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§0. Introduction

A time reversion of a Markov process was discussed by Kolmogoroff for

Markov chains in 1936 [6] and for a diffusion in 1937 [7]. He described it as

a process having an adjoint transition probability. Although his treatment is

purely analytical, in his case if the process Xt has an invariant distribution,

the reversed process zt = x-t is the process with the adjoint transition pro-

bability. In this discussion, however, it is very restrictive that the initial

distribution of the process must be an invariant measure.

On the other hand, the adjoint (or dual) process of a Markov process can

be defined with respect to any sub-invariant (or excessive) measure, and this

was done by Nelson [15] and Hunt [3]. Ever since the notion of the adjoint

processes has an important role in the theory of Markov processes (cf. e.g.

[3], [10], [12], [14], [15]). The relation between the adjoints and the time

reversions of a Markov process was, however, not fairly clear. For example,

an adjoint of a temporally homogeneous Markov process is always temporally

homogeneous by the definition, but the time reversion zt = x-t or zt = Xτ-t

(where T is a positive constant) is, in general, temporally inhomogeneous.

Recently Hunt [2] proved for Markov chains that if the time reversion is

performed from the last exit time from a subset, then the reversed process

has temporally homogeneous Markov property. Ikeda, Nagasawa and Sato [5]

also proved that for Markov processes obtained by killing, the reversed pro-

cesses from the killing times have temporal homogeneity.

The purpose of this paper is to prove that the reversed processes from

appropriate random times {L times cf. § 2) preserve temporally homogeneous

Markov property (cf. §3). Time reversions of approximate Markov processes

introduced by Hunt in [2] will be treated in §4.

The works of this paper grew up from the joint works with Ikeda and
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Sato [5]. In the course of the study K. Sato took verious discussions with

me and details of some proofs were improved by his suggestions, and N. Ikeda

and M. Motoo gave me several advices. I wish to express my hearty thanks

to them.

§ 1. Notations and definitions

In this section we shall recall some of definitions and notations on Markov

processes, which follow mostly Dynkin's book [1].

Let E be a locally compact Housdorff space with a countable base and

J& denote the topological Borel field of E. Let {3} be adjoined to E as an

extra point and denote £* = IiU{a}.

W is the space of mappings w from [0, °°] to £* satisfying the followings

(wi) There exists the killing time ζ(w) of w with values in [0, °°] such as

w{t)^E ίor t<ζ(ιv) and wit) =3 for t>ζiw)', (w2) wit) is right-continuous

and with left hand limits in [0, Ciw)). Let Xt denote the coordinate mapping

i.e. Xt{w)-w(t). Shifted path wt(t>:0) of w is defined by xs(wt) -Xt+s(w)

for any s>0. Let ^Λ be the j-field of W generated by {χs^A} (s>0, and

A e J ) . Put Wt = {w: w<=W, ζ(w)>t) and let Λt be the afield of Wt

generated by {xs&A, ζ>t) (se[0, t] and Λ ε J ) .

Let {Pα «e£}bea system of probability measures on (W, o/f) satisfying

(pi) For every f>0 and A G J , P f l b ε i ] is ^-measurable in α^E; (p2)

Pαίxo = α] = 1 for each α e E', and (p3) Pαtxt+s e A | ̂ / ] = PXtLxs e A3, Pα - α.e.

on Wt (ί, s^O, αzΞE and A e J ) . A system X= (xt, C, Λ t , Pα) is said to

be a (temporally homogeneous) Markov process.

For a measure v on (£, ̂ ?), we put

(1.1) PvCB] = \vida)PcLB\

Let Jf = ΠcXPv) and Jf ί= Π ^ ί P v ) , where ^ ( P v ) (resp. ^t(Pv)) is
V V

the completion of ^ (resp. ^ ί ) by P v {v, here, varies over all probability

measures on (E, J8)).

A random time a{w) is a Markov time if 0^<T(M;) ^ + oo (we HP) and

{<;<f<C}e ^ z , (ί^O). Given a Markov time <;, we denote Wσ = {w : ί (w)

<ζiw)} and J f σ the (7-field of Wo consisted of all B^Wσ such as Bf){σ<t
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A Markov process X is said to have the strong Markov property if for

each Markov time σ, Paίxa+s^ A | Jf J\ = PXoίxs^ A], Pa-a.e. on Wσ, (s^O,

a^E and A e J ) , and is said to have the quasi-left continuity, if for every

sequence of Markov times {an}, lim ^σ j ϊ = ̂ i m «,„, Pa-a.e. on {σn t , \\mon<t>)-

A Markov process X is called a standard process if it has the strong Markov

property and quasi-left continuity.

A mapping b(t, w) from [0, ^ixW to [0, ^o] is called a (non-negative

continuous) additive functional of X, if; (ai) b(t, to) is J/p -measurable and

{w : Wί, ίi X r , C ( w ) > ί } e J f for all r > 0 , U ^ O ) ; (a2) 0 = £(0, w)^b(t,w)

< o o ( o ^ * < o o ) ; (a3) ό(ί + 5, w)=b(tt w) + b(s, u)t), (WZΞW); U4) b(t, w) =

b(ζ, to) for t>:C(w); and (a5) ^(f, ^) is continuous in t, (w=W) (cf. e.g.

[17J, [11]).

Let ζ'(w) be an J/f -measurable function on W with values in [0, °°], and

zt(w) be defined for w e Wo<^W(Wo<= Jf) and f e [0, C'(u )) (resp. (0, C'(M ) ) )

with values in E, and put Wt = {C>t} ΠWo for t^0 (resp. ί > 0 ) . Let Λt be

the tf-field of W't generated by { a ε A , P > ή , U e J . s ε f O , fl (resp. (0,fl)),

and ^Jί be a <;-field on Wo containing all ,J£t (f>0).

