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THE POSET OF PERFECT IRREDUCIBLE 
IMAGES OF A SPACE 

JACK R. PORTER AND R. GRANT WOODS 

1. Introduction. We begin by briefly summarizing the contents of this paper; 
details, and some definitions of terminology, appear in subsequent sections. All 
hypothesized topological spaces are assumed to be Hausdorff. The reader is 
referred to [13] for undefined notation and terminology. 

A perfect irreducible continuous surjection is called a covering map. Let X be 
a space, le t / and g be two such functions with domain X, and let Rf denote the 
range of/ (i.e., the set/[Z]). Then/ and g are said to be equivalent (denoted 
/ «=* g) if there is a homeomorphism h : Rf —» Rg such that h of = g. We 
identify equivalent covering maps with domain X, and then denote by IP(X) 
the set of such covering maps. (Note that \IP(X)\ ^ 2^L) A partial order ^ 
can be defined on IP(X) as follows: g ûf if there exists a continuous function 
h : Rf —• Rg such that hof = g. (The antisymmetry of ^ follows from the fact 
that we have identified equivalent covering maps.) It turns out that (IP(X), ^ ) is 
a complete upper semilattice. Our principal result is the following: 

THEOREM 1.1. Let X and Y be k-spaces without isolated points. Then 
(IP(X), ^ ) and (IP(Y), ^ ) are order-isomorphic if and only if X and Y are 
homeomorphic. 

In fact we prove a generalization of this (Theorem 3.10) that is not as suc
cinctly expressed. This generalization has Magill's theorem (see 1.4) as a corol
lary. 

The remainder of the paper (Section 5) contains partial results concerning 
when IP(X) is a lattice. It is already known that IP(X) is a complete lattice if 
and only if the set of non-isolated points of X is compact and nowhere dense 
(see 5.1). We show that if X is not countably compact, or is a compact metric 
space without isolated points, then IP(X) is not a lattice. 

Evidently 1.1 describes a situation in which the topology of a space is de
termined by the order structure of an associated family of mappings. Theorems 
of this sort are not new; for twenty years topologists have been studying the 
order structure of families of extensions of a space, and obtaining theorems like 
1.1. Our investigations were motivated by a desire to see if similar results could 
be obtained by considering a naturally occurring, but quite different, poset as
sociated with a topological space. To set the stage for what follows, we brief y 
summarize the theory of extensions and quote some of the above-mentioned 
theorems. See 4.1 of [13] for more details. 
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Definition 1.2. (a) An extension of a space X is a pair (/,£) where 5 is a 
space and / : X —> S is a dense embedding. 

(b) Two extensions (/,5) and (j,T) of X are equivalent if there is a homeo-
morphism h : 5 —» T for which /z o / = y. 

(Note that if X is a dense subspace of S and of T, and if / and j are inclusion 
maps, then (b) above reduces to requiring that h\X be the identity on X.) 

Henceforth we identify equivalent extensions of X. Let £(X) denote the set of 
extensions of X. (Note that since equivalent extensions are identified, and since 
we consider only Hausdorff spaces, we have |£(X)| ^ exp(exp(exp |X|)). ) A 
partial order ^ can be defined on £(X) as follows: (j,T) ^ (i,S) if there 
is a continuous function h : S —• T such that h o / = j . (The identification 
of equivalent extensions of X enables us to prove that ^ is antisymmetric.) 
The following results are well-known (see 5.3(c) of [13], for example; (b) is 
essentially due to Herrlich and van der Slot [8]. 

THEOREM 1.3. Let X be a space. Then: 
(a) (*£(X), ^ ) is a complete upper semilattice. 
(b) IftP is a closed-hereditary, productive topological property, and if l^iX) 

is defined to be 

{(i,S)e £ ( X ) : S hasT}, 

then CEp(X), S) is also a complete upper semilattice (provided it is non-empty). 

Suppose that <2 is as in 1.3(b) above, and let (/,7^pX) denote the largest 
member of *£# (X). Many authors have investigated the relationship between the 
order structure of £p(X) and the topological structure of 7^pX\X. The earliest 
and best theorem of this sort is due to Magill [10], as follows: fiX denotes the 
Stone-Cech compactification of K. Let % denote the property of being compact. 

THEOREM 1.4. Let X and Y be locally compact spaces. Then 'E^(X) and 
2 ^ ( 7 ) are order-isomorphic if and only if(3X\X and (3Y\Y are homeomorphic. 

Other results in a similar vein appear in [11], [14], and [16]. The results we 
will obtain in Section 3 below bear a strong resemblance to these results. 

