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would be difficult to apply in the general case since the rate of change of altitude is
required to an accuracy of two decimal places and this would be difficult to attain

graphically.
REFERENCES

! Ranta, M. (1991). Position fixing in a fast moving ship by culmination of a celestial body.
This Journal, 43, 276.

? Forsythe, G. E. (1957). Generation and use of orthogonal polynomials for data-fitting with
a digital computer. fournal of Industrial Applied Mathematics, §, 2.

% Davis, P. L. H. (1918). Altitude — Azimuth Tables. HMSO.

* Wilson, J. N. (1985). Position from observation of a single body. Navigation (Journal of the
American Institute of Navigation), 32.

KEY WORDS

1. Astro. 2. Marine navigation.

On the Two-Body Running Fix

Kenneth Gibson

If an observer can determine the altitudes of two bodies simultaneously, he can place
himself at one of two positions on the Earth’s surface. This fact has been the basis for
several proposed methods for obtaining a fix without reference to a DR or assumed
position, the latest of which is due to Chiesa and Chiesa.' Chiesa and Chiesa’s procedure
is straightforward and elegant if the sights are simultaneous, or if the sights are not
simultaneous but the observer is stationary, but there seems to be a need for a simple
method of extending it to cover a running fix. Chiesa and Chiesa themselves proposed
transferring the geographical position of the first body before calculating the fix.
Williams? questioned the accuracy of transferring the geographical position and, instead,
solved the problem by transferring the first position circle pointwise; his method is
sufficiently complex to require a computer, as he himself notes. Metcalf ® presented exact
equations for transferring the geographical position of a body and its associated circles
of altitude ; however, application of Metcalf’s equations assumes prior knowledge of the
observer’s position. Brown’s approach* was to move the observer’s bR on to the first
position circle before using it to advance the geographical position of the first body.
Based on his experience with Chiesa and Chiesa’s method, Pepperday’ argued that
knowledge of a good DR position can be put to better use as part of a conventional
running fix using position lines deduced by the Marcq St Hilaire or the modified Sumner
method. Apparently, all users and advocates of Chiesa and Chiesa’s method consider that
the calculations involved are complex enough to require a computer.l'6

Here, I present a simple solution for the two-body running fix without pr, which is
accurate whenever the usual simplifying assumptions of the Marcq St. Hilaire method
apply : namely, that the position lines are locally straight (equivalently, the azimuths are
effectively independent of position) and the surface of the Earth is locally flat. The
solution lends itself to an easy graphical construction, which will be described first.
Subsequently, I show how to obtain the same solution with a hand calculator, and
indicate how to find the position using Ageton’s method of sight reduction and a time-
sight table or formula.
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Each of the two non-simultaneous sights gives rise to a position circle ; the observer
must be on the first position circle at the time of the first sight and on the second circle
at the time of the second sight. If the observer were stationary he would be at one of
the two points of intersection of the two circles. The correct choice can be made by
reference to a DR position, even a very bad one, or by other means;’® the chosen point
of intersection is a putative ‘stationary fix’. The problem then becomes one of finding
a point on the first position circle and another point on the second position circle, both
of which are near the stationary fix, such that the two points can be connected by a
segment of a rhumbline of length equal to the distance made good between sights and
direction equal to the course made good. The exact mathematical solution to this
problem was presented by Williams,? in the form of two simultaneous nonlinear
equations whose solution is the latitude and longitude of the running fix. Williams’
equations, which need to be solved iteratively with a computer, must be used when the
simplifying assumptions referred to above are not valid (for instance, a large observed
altitude or a very long run between sights). There is then no need to calculate the
stationary fix, except possibly as a starting point for the iterative solution of the
equations. However, when the simplifying assumptions are applicable, the problem
becomes one involving straight lines in a plane. The graphical solution of this simplified
problem is as follows.