Let P be a measure on (Wo, o^f), which is <;-finite on {Wu ^£i) for every

t^0 (resp. ί > 0 ) . A system (zt, C, o/£ί, P ) (for brevity, (zt, P)) is said to

have (temporally homogeneous) Markov property with a transition probability

P(ty a, A)t if, for every compact set A,

(1.2)

= P(t-s, zs, A), P-a.e. on TFί, (0<s<ί) . 0 )

( = )

Further, if z0 is defined and

(1.3) P[2oeA] = MA),

then (2/, P) is said fo /̂ αe;̂  the initial measure μ.

Let X= (xt, C c^ί, Pα) be a Markov process and v be a c -finite measure

on (E, JB) satisfying that

(1.4) Pv[#f e A ] < °°, for every ί^0 and every compact A,

°> Because of ί -finiteness of P on Wu we may define P\_zt^A\Ms\, etc. by the same
way as defining conditional probabilities using Radon-Nikodym theorem.
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then (xt, C, ̂ Ϋt, Pv) (for brevity, (xt, Pv)) has temporally homogeneous

Markov property with a transition probability P(t, a, Λ) = P β [ ^ e A l

§ 2. Random times of type L

In this section we shall investigate a new class of random times (L-time),

which is a generalization of the last exit time from a subset of E.

DEFINITIN 2.1. A function τ(w) from W to { - °o} U [0, oo] is called a

random time of type L (brieflyy L-time) if it has the properties;

(Li) τ(w) is ^yf-measurable and τ(w) -^C(w), and

(L2) {s<τ(w)-t< °°} = {s<r(w/)<°o}, (t, 5>0) .

A/so, Γ /S s '̂ί/ to be an almost L-time if it satisfies (Li) andt instead of (L2),

(L{) {s<τ(zι;)-ί<oo} = {s<r{^)<oo}, Pa-a.e. (t, s>0) .

An (almost) Z-time is an appropriate time at which the time scale is

reversed as to preserve the temporally homogeneous Markov property of the

reversed process zt = Xx-t-*. This fact will be proved in the next section. In

the following, we shall prove some properties of (almost) L-times and give

several examples of them.

LEMMA 2.2. Let τ be an L-time, then

(2.1) (0<r-*<oo}c{r(fi;) = f+r(ii;/)}, for any t^O.

If τ is an almost L-time, we have, for any t^Q,

(2.10 Pβ[r(M;) = f + r(ιι;

Proof. Let r be an L-time, then

{τ(w)>τ(wt) + t9 0<

= {J{r(w)>r>τ(wt)+t, 0<τ(w)-t<oo}

where r varies over the rationale larger than t. Hence, by making use of (L2),

we have

= U { °° > τ(wt)>r- t>τ(wt)) = φ.
r

We have also

{τ(w)<τ(tt)t) + t9 0<τ(w)-t< ™ } = φ.
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Consequently, we have verified that

{0<τ(w) - t< oo } = {τ(w) = τ(wt) -f t, 0<τ(w) ~t<°o}f

proving (2.1). The proof for almost L-times is similar.

LEMMA 2.3. Let τ be an almost L-time> then

(2.2) LJa) = Male"** 0<r], (αr>O),υ

is an a-excessive function.^

Proof. Let a>0, then we have, by Lemma 2.2,

MaLLa(χt)e-Λtl = Male-at-*x{Wt) 0<τ(wt)l

= Male'ax{W); t<τ(w)l t MJίe-Λxm \ 0 < τ

The proof for a = 0 is similar.

PROPOSITION 2.4. The killing time C(ιv) is an L-time.

Proof is obvious.

DEFINITION 2.5. For a subset D^Ey the last exit time from D is defined by

(2.3) ξD(w) = s\ip {t>0;

PROPOSITION 2.6. Let D be an open set, then the last exit time ξD is an L

tinted

Proof. Since paths are right continuous,

{ξD>t} = {3 rational r>tt xr(w) e D } e J ,

Let ivG{s<ξD-t<oo}9 then

ξD(w) =sup {t + r; 3r>0, xt+Λ

0, xr(wt)(ΞD}

Therefore, w e {s<ξD{wt) < °°}. Converse is obvious.

D Ma[f(u>); JB] = f

u is a-excessive if Malu(xt)e~at'] f w(«) ̂ 0 , (ί φ 0).
2^ If X is standard^ ξo is an X-time for nearly analytic set D. For,

i/«)) = oo}e^^\ which is communicated from K. Sato.
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Remark. Let ξE denote the last exit time from E, then

(2.4) ξκ(w)=ζ(w), for weΞ{C(w)>0}.

Consequently, ξE and C can be identified Pa a.e.

We shall prove that there are many kinds of L-times connected with a

given L-time. For the purpose, we need to define the reversed path w* of w

and reversed Markov times from an L-time. We fix an L-time τ in the

following.

Put

(2.5) WQ = {W

DEFINITION 2.7. For w e Wo, we define a new path w* by

(2.6) w*(t) = w(τ(w)-t-0), for 0<t<τ(w)t

(if w(τ(w) — 0) exists, we add t = Q in (2.6)) and call w* the reversed path of

w from τ(w).

Put

(2.7) W* = {w* : WZΞWO),

and let ^ * be a afield of W* induced by the mapping w-*w*> i.e. S * e ^ *

if and only if {w : ^ e β ^ e j ,

DEFINITION 2.8. A function σ*(w*) from W* to [0, oo] is said to be a

reversed Markov time (corresponding to the fixed L-time τ), if it has the pro-

perties :

(mi) σ*(w*) is <yf-* - measurable and

(m i) For any s>0, take any w^Wo such as ws& Wo. If o*((w^*)<τ(ws

s)>

then we have o*((ws)*) =<J*(W*).3)

LEMMA 2.9.

(2.8) (tι/s)*U) =w*U) for any Q<t<τ(ws).

Proof. For 0 < ί < r ( ^ s ) , we have, making use of Lemma 2.2, lws)*(t)

= ws(τ(u)s) - t- 0) = w(τ(ws) + 5 ~ t - 0) = w(τ(w) ~ t - 0) = w*(t).