2. The poset of covering maps with fixed domain. In this section we 
assemble some preliminary results on IP(X). Our new results appear in Sections 
3 to 5. Recall (see [13] or [17]) that a function/ : X —• Y is perfect if it is closed 
and point-inverses are compact. A perfect function / : X —> Y is irreducible 
if f[X] = Y but f[A] ^ Y if A is closed in X and X\A ^ 0. Covering maps 
are perfect continuous irreducible surjections. (Covering maps are important in 
the study of absolutes and their generalizations; see chapter 6 of [13], [15], [2], 
and [17]). In Section 1 we introduced the notion of equivalent covering maps 
(with common domain) and defined IP(X) to be the set of covering maps with 
domain X (with equivalent maps identified). We defined a relation ^ on IP(X) 
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and asserted that it is a partial order with respect to which IP(X) is a complete 
upper semilattice. We now investigate these claims in more detail. 

THEOREM 2.1. Let g : X —* Z and h : Z —• Y be continuous surjections. 
Then: 

(a) ho g : X —> Z is perfect if and only if h and g are perfect. 
(b) hog is a covering map if and only if h and g are. 

(Part (a) is 3.7.3 and 3.7.10 of [3], and (b) is a straightforward consequence 
of (a)). 

COROLLARY 2.2. Let X be a space and f^g G IP(X). Then f ^ g if and only 
if there exists a covering map h : Rf —> Rg such that hof — g. 

Proof. This follows immediately from the definition of ^ on IP(X) (see Sec
tion 1) and from 2.1(b). 

Note that precisely one member of IP(X) is a homeomorphism onto its range; 
this is the largest member of (IP(X), ^ ) . We will assume that this member is 
the identity function id* on X. 

THEOREM 2.3. Let X be a space. Then (IP(X), Ik) is a complete upper semi-
lattice. 

Sketch of proof. First verify that ^ is a partial order. Reflexivity is triv
ial. Transitivity is an immediate consequence of 2.1(b). To prove antisymmetry 
suppose / , g G IP(X), f ^ g, and g ^ / . By 2.2 there exist covering maps 
h : Rf —» Rg and k : Rg —> Rf such that h of — g and k o g = / . Thus 
ho ko g = g and as g is surjective, hok — id^. Similarly koh — id/?/, and so k 
and h are homeomorphisms. As equivalent covering maps are identified,/ = g. 

Now we must show that each non-empty subset of (/F(X), ^ ) has a least 
upper bound. This is essentially the contents of 3.3 of [7]; also see 8.4(f) of 
[13]. 

There is an order isomorphism from IP(X) onto a certain set of partitions of 
X, and this correspondence will be useful in what follows. 

Definition 2.4. (a) A covering partition of a space X is an upper semicontin-
uous partition ¥ of X into compact sets such that if V is a non-empty open set 
of X, then there exists P e 2 such that P Ç V. 

(b) Iff is a covering map with domain X, define (P(f) to be 

{f-(y):y€Rf} 

and define fyif) to be 

{Ae?(f):\A\^2}. 

(c) if J% is a covering partition of X, define ip^ :X —+ J?L by defining ( ^ (x) 
to be the unique member of Si to which x belongs. 

https://doi.org/10.4153/CJM-1989-011-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-011-7


216 J. R. PORTER AND R. G. WOODS 

THEOREM 2.5. (a) Let f and g be covering maps with domain X. Thenf and 
g are equivalent (as defined in Section 1) if and only if T{f) = ^P(g). 

(b) The map f —> (P(f) is a bijection from IP(X) onto the set S(X) of all 
covering partitions ofX. If S (X) is partially ordered by "is refined by", then 
this map is an order isomorphism; explicitly, f ^ g if and only iftP(f) is refined 
by T{g). 

Sketch of proof. (a) One direction is obvious. For the other, suppose T(f) = 
*P(g). If x G Rf, define h(x) to be the unique point y of Rg for which f*~(x) = 
g*~(y). It is straightforward to prove that h is a homeomorphism for which 
hof =g. 

(b) By (a) the map is one-to-one. To show it is onto, let A be a covering 
partition of X and give A the quotient topology induced by ip^. Then ipA 

is easily seen to be a covering map, and hence equivalent to, and hence the 
same as, a member of IP(X). Obviously f P ( ^ ) = A, so our map is onto. The 
preservation of order is easily verified. 

Note that an extension of X was defined to be a pair (/,S) consisting of a 
space S and a dense embedding / : X —-• S. To emphasize further the analogy 
between *E(X) (defined in Section 1) and IP(X), we could have defined members 
of IP(X) to be ordered pairs ( / ,£) , where/ : X —> S is a covering map and S 
is a space. This seems unnecessarily complicated and hence was not done. 