(1) From the declinations, GHas, and observed altitudes of the bodies at the actual
times of the observations, calculate the latitude and longitude of the stationary fix. This
is the point § in Figure 1.

PL1

L ) 1 | |

Fig. 1. Plot of the running fix
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(2) From the declinations, GHas and observed altitudes of the bodies, and the
latitude and longitude of the stationary fix, determine the azimuths of the bodies; this
can be done by any standard method if the stationary fix is treated as a pr position.

(3) Plot position lines through the stationary fix. These are labelled PL1 and PL2 in
Figure 1.

(4) From S, draw a line in the direction opposite to the course made good between
sights, and of a length equal to the distance made good, ending at the point X.

(5) From X, draw a line parallel to the second position line to meet the first position
line at the point E.

(6) Complete the parallelogram by drawing a line from E parallel to XS, to meet the
second position line at the point F.

The observer was on the first position line at the time of the first sight and on the
second position line at the time of the second sight. In between, he moved along a course
parallel to EF through a distance equal to the length of EF. He therefore took the first
sight at E and the second sight at F, which is the running fix.

The amount of plotting demanded by this procedure is about the same as is required
for a running fix drawn from pR or assumed positions. However, only one distance needs
to be laid off. Errors in the final position are therefore almost entirely due to errors in

plotting course and position lines, and lines parallel to them.
The stationary fix can be found with a hand calculator by applying the cosine formula

five times in succession* (this formula is preferred because all intermediate quantities lie
between o° and 180°, and the arc cosine function on a calculator delivers an angle in this
range). The azimuths can be found in this way also. To obtain the running fix with a hand
calculator, first calculate the stationary fix and the azimuths.

Let ¢ and A be the latitude and longitude of the stationary fix, let Z, and Z, be the
azimuths of the first and second bodies, and let C and 4 be the course and distance made

ood between sights. The following calculations locate the running fix.

(7) Calculate

d=4cos(C—Z,)/sin(Z,—Z,)
disregarding the sign of the answer.

(8) Choose 4 and A* to be the directions of the first position line pointing away from
the stationary fix, such that both directions lie between o° and 360° with A* = A+ 180°.
This can be achieved through one of the following choices:

(i) A=Z,4+90° A*=2Z +1270° if 0°<Z < 90°%

(i) A=2,—90° A*=1Z7Z+90° if 90°<Z < 270°;

(ili) 4=2,—270° A*=2Z,—90° if 270°<Z < 360°.

(9) Set B equal to Z,—270° Z,—90°, Z,+90°, or Z,+270°, chosen so that 4 < B <
A*,

(10) If A< C < A*, set

¢ = ¢d+dcosB,

A’ = A—dsinB/cos (¢ +5d cos B).
If 0° < C < Aor A% < C < 360° set

¢’ = ¢p—dcosB,

A" = A+dsinB/cos (¢ —3d cos B),
¢’ and A’ are the latitude and longitude of the running fix. Step (7) calculates the length
of the segment SF in Figure 1 by applying the sine formula for plane triangles to the

triangle SEF. The formulae in step (10) are the familiar corrections for D.Lat. and
D.Long. by traverse table.
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If no computer or calculator is available, the stationary fix can be found with two
applications of Ageton’s method and one application of a time-sight table or formula.
‘Navigational triangles’ must be solved twice for ‘altitude’ and ‘azimuth’ and once for
‘meridian angle’. Figure 2 illustrates two of the possible spatial arrangements between
the elevated pole (P), the observer’s position (O), and the geographical positions of the