3> This was suggested by K. Sato. Our terminology is reasonable, if we note Lemma
2.9 and refer to Galmarino's test (cf. eg. [9]).
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LEMMA 2.10. For any random time σ(w) ̂ 0 , we have

(2.9) {σ<τ-s<oo} = {σ<τ{Ws)<oo}.

Proof.

{a<τ-s<oo} = U{tf<r<τ~s<oo}= \J{o<r<τ(ωs) < oo}
r r

= {ΰ<τ(vϋs) < °°).

DEFINITION 2.11. Taking the fixed L-time τ, and a reversed Markov time

σ* {corresponding to r), we define τf by

(2.10) τ'(w) = τ(w)-o*(w*), (w<Ξ Wo),

Then we obtain the following

PROPOSITION 2.12.4) τf(w) defined in (2.10) is an L-time.

Proof. For any s, ί^O, it follows from (m2) and Lemma 2.10 that

= {t< τbϋs) - <T*(M;*) < oo } =, {t< τ(w) - s - σ*iw*) <

completing the proof.

Remark. If τ is an almost L-time, then τf defined in (2.10) is an almost

L-time.

We denote the coordinate mapping of w* also by Xt, i.e. xt(w*) = w*(t).

DEFINITION 2.13. Put, for a subset

(2.11) <y2(tt>*)=inf{f>0; xAtv*)eD}, for κ;*ePF*,

(inf ψ = oo ),

and σ$(w*) is said to be the reversed first passage time to D.

PROPOSITION 2.14. If D is an open set, then the reversed first passage time

0%(w*) is a reversed Markov time.

4> This proposition combined with Theorems in § 3 shows that the reversed pro-
cesses of a process from L-times have a common transition probability independent of
/.-times.
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Proof, (mi) is verified by

{aϊ(w*)<s} = {3 rational r, 0<r<s; xr(w*)^D).

If Ws^ Wo and <r£((κfc)*) <τ(ws), then we have evidently

by Lemma 2.9.

COROLLARY 2.15. Let D be an open set, then

(2.12) τ'(w) = τ(w) - σUw*)9- (we PF0),

= r(tc;), (w;eFΓ\m),

is aw L'time.

The following property of the last exit time £z> is used in the next section

to verify the conditions for a time reversion.

PROPOSITION 2.16. If a Markav process X is standard and D is an open

set with regular boundary? then there exists an additive functional bit, w)

satisfying

(2.13)

Proof. Let σn t a be any sequence of Markov times, then it suffices to

prove, according to Meyer [10] and Sur [16],

(2.14) lim ΛfΛZoUO] = MaΌU(xo)Ί, ( β e £).

Now, we have

lim MalUxoJl = Urn MaίPxa ίO<ξD< oo]]
n-»oo n-»oo

= lim PaίO< ξD(wan) < oo]

= PaίΠ{3s>0, xσn+sϊΞD, ξD(wan)<oo}2
n

= PaίΠAn, σ>ξDl + PaίΓ)An, a<ξol + PaίnAn, 0 = ξDl
n n n

= 1 + 11 + 111, say,

where An = {3s>0, Xon+S^D> ζD(wσn)<°°}.

n, 0 > 3βn, > f j = 0,

s^ An open set D is said to have regular boundary, if Prt[σjD=0]=l for each
where σn = inί {ί>0; Λ£eZ)}, (infci = oo).
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since Ano and {<;Wo>ίί)} are disjoint.

11 = PaίΠ An, 0<$Dl = Pa\3s>O, Xσ+s^D, ξD(tVσ)<oo].
n

111 = PJLΠAn, * = ?D, Xo^Dl + PalC\An> σ = ξυ, XaΦDl

= ΠIi + ΠI., say.

Because of {a = ξD) = {ξo(ιuσ) = 0 or - oo, # = £D}, we have

IΠi ^ P J > = ξDf Xβ<=Dl^ Paίx-y e 5, f D(«ια) = 0 or - oo]

= MaίPxaίξD = 0 or - o o ] ; ΛΓσeS] = 0.

For, PjtoKD = 0or -oo] = 0, Pa-a.e. on feeB}, since any point of D is

regular for D by the assumption. Because of

PaLΠAn, <J = £D, 3<Jn = σ}=0>
n

putting

we have

III. = PaίBl

Put σ'nhv) = (σn(w) +σD(u)on))h<r, then <τ« is a Markov time with the pro-

perty ΰn^ΰ'n^ζΌ- <?<C on JB, from which it follows that an(w) ϊ σ(w)<ζ(w),

and Xon'(w) e D for w^B. The quasi-left continuity, therefore, implies that

PaίBl = PβDim ΛΓCW' = χσ B] = Pαfe = lim χOn' e D B] = 0.
n-»co n->oo

Hence, we have

lim MXLoUαJ] = PΛ[3s >0, xo+s e A f D(fi;α) < °° D

completing the proof.

Remark 1. Since JS is open and closed, and Pα[>E = 0] = l for α e £ by

definition, Proposition 2.16 is valid for ξE (or C).

Remark 2. Let X be a (not necessarily standard) Markov process and ψt

be an additive functional of X. Denote X the process with killing by ψt, and

ζ the killing time of X. There exists an additive functional b(t, w) satisfying
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if

is uniformly αr-excessive for some αrgrO. In particular, this is applied for e~at-

subprocess X*.

Proof? Put u(a) = P o [0 < C < °° ], then

u(a) - "

0, uniformly (t I 0),

Therefore, there exists an additive functional bt, w) satisfying u(a) =

JfαC«°o, ύ)l. (cf. [4], [17]).

§ 3. Time reversions of Markov processes from almost Irtimes

DEFINITION 3.1. Let τ be an almost L-time and Wo={wl 0<τ(w) < °° }.

Put, for w €= Wo,

(3.1) zt(w) =xτ{W)-t-o(w), (0<t<τ(u>))9

= 9, (ί>τ(«;)),

(if there exists xτ-Qt we permit f = 0 iw (3.1)). 77i£ process (zt, P v ) defined

on the space (Wo, cΛ\w0) is said to be the reversed process of (xt, Pv) from

an almost L-time r, where v is a a-finite measure on (E, J8).