When we generalize 1.1 we will wish to consider certain subsets of IP(X), as 
follows. 

Definition 2.6. Let U be an open subset of a space X. Then IP(X, U) is 
defined to be 

{/ e IP(X) : Vxe (/, \r(f(x))\ = 1}. 

Note that IP(X) = /P(X,0). Furthermore, observe that if g G IP(X, U\f G 
IP(X), and g^f, then/ G /P(X, f/). Hence we infer: 

THEOREM 2.7. Let U be an open subset ofX. If^^ÇÇ IP(X1 U), then V'Ç 
(the supremum of Ç in IP(X)) belongs to IP(X, U). In particular, IP(X, U) is 
a complete upper semilattice with respect to the order defined on IP(X). 

3. The main results. The topology of a space X obviously determines the 
order structure of IP(X); i.e., if X and Y are spaces and h : X —• Y is a 
homeomorphism, then there is an order-isomorphism 

(p :IP(X)—>IP(Y). 

We want to know when the converse is true. In other words, suppose X and Y 
are spaces and 

<p:IP(X)-+IP(X) 
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is an order isomorphism. Does it follow that X and Y are homeomorphic? 
Theorem 1.1, together with some limiting examples, provides an answer. 

Example 3.1. Let i(X) denote the set of isolated points of the space X. It is 
easily verified that if x G i(X) and/ G IP(X) then 

\nf(x))\ = i. 

Hence if |X\/(X)| ^ 1, it follows that IP(X) contains only one element, namely 
idx- Hence for any two such spaces X and F, IP(X) and IP (J) are trivially order-
isomorphic. Let IN be the countably infinite discrete space, D the discrete space 
of cardinality Hi, aIN (resp. aD) the one-point compactification of IN (resp. 
D), and LD the one-point Lindelôf extension of D (i.e., LD = D U {/?}, and 
neighborhoods of p are {p}UA, where \D\A\ ^ H0). Then IP(aIN\ IP(aD), 
and IP(LD) are order-isomorphic while aIN, aD, and LD are pairwise non-
homeomorphic. 

The above example makes it clear that X cannot have a lot of isolated points 
if the order structure of IP(X) is to determine the topology of X. We now turn 
to some positive results. 

Definition 3.2. A bijection / from a space X onto a space F is called a cn-
bijection if {/[A] : A is a compact nowhere dense subset of X} = {5 : # is a 
compact nowhere dense subset of F}. 

Our proof of 1.1 can be split into three parts, as follows. First we show that if 
X and Y have no isolated points, and if IP(X) and IP(Y) are order isomorphic, 
then there is a c«-bijection from X onto Y (see 3.5). The proof of this is sketched 
only, as it is essentially identical to Magill's proof of 1.4. Second, we show that 
if X and Y are compact spaces without isolated points, then a cn-bijection from 
X to Y is a homeomorphism. Finally, we prove the same assertion for ^-spaces 
(rather than compact spaces). The proofs of the latter two assertions involve a 
number of new techniques. 

Definition 3.3. Let X be a space without isolated points and le t / G IP(X). 
(a) / is primary in IP(X) if T(f) has at most one non-singleton member. 
(b) / is dual in IP(X) if/ is primary and !P(f) contains (precisely) one 

doubleton. 

One can easily adapt the proofs of Lemmas 9 and 10 of [10] to prove: 

PROPOSITION 3.4. Let X be a space, let f G IP(X), and f ^ id*. Then: 
(a) / is dual if and only if there is no g G IP(X) such that f < g < id*. 
(b) / is primary if and only if whenever g and h are distinct dual members 

of IP(X) for which f Ag =f Ah^f, then 

\{keIP(X):k^gAh}\ =5. 
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Note that one consequence of 3.4 is that dual and primary members of IP(X) 
can be characterized in purely order-theoretic terms. 

Using 3.4 and exactly the same techniques used in the proof of theorem 12 
of [10], we obtain the following result (whose proof we do not include). 

THEOREM 3.5. Let X and Y be spaces without isolated points, and let <p : 
IP(X) —> IP(Y) be an order isomorphism. Then there is a cn-bijection F : X —> 
Y such that iff G IP(X), then 

<P(v(f)) = {F[A]:A£<P(f)}. 

It is clear from 3.5 that in order to prove 1.1 we need only show that the topol
ogy of a &-space without isolated points is completely determined by its family 
of compact nowhere dense subsets. To this end, we now show that cTi-bijections 
between ^-spaces without isolated points are homeomorphisms. (Recall that a 
space X is a k-space if whenever A Ç X and A H K is closed in X for each 
compact subspace K of X, then if follows that A is closed in X.) We begin with 
a technical lemma and then give a characterization of ^-spaces without isolated 
points. 

