S y\right) T_{r}^{s-1} x \\
& =\sum_{s=1}^{\nu_{r}} f\left(T_{r}^{\nu_{r-s}} S y\right)\left(T-\lambda_{r} I\right)^{s-1} x .
\end{aligned}
$$

However, the choice of f and y was quite independent of the choice of $x \in M_{r}$. Hence,

$$
S x=p_{r}(T) x
$$

for every $x \in M_{r}$, where p_{r} is the polynomial given by

$$
p_{r}(\lambda)=\sum_{s=1}^{\nu_{r}} f\left(T_{r}^{\nu_{r}-s} S y\right)\left(\lambda-\lambda_{r}\right)^{s-1} .
$$

Having chosen a polynomial p_{r} as above for each $r=1,2, \ldots, n$, we now choose a polynomial p such that

$$
p^{(s)}\left(\lambda_{r}\right)=p_{r}{ }^{(s)}\left(\lambda_{T}\right) \quad\left(s=0,1,2, \ldots, \nu_{r}-1 ; r=1,2, \ldots, n\right) .
$$

This can certainly be done; for example we can take

$$
p=p_{1} \cdot \phi_{1}+p_{2} \cdot \phi_{2}+\ldots+p_{n} \cdot \phi_{n},
$$

where ϕ_{r} is given by

$$
\phi_{r}(\lambda)=\left[\prod_{\substack{s=1 ; \\ s \neq r}}^{n}\left(\lambda-\lambda_{s}\right)^{\nu_{s}}\right] \Phi_{r}(\lambda),
$$

$\Phi_{r}(\lambda)$ being the sum of the first ν_{r} terms in the expansion of

$$
\left[\prod_{\substack{s=1 ; \\ s \neq r}}^{n}\left(\lambda-\lambda_{s}\right)^{\nu_{s}}\right]^{-1}
$$

as a power series in $\lambda-\lambda_{r}$ (this generalizes, in effect, the Lagrange interpolation formula, which corresponds to the case $\nu_{1}=\nu_{2}=\ldots=\nu_{n}=1$; that such a generalization is possible is, of course, well known; cf. $(\mathbf{6} ; \mathbf{5} ; \mathbf{4})$; the last two refer specifically to the Hermite interpolation formula, which corresponds to the case $\left.\nu_{1}=\nu_{2}=\ldots=\nu_{n}=2\right)$. Then

$$
p(T) x=p_{r}(T) x=S x
$$

for every $x \in M_{r}$ (3, p. 571, Theorem VII.3.16; 8, p. 307, Theorem 5.8-B). Hence,

$$
p(T) x=S x
$$

for every $x \in M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}=X$, and therefore $S=p(T)$, as required. Incidentally, $\phi_{r}(T)$ is the spectral projection of X onto M_{r}; cf. (8, §5.9, p. 319, Problem 3).

Note. Since V is of finite rank, and thus a member of \mathfrak{F}, we have in fact proved the following, slightly stronger, result.

If $T \in \mathfrak{F}$, and the linear operator S commutes with every member \mathfrak{F} which commutes with T, then there is a polynomial p such that $S=p(T)$.

References

1. S. R. Caradus, On meromorphic operators. I, Can. J. Math. 19 (1967), 723-736.
2. M. M. Day, Normed linear spaces (Springer-Verlag, Berlin, 1958).
3. N. Dunford and J. T. Schwartz, Linear operators. I. General theory (Interscience, New York, 1958).
4. C.-E. Fröberg, Introduction to numerical analysis, pp. 146-148 (Addison-Wesley, Reading, Massachusetts, 1965).
5. R. W. Hamming, Numerical methods for scientists and engineers, pp. 96-97 (McGraw-Hill, New York, 1962).
6. H. Jeffreys and B. S. Jeffreys, Methods of mathematical physics, p. 246 (Cambridge, at the University Press, 1946).
7. A. F. Ruston, On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space, Proc. London Math. Soc. (2) 53 (1951), 109-124.
8. A. E. Taylor, Introduction to functional analysis (Wiley, New York, 1958).

University College of North Wales, Bangor, Caernarvonshire