In this section we shall prove the temporally homogenous Markov pro-

perty of the reversed process (zt, Pv). For this purpose, it suffices to prove

for any w^O, 0 = / 0 < ί i < <tn, and / o , / i , / 2 , . . . ,fn^Co(E)7) that

(3.2) A / y U , ^

fn-ίM-1> «,„.„ db)Mb); ί»_1<τ<oo].
-I

6J This was given by K. Sato.
7) B(E), C(E) and Co(E) are the spaces of bounded ^-measurable functions, bounded

continuous functions, and continuous functions with compacts upports, respectively.
C?>(E) is uniform closure of CQ(E).
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where Pit, a, db) is a (temporally homogeneous) transition probability, (.7 = 0

may be omitted when z0 is not consulted with).

In the present paper we proceed as follows: At first we prove (3.2) under

the form of the Laplace transforms, in the second place we check the condi-

tions under which the Laplace transform can be stripped off.

The coming lemmas are fundamental in the first stage, further they show

the temporally homogeneous Markov property of the reversed process in

essence.

LEMMA 3.2. Let τ be an almost L-time. For any w^l , 0 = to<tχ<tϊ<

• <tnt and /o, /i, . . . , fn^B(E) (/o = 1, when zo does not exist), we have,

for a, β > 0,

(3.3) Γ e^tndtn

= [GΛa, db)fn(b)Mb\Y(*+β)τff/y(^) ;tn-i<τ< °° l

where

(3.4) GAa, A) = Ma[fQe~atXA(xt)dt\

Further, if G0(a, .) is a-finitey and / Λ ε δ β ( £ ) , then (3.3) is valid for or =0.

Proof. It suffices to prove (3.3) for / 0 , / i , . . . , / » e C ( S ) .

= lim Γ

= lim Ml(Vp(T-s-s)-αVs/«(^)Π1/y(*τ-<J-ε^(S<τ-<n-1-s«») l

further we have, by making use of (L{) and Lemma 2.2,

= lim Ml f%"" + | i eΛ/«(*.) Jf*.Γβ-(*+wτΠ1/>(*τ-t,-,)Z{ί11.1+t<t<>jl
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j(ztj) tn-ι<τ<

-the right member of (3.3),

where a>0, (this is verified for α: = 0, by making use of <;-finiteness of <S0(a,.)

and /»6Cβ(β).

LEMMA 3.3. Let τ be an almost L-time, and Lζ°(a) ^ Malfo(zo)e~aτl. For

any n^>l, 0<au <x2, . . . , an> and /0, /i, . . . , fn

does not exist), we have, for a > 0 ,

(3.5) Γβ~β AΛiΓβ-β A£ft,Γ Γ β"M M^M«Γβ~Λ τΠ/y(^) ίn

= j * jGUtf, dan) fn(an)GΛn+Aan> dan-ι)ί"n-\kan-\)

GO(Λ,.) ί's j-^mϊβ awe/ fn^BtίE), then (3.5) ts valid for α:=0.

Proof. We shall prove (3.5) by induction. When w = 1, (3.5) is reduced

to (3.3) with 7Ϊ = 1. Because of Lemma 3.2 and the assumption of induction,

we have

the left member of (3.5)

a, db)fn(b)Γe-^hdtr Γ e-*-**-ιdtn-ι

j φ - ' '-'ΊΪ/Vί*,) u-x<τ< «»1

«(«, da^fnia^GcLn+Λany dan-\) Zίl+ t+...+β|I

This concludes the proof.

Now we introduce several conditions under which we are able to derive

(3.2) from the above lemmas.

{Case 1)

A.3.1. We assume that G0{a,.) is (/-finite and for a ^-finite measure v, if we

put

(3.6) ?(A) = jn(*i)GoU, A), for A e J ,
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then, there exists a transition probabability pit, a, A)B) such as

(3.7) {Ttf(a)g(a)V(da) = \f{a)ftgia)y1ida)t

for each / , # e B*{E). Here

(3.8) Ttf(a)=MaZf(xt)l,

and

(3.9) ttf(a) = jpU, a, db)f{b).

A.3.2. v is a <;-finite measure on {E, J8) satisfying

(i) PJzt^K\< °°, (ί>0),

and

(ii) \ β * dtP^[_zt e i i j< °°, (α>0),

for each compact K. Here Zt is defined by (3.1) for a given r.

In the following we fix an almost L-time τ, and consider the reversed pro-

cess zt defined in (3.1).

THEOREM 3.4. Let v be a measure satisfying A. 3.1 and A.3.2. Then, for

any n^>2, 0<ti<t2< <tn-2, and fu / 2 , . . . , fn^CoiE), we have {put

f*-2 = 0, ifn = 2)

(3.10) Γ β"β-lίΛ-ιΛΛ-iΓ r ^rfω
Jtn-2 Jtn-ι

α:w «W6? α:rt-i «r^ positive.

Proof. It suffices to prove (3.10) for /y>0 and fjtΞC0(E), (j = 1, 2, . . . ,

#). Putting

(3.11)

8) 0^P(/, «, Λ ) ^ l , and for fixed t, a, P{t, a. A) is a measure on (E, %), and for
fixed A, it is measurable in (t, a). Further it satisfies

P{t+s9 a, A) = \P(tt a, db)P(s, a, A), (t,
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we have, by (3.7),

(3.12)

Making use of Lemma 3.2 three times and (3.12), we have

the left member of (3.10)

a, db)fn(b)Mb\e'^U fj(zh) tn-ι<τ<°o]

^ ) ; ίΛ-s<r< oo J

« Γ β-(^+^-l)ίΛ-1Λ»-iJfvΓπ1/y(2ίi)0.ll/Λ(2!ίll.1) f Λ -i<r<

member of (3.10),

completing the proof.