P P

(o)
Fig. 2. Geometry of the stationary fix, showing two of the possible spatial
arrangements
TABLE 1
Sight no. GMT Altitude Declination GHA
1 1§-06-00 62° 07'g’ 22° 217’ N 46° 584’
2 18-01-27 68° 19°7° 22°22:6'N 90° 499

first and second bodies (U and V). At each step, three of these four points are labelled
‘pole’, ‘star’ and ‘DR’, and the appropriate ‘navigational triangle’ is solved. First, in
the triangle PUV label P “pole’, U “star’, and V ‘DR’. To solve by Ageton’s method,
set ‘latitude’ equal to the declination of the second body, ‘declination’ equal to the
declination of the first body, and ‘meridian angle’ equal to the difference between the
GHas of the two bodies. ‘ Altitude’ is then equal to 90° — D, where D is the orthodromic
distance between the two bodies (the notation is that of Chiesa and Chiesa'). ‘ Azimuth’
is equal to the angle PVU, or R in Chiesa and Chiesa’s notation. Next, in the triangle
OUV label V ‘pole’, U ‘star’, O ‘DR’. To solve by time-sight, set ‘latitude’ equal to
the observed altitude of the second body, ‘declination’ equal to 9o°® — D, and ‘altitude’
equal to the observed altitude of the first body. ‘ Meridian angle’ is then equal to the angle
OVU, or « in the notation of Chiesa and Chiesa. An observation of the approximate
azimuth of the second body® will allow a choice between R, = R ~ « and R, = R+a; the
chosen angle is needed in the final application of Ageton’s method to the triangle OPV,
For this step, label V ‘pole’, O ‘star’, and P ‘DR’. Set ‘latitude’ equal to the
declination of the second body, ‘declination’ equal to the observed altitude of the
second body, and ‘meridian angle’ equal to the chosen angle R, or R,. ‘Altitude’ is then
the latitude of the stationary fix, and ‘azimuth’ is the meridian angle of the second body
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measured from the stationary fix. The longitude of the stationary fix can be found from
this meridian angle and the GHa of the second body.

Once the stationary fix is known, the running fix can be found graphically. Obtaining
a two-body stationary or running fix in this way requires somewhat more arithmetic than
is needed for a running fix using DR positions. The difference is the second step,
involving the solution of a time-sight navigational triangle. Tables for solving time-sights
are hard to find nowadays, and it would usually be necessary to grind through an old-
fashioned calculation with five-figure logarithms. The purpose of the last paragraph is to
point out that it can be done if the need arises.

Example. On June 3, 1989, a small-boat navigator took two sets of five sights of the
Sun, averaging each set in order to obtain a running fix. Course and distance made good
between the two sets of sights were 049°, 17°5 miles. After averaging, data for sight
reduction were as shown in Table 1.

Chiesa and Chiesa’s procedure gives, using their notation: D = 40° 24:4’, R=
81° 186, @ =42°333, R =38 453", R, =123° 51-9’. The two possible stationary
fixes are (1) 38° 193" N, 73° 417" W; (2) 9° 246’ N, 72° 43-3’ W. Comparison with the
DR position (38° 30" N, 73° 43" W) establishes the first stationary fix as the correct one.
The azimuths calculated for this position are Z, = 117-2°, Z, = 227°5°. From Step (7),
d = 6'9’. From step (8), A = 27°2° and 4* = 207:2°; Step (9) then leads to B = 137°5°.
Finally, since 4 < C < A%, Step (10) gives ¢" = 38° 142’ N, A’ = 73° 357" W. It may be
verified that this position satisfies equations (4) and (5) of Williams® with residual errors
whose magnitude is o'1” or less.

Figure 1 is a plot of this running fix. For comparison, the 1801 position comguted
from the original ten sights by the nonlinear least-squares algorithm of Severance’ was
38°13'8’ N, 73° 35'5" W. Also for comparison, calculation of the stationary fix using
Ageton’s method and the time-sight formula of Rust’ gave 90°—D = 49° 35'5", R =
81° 190, x =42°33%5, $=38°190'N, t=17%08¢, and A = 73° 415’ W.
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Shortest Spheroidal Distance

Tim Zukas

What is the shortest distance on the terrestrial spheroid between two widely separated
points, given their latitudes and longitudes (and the dimensions of the chosen spheroid)?
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