Originally this lemma was proved only for compact spaces, and by a different 
means. We are grateful to the referee for suggesting the proof below, which 
applies to countably compact T^ spaces. 

LEMMA 3.6. Let X be a countably compact T^ space without isolated points. 
Suppose A is a subset ofX satisfying this condition. 

(*) IfBCA and c\xB is nowhere dense in X then clxB Ç A. 
Then A is a closed subset ofX. 

Proof Suppose x G clxA\A. Let V be a maximal family of pairwise disjoint 
non-empty open sets of A for which 

x£U{clx£/ : U G V). 

Let V be an open set containing x, and let W be open such that x G W Ç 
c\xW Ç V. Let 

W = {U G V :WnU^Q}. 

If W is finite, then 

x EW\U{c\xU :U eW} = T. 

Let a G T DA; as X is Hausdorff there exists an open set S of X such that 

x eS ÇclxS ÇT and aeT\c\xS. 
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Then tUC(1/ U{SHA}, contradicting the maximality of 1/. Thus W is infinite. 
Choose xv e W n U for each U G W, and let 

D = {xu:U eW}. 

Then D is a discrete subset of A, and as X has no isolated points, it follows 
that clxD is nowhere dense. Thus by hypothesis clxD Ç A. As X is countably 
compact, there exists y G c\xD\D. Evidently y G A \ U ^ , and since cl^D Ç 
clxW, it follows that 

vn(A\uV)^Q. 

Thus 

x G c l ^ U ^ ) . 

The maximality of V implies that cl*(A\ U fU) is nowhere dense, so by hy
pothesis 

c\x(A\Ul/)QA. 

Hence x G A, which is a contradiction. Hence A is closed as claimed. 

Examples 3.7. (a) The referee has pointed out that 3.6 fails if "countably 
compact" is replaced by "pseudocompact". To see this, let T denote the set of re
mote points of//?. Then T is dense in f3IR\IR (see 4.2 of [1]) and so Y = IR U T 
is pseudocompact (see 3.1 of [4] and 17.1(d) of [1]). By definition of "remote 
point", no point of T is in the Y -closure of a closed nowhere dense subset of 
IR. Hence IR satisfies the hypothesis on A in 3.6, yet IR is not closed in Y. 

(b) Lemma 3.6 also fails if "countably compact" is replaced by "H-closed 
and semiregular"; the space ((3Q)(D2) discussed in example 8 of [12] provides 
a counterexample. 

Now we establish that the compact nowhere dense subsets of a /:-space without 
isolated points completely determine its topology. 

THEOREM 3.8. Let X be a space without isolated points. The following are 
equivalent 

(a) X is a k-space. 
(b) If X Ç X and if c\xB ÇA whenever B Ç A and c\xB is compact and 

nowhere dense, then A is closed in X. 
(c) If A is a subset of X such that AH K is closed in X for each compact 

nowhere dense subset KofX, then A is closed in X. 

Proof, (c) => (c) This is trivial. 
(b) => (c) Suppose that A Ç X and that A n K is closed in K whenever 

K is a compact nowhere dense subset of X. Suppose that B Ç A and that 
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c\xB is compact and nowhere dense. By hypothesis Ar\c\xB is closed in X; as 
B Ç A H clx#, it follows that Q\XB Ç A. It follows from (b) that A is closed in 
X. Hence (c) follows. 

(a) => (b) Suppose that X is a &-space without isolated points, A Ç X, and 
that c\xB Ç A whenever B Ç A and clx# is compact and nowhere dense. We 
must show that A is closed in X; by hypothesis, it suffices to show that if L is 
a compact subset of X then A P\L is closed in X. Let 

K = clL(L\clL/(L)) 

(see 3.1 for notation). Then K is a compact subset of L with no isolated points. 
Observe that 

(1) AHL= [AC\c\Li(L)]U[AnK]. 

We claim that A HK is closed in X. As K is compact it suffices to show that 
A C\K is closed in /£. To show this, by 3.6 it suffices to show that if B ÇA (1K 
and c\KB is nowhere dense in K, then C\KB ÇADK. If B Ç AHK and c\KB 
is nowhere dense in K, then el*:/? = c\xB (as K is compact) and so clx# is 
nowhere dense in X. By hypothesis on A, clxB Ç A, i.e., C1K# Ç A. Obviously 
C\KB Ç £ , so cU:# Ç A n AT. Hence A D^T is closed in X as claimed above. 

Let M = c\Li(L). Arguing as in 3.6 we see that the compact set M is nowhere 
dense in X. Thus clx(A C\M) is a compact nowhere dense subset of X. By 
hypothesis on A, 