A. 3.3. For any / e= Co(-E),

(i) Ttf(a) is right continuous in ί, and

(ii) Gaf(zt) is right continuous in ί, Pa-a.e. (αr>0).

Remark. (A.3.1) and (A.3.3) follow from the condition (F) of Hunt [3].

THEOREM 3.5. // a Markov process X and a measure v satisfy A.I.I,

A.3.2, and A.3.3, then the reversed process {zty Pv), (ί>0), of (xt, Pv) from

an almost L-time τ has temporally homogeneous Markov property and its

transition probability is P(t, a, A), i.e.

(3.13) PlzttΞAlz

~s, zSy A), P^-a.e. on {s<τ<™}, (0<s<t).9:

It must be noticed that the transition probability of the reversed process

does depend only on the transition probability and the initial measure v of the

process Xt, and does not depend on the almost L-time r.

9> It was remarked by K. Sato that if the process (xtt Pv) satisfies; (i) P*>[0<r<oo
and tfτ-o does not existi^ΰ, (ii) Pt'|>oe/Γ|<oo for every compact set K, and (iii) Tff(a)&
C{E) for each /eCo(£), then in Theorem 3.5, we can replace (zt, P»), (t>0) by (zc, P v ) ,

), and (0<s<ί) in (3.13) by ( 0 < J s < n .
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We prepare a lemma.

LEMMA 3.6. // / 0 , /i, . . . , / „ e C o (£), then

(3.14) w(^-i)

and

(3.15) v(tn) = MSΠ fj(ztj) tn<τ<™],

ar* fΐgΛί continuous in tn-i and tn> respectively.

Proof. For any e>0, we have

(3.16) \u(tn-x + *)-u(tn-χ)\

(3.17)

""1

Π \/j(zt})\ ' |/B(2tn+ε) - /«(Zίn)l

|

Both terms in (3.16) and (3.17) converges to zero with e by A.3.2 and the

bounded convergence theorem.

Proof of Theorm 3.5. Making use of the previous lemma and A.3.3} we

can strip off the integrations by tn-i and tn in (3.10), because of one to one

property of the Laplace transform. Thus we have (3.2), from which the

statements of the theorem immediately follow.

(Case 2)

B.3.Ί. (i) There exist a <rfinite measure m on (Et Jg) and a function

pit, a, b) (f>0, a, bEϊE) satisfying;

(3.18) pit, a, b) is non-negative, JB x ^-measurable as a function of ia, b),

(3.19) Ttf(a) = j*U a, b)f(b)m(db).

Moreover, either

(ii) pit, a, b) satisfies
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(3.20) p(t, a, b) is right continuous function of t in (0, °°) and bounded

in (α, b) for any fixed £>0;

or

(ii') Tt maps B0(E) into C(E).

B/S.2. There exists a <;-finite measure μ such that

(3.21) Maίe"Λτ; 0<τ< °o] = ̂ ga(a, b)μ{db), (a^0ta^E)t

where

(3.22) gΛ(a, b) = ΓjίKί, <*, b)e'atdt, (α:>0).
^ 0

B.3.21. (i) Pfl[Λ;-t-o ώ w woί βΛrίsί ί'w ϋ3 = 0, and (ii) there exists a

^-finite measure /i, satisfying

(3.210 MJίf(Xτ-o)e-ax; 0<τ<oo2 = ̂ ga(at b)f(b)μ(db),

for α;>0, aeJ5, and f^B(E).

Remark 1. B.3.2 is weaker than #.3.2' (ii).

Remark 2. Let JY" be an Λ-difϊusion, i.e. the diffusion process with the

generator which is a closed extension of a second order elliptic differential

operator A satisfying some regularity conditions (cf. [4], [12]). Then X

satisfies the conditions #.3.1 and #.3.2 (or #.3.2').

THEOREM 3.7. Let X be a Markov process satisfying #.3.1, and r be an

almost L-time satisfying #.3.2 or #.3.2 ;. Then, for any αr^O, ri>\ O = to<h

< <tn, and /o, /i, . . . , fn^Ca(E) (when #.3.2 is assumed, we put / 0

s 1), w

(3.23) Mlnfj(ztj)e~ax; f*

= ^" J" # # J ^ ^ ' an)m(dan)fn(an)P(tn-tn-u an, dan-ι)

• fn-i(an-i) P(tn-i- tn-2, <*n-U dan-ι) fn-*(an-i) ' ' '

-tL, a2, daι)fι(aι)p(tu &u a0)fQ(ao)μ(dao).

Proof. It suffices to prove (3.23) for non-negative / 0 , flt . . . ,/»εCo(£)

and α>0. We shall prove it by induction.
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We assume that (3.23) is valid for n~\ (w^2). Then we shall at first

prove for /3>0 that

(3.24) Γ e-^dtnMlήfjiztJe-**; tn<τ<™]

= Γ e-(*n)indtn[ ( G . U dan)fn(an)P(tn-tn-u ant dan-i)

-ti, a2, dai)fι(aι)p(ti, au

On account of Lemma 3.2 and making use of (3.23) for w —1, we have

f/*£ left member of (3.24)

, Λi, ao)fo(ao)μ(daQ)

) μ(da0)

= the right member of (3.24).

The right member of (3.23) is right continuous in tn according to 2?. 3.1

(ii) or (ii'), since μ and m are finite on compact sets. On the other hand, the

left member of (3.23) is also right continuous in tn by Lemma 3.6 (Jfv must

be replaced by Ma in (3.15)). Consequently, (3.23) for n ̂ 2 is obtained from

(3.24) by the one-to-one property of the Laplace transform. Applying the

above discussions for w = 1 and using (3.21) or (3.210, we have (3.23) for

n = 1. This completes the proof.

DEFINITION 3.8. For a a-finite measure v, we put

(3.25)

and

(3.26) En = {a; a^E, 0<y(a) < °°}> and EQ =

B.3.3. A (7-finite measure v satisfies

(3.27) PvDαe/CK o , ^ ,

for any compact set K (when zo does not exist, t = 0 is omitted).
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LEMMA 3.9. Under the condition #.3.1, #.3.2' {or #.3.2), and #.3.3,

we have PJίzt- Eol = O (t>0), (when #.3.2' is assumed, t = 0 may be added).

Proof. Choose a sequence of compact sets Kn such as Kn t E. Then, for

f>0,

(3.28) P&Zt^E,C\Kn~\

and, if #.3.2' is assumed,

(3.29) Pv[zo e Eo Π #„] = Jz*on*n

by Theorem 3.7 and (3.21'). Since the right members of (3.28) and (3.29)

are equal to zero or infinity, while the left members are finite, they must be

zero. Letting n t °°, we complete the proof.

THEOREM 3.10. Let X, τ, and v be a Markov process, an almost L-time and

a O'finite measure satisfying #.3.1, #.3.2 or #.3.2', and #.3.3, respectively.

Then the reversed process (zt, i \ ) from the almost L-time τ has temporally

homogeneous Markov property and its transition probability is

(3.30) P£zt^db\zs = al=p(t-sy b,

Moreover, if #.3.2' is assumed, s = 0 is added in (3.30) and the initial measure

of the reversed process is given by

(3.31) i\[zo e dbl = -η(b) μ(db),

where y and E n are defined in (3.25) and (3.26).

Proof. (3.31) is obvious by (3.21'). For the proof of Markov property

of (zt, Pv), and (3.30), it suffices to verify an analogue of (3.2),

(3.2') MJUMZJ); tn<τ<™]

tn-tn-u a, zu-J ? (*\ Xrja) fn(a)m(da)

(when #.3.2' is not assumed, put / O Ξ=1).

On account of Theorem 3.7 and Lemma 3.9,
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the left member of (3.20

= \ w(a)m(da) fniriXsuW
J J

Ύ}{an-ι)m{dan-ι) p{t2-tu a2,

= ffte r/#/*f member of (3.20,

O tn<τ<

n- tn-u a, an-i

completing the proof.

We shall give remarks about the conditions 5.3.2 and 5.3.2'.

Remark J. Put, for ga(a, b) in (3.22) and for

(3.32) Gϊf(b) = $m(da)f(a)ga(a, b),

B.3.4. X is standard, Gί maps CΛE) into C«,(JS), and GΪΓC»(£)] is

dense in Cco(E)

If JY" satisfies 5.3.4, then 5.3.2 is valid for every almost L-times (cf. Pro-

position 5.1, pp. 115-117 in [4]).

Remark 2.

5.3.5. 5.3.2 is satisfied and (i) gΛ(a, b) given in (3.22) is αr-excessive

and αr-harmonic in E\b as a function of a, and (ii) MaLe~aτ l 0 < r < ° ° ] is

regularly α:-excessive.

If X is standard and satisfyies 5.3.5, then 5.3.2' (ii) is valid, (cf. Theorem

4.1 in [14]).

Remark 3. Let pit, a, b) satisfy 5.3.1 (i), and

(i) j/>(f, a, b)m(db)p(S> by c) =pit + s, a, c), (t, s > 0 ) ,

(ii) Gί/ e C(E), for any / e Co(£),

(iii) for any /

Then £Λ(β, ̂ ) satisfies 5.3.5 (i).

Proo/. We shall prove, for any open set U containing b,

(3.33) gAa, b) = Mate-aσugAxoσ, b)~]=Hΐrga{at b), (a<=E,
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where co is the first passage time to U.

We have easily (3.33) for fixed a^E and m-a.e. b^U. Take f^C(E)

such that f(b) = l, /(β)=0 for a$U, and 0 ^ / ^ l , and take any h<sCo(E),

then we have

]h(a)tn(da)gΛa, b)

= \\m[\h(ά)m{da)g*(a9 c)m(dc)f(c)e~Λtρ(t, c, b)

= limf fft(e)»f(rfe)i/?^(e, c)m(dc)f(c)e-atp(t, cy b)m

^\im[[h(a)m(da)Hu(a, dc)[ e~*sp(s, c,b)ds

ϊ{tn(da)HSgAa, c)(l- f(c))m(dc)e~*tp(t, cy b).

no
term

= ^h(a)m(da)HSgaia, b), and

I the second term \

£Klim[(l-f(c))tn(dc)p(t,c,b)=O,

where K = K{h, a) such as

Consequently, we have (3.33) for ma.e. a^E and for any b^E, but since the

both sides of (3.33) are α:-excessive, therefore fine continuous, as functions of

a^Ey (3.33) is valid for any a<Ξ:E, completing the proof.

We state here a corollary of Theorem 3.10.

COROLLARY. Let X be a standard process satisfying B.3.1 and B.3.5 (i)

and B.3.2 (or B.3Λ) for the last exit time ξD where D is an open set with

regular boundary such as

Paίthere exists * ? J ) e E\0<ξD< °°3 = 1 (a^E).

Let v be a a-finite measure satisfying B.3.3. Then the reversed process (zt, P v )

10) Hζ(at A)=Ma[e-«°uXA(xCu)] and H%f{a)=^H%{a> db)f(b).
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of (xty P v ) from the last exit time ξD has temporal homogeneity and the tran-

sition probability

P^Lzt G db I zs = a~\ = p{ t — 5, b, a

and the initial measure

where -ηib) is defined in (3.25).

Proof is immediately obtained by making use of Proposition 2.16.

(Case 3)

C.3.1. There exist a cr-finite measure m and J% x ^-measurable function

g*(a, b)7>0, (α^O) with the properties that

(i) Gaf(a) = j* β (β. b)f{b)m{db),

and

(ii) Gaf(b) = \m(da) f(a) gΛa, b) gives the resolvent operator of some Markov

process X, in the sense of §1.

C.3.2. v is a ^-finite measure satisfying

(3.34)

and

(3.35)

for any compact set Ky where zt is the reversed process of Xt from an almost

L-time r satisfying B.3.2'.

Given an excessive function e(a), the super-harmonic transform Xe of a

Markov process X by e is the Markov process with the transition probability

(3.36) Pe(ty a, A) = -j^MalXAixt) e(xt)l, (azΞEe),
e(a)

where Ee = {a; 0<e(a)<°°} is the state space of Xe.

Kunita and Watanabe [8] proved that the process Xe preserves main pro-

perties of X. For example, if X has right continuous paths (this is always

asuumed in this paper), then Xe does, and moreover if X is standard, Xe is
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also standard. This fact is essential in the proof of the following

THEOREM 3.11. Under the assumptions C.Z.I and C.3.2, the reversed pro-

cess (zt, Pv) of {xt, Pv) is a version of (xt, Pημ), which is the super-harmonic

transform Xn of X by γ with an initial measure ημ. Here -η(a) is defined in

(3.25).

We omit the proof, and give a brief sketch in foot note.n)

Remark. If X and X are standard and satisfy C.3.1, and if ga(a, b) is a-

excessive for X in a e E and for X in b e E} then the last exit time ξD satisfies

(3.210 for open set D with regular boundary.

§ 4. Time reversion of approximate Markov processes

Following Hunt [2] we first mention some notations and definitions on

approximate Markov processes.

Let (Ω, <_Jί) be a measurable space, and P be a measure on (Ω, <J£)

(possibly with infinite total mass), and cc(ω) and β(ω) be e^f-measurable

functions such that - °° ^a(ω) < °°, - °° <β(ω)£ °°, and a(ω) ^ β(ω).

Let ytW be a function on (a(ω), β{ω))xΩ taking values in a locally

compact Hausdorff space E with countable base. A system (jy*, a, β, P) is

said to be a random process if (i) {yt&A, a<t<β} e ^£f ( ί ε i - o o , oo)̂

A e J ) and (ii) Pίyt^A, a<t<β~]< o°, for every compact set A

Put i?ί= {α: <£<£}, and let c// be the afield of Ωt generated by (yaeA,

α<t<β} for every s^t and A £ j . Then (yt, α, β, P) is said to have

Markov property if for every c^frmeasurable and locally P-integrable func-

tion /,1 2 )

(4.1) Mίf(ω) I o ^ ] = Mίf(ω) \ytl, P-a.e. on Ωiy

Π ) A proof was given by H. Kunita in the case of τ = ζ. For the proof it suffices to
verify an analogue of (3.2),

which can be obtained from its multiple Laplace transforms by making use of Lemma

3.3, a lemma similar to Lemma 3.9, and the right continuity of Xη.
12> Mίf(ω); Bl = \Bf(ω)Pldω'[.

/ i s said to be locally P-integrable if M{\f(ω)\; £]<oo, where B={a<t<β) Π {>t

for every ^compact set A and ίG(—oo, oo).
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and said to have temporally homogeneous Markov property with a transition

probability Pit, a, A), if it has Markov property and

(4.2) Pίyt <Ξ A \ysl = P(t - s, ys, A), P-a.e. on Ωs,

for every s ^ t and every compact A.

aiω) on Ω is said to be reducing time for (yt, a, β, P) if (i) a is <J[-

measurable and a^σ^β, and (ii) (y't, 0, γ, P) on (42', <Λ£\&) has temporally

homogeneous Markov property, where Ω' = { - <*> <a< °°}, r(ω) = βiω) - <;(ω),

and yί(ω) =yσ(<o)+t(ω) for ω^Ω', t^>0. We shall call (>>ί, 0, r, P) the reduced

process by «;.

A random process (jVί, a, β, P) is said to be an approximate (temporally

homogeneous) Markov process, if there exists a sequence of reducing times

Wi) such that (i) — °o <αr,(ω)< + °° and α, I α:(ί-> co)P-a.e., and (ii) each

reduced process by α:, has temporally homogeneous Markov property with a

transition probability Pit, a, A) independent of i.

In order to apply the results in the previous sections, we add some

assumptions.

A.4.1. (ex) The sample paths of yt are right continuous. ie2) there exists

yo e E, P-a.e.13) and each reduced process by oci is equivalent to a standard

process, i.e. the reduced process (y\, 0, γ\ P) and (xt, PH) are equivalent for

any i>0, where X=(xt, C, *Λt> Pa) is a standard process and vi(A)=Pίyl

G A ] , and (e3) τ?(A) = iWJ \ 7A(yt)dtJ< °°, for any compact set A.

Define the last exit times from D c £ of ^ and jvί by

(4.3) f/)(ω) = sup{ί; yt(ω)sΞD), (sup 0 =- - °° ),

and

(4.4) ?5>(ω) i '

respectively.

Then we have, by the right continuity of paths,

LEMMA 4.1. If D is open, ?D and ξι

D are <_Jί-measurable.

LEMMA 4.2. There exists io(ω)< °° such that

13) yί

0(ω)=\im
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(4.5) cti(ω) + ξ'D{ω) = ξD(ω), for any i7>io(ω).

Proof. Put Ωι={ω; there exist io(ω)< °° and 0 ^ ί < ° ° , such as yi°(ω)

e D } and i22 = {ω; for any z^O and 0 ^ t <c», ^j(ω) Φ D). If ωeJ22, £p(ω)

= — oo and &(«>) = — °o for any ι > 0 . If ω^Ωu ξΌ{ω)^aάω) for every

ί> ιΌ(ω). Therefore Mα*) = sup {ί + ca .yβί+/ ei>} = αr/(ω) + &U), completing

the proof.

Put

(4.6)

and

(4.7)

Then, we have

LEMMA 4.3. η and rf for any i are excessive relative to Pit, a, A), and

V{(A) ϊyiA), (i-+™) for each A e J .

Proof. For any A e <3, we have

and for compact set A

§ Pit, yί, A)ds] = M[JQ MίXA(yLt) \yίlds \
i a,

and, therefore,

[τ)(da)P(t, a, A) = lim fv'(rfβ)P(ί, a, A ) ^ ( A ) , ( A G J ) ,

completing the proof.

We define now the reversed process (yt, cc>β,P) of an approximate Markov

process (yt, a, β, P) by

(4.8) ά(ω) = -j9(ω), ^(ω) = -α(ω).

and

(4.9) ^(ω) =y-t-o(ω).
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In the following we shall prove that the reversed process is also an

approximate Markov process.

A.4.2. The standard process in AΛ.l ie2) satisfies; (n) There exist

^-finite measure m and a transition density pit, a, b) such as

P(t, a, A) = \ pit, a, b)m(db);
J A

(n) pit, a, b) satisfies J5.3.1 and gAa, b) satisfies B. 3.4 and B.3.5 (i), where

gAa, b) is defined in (3.22), or

ίrί) gAa, b) satisfies C.3.1 and JB.3.5 (i)

(rs) There exists a sequence of open sets {Dk) with regular boundary and

with compact closure such as Dk^Dk+i and Dk \ E\

ir4) For any open set D with compact closure,

(4.10) there exists y\D-9, P-a.e. on {0 ^ ξD < °°}

A.4.3. For any k, ί^O, and compact set K,

(4.11) Pty{ξnk-t-0)(ΞKf fpfc

where y(t) =yt(ω).

THEOREM 4.4. Let iyt, a, j9, P) be an approximate Markov process satis-

fying AΛΛ and AΛ.2, then for any O = to<tι< <tn, and Ao, Au . . . ,

An £ ^ , toe have

(4.12)

= I ' ^βDkidaQ)XA0(ao)p(tu au a*)XAχ(ai)tn{aι)

p(tn-tn-u any an-ι

where μDk is a mearure, given in B.3.2 for ?DΛ, independent of i.

Proof. We have

where ^

Therrfore, if (r2) is assumed, we have (4.12), applying Theorem 3.7 and

Remark 1 after Theorem 3.10. If (rθ is assumed, we have
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(4.13) P^ΐx(ξBk-tj-O)eAj, O^j^n; tn<ξDk<>

= MIA Π XAjiXtj) \> (Via) ΞΞ η\ά), μ S J|pfc),

by means of Theorem 3.11. Hence we have (4.12), because of

(4.14) Pvit, β , A ) = ( pit, b, a
J A

completing the proof.

THEOREM 4.5. Put

(4.15) P(t, a, A) =\AP(t, b, a)^^XEr](b)m(db)f for a<=Eη,

= 0, for a e E\En,

where

<4.16) τ)(b) = lim Li(da)go(a, b),U) and EΆ^{a\ 0<i?(α)<oo}.

Lei (^, a, β, P) be an approximate Markov process satisfying AΛΛ, AΛ.2,

and ^4.4.3. Then the reversed process iyt a, @, P) is an approximate Markov

process with transition probability P (t} a, A), and its sequence of reducing times

U) Since \vi(da)go(a, b) is non-decreasing m-a.e. b&E, there exists a e. limit Vib) and

V(db)=V(b)m(db).
15> Time reversion of an approximate Markov chain is an essential tool in Hunt's

treatment of Martin boundaries of Markov chains [2], This theorem, therefore, will
give a basis for theory of Martin boundaries analoguous to Hunt's in the case of more
general Markov processes.

For this purpose we must construct an approximate Markov process from a given
(standard) process X and a given excessive measure V such as the reduced processes
have the same transition probability as X and satisfy

M

But the author is able to prove weak facts that: Let X be a standard process satisfying
that Gof(=Cπ(E) for each f^Co(E) and Go[Co(£)] is dense in C*>(E). Then there exists
a system (ytt <x> βy P) on (Ω> 3D£) consisting of : (i) 9ft is a field (not necessarily σ-field)
on Ω, and P is a finitely additive non-negative function on SO? (ii) a{ω) and β{ω) are
functions on Ω such as — oo<α(α>)</3(ω)<^+oo; (in) yt{ω) is a function defined on [α, β)
xΩ taking values in a locally compact space E, and right continuous in t; (iv) there
exists a sequence of functions {<**} on Ω such as cai^β and ail a (f-»oo). If we put
ϊi=β~ai and ^(ω) =^+i(6>) (O^ί^Γ), and let W be the <7-field on Ω generated by {y\\
£>0}, then (yj, 0, P, P) is a temporally homogeneous Markov process with the same
transition probability as X; and (v)

XA(yt)dt]=y(A), (Aef,A is compact).
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Proof. Putting

B = {y(ξDk-tj--0)<=Aj, O^J^n, and ξDk-tn>a}>

and

j£n9 and Uk>tn},

for 0 = ί 0 < ί i < * <tn> and Ao, Ai, . . . , A Λ e ^ with compact closure, we

have, making use of Theorem 4.4 and Lemma 4.2,

(4.17) P[B, ] = j $AίD*(rfao)Jkβ(«o) * p(tn-tn-i, a»t an-i

Because Bi t JB, we have, letting *-» oo,

(4.18) PZB1=§ - j^*(Λio);kβ(Λo). - -p(tn~tn-u an, an-i)lAn(

-ι)P (tn-tn-ι, an-u An)

= MCP (ίΛ - tn-u y(?Dk - tn-i ~ 0), An) I y(ξnk - tj - 0) e Ay, O^ ^w - 1].

Noticing that y(ξDk - ί - 0) = y( - ξDjc + ί) and putting $*(f) = $( - ?Dfc + ί),

(4.18) is written as

(4.19) PZyk(tj)<ΞΞAj, O^j^fύ

= MlP(tn ~ tn-l, yk(tn-l), An) I Ϋ(tj) €= Aj, 0 £ j £ n - 11,

from which (4.1) is deduced.

Thus, we have shown that -ξDk reduces {ytt άy 0, P) to a process (yt, 0,

f ky P) with temporally homogenous Markov property and transition probability

Pit, a. A). On the other hand, - ξΌk decreases to -β = a and - oo < - ξDjc

< + oo, completing the proof.
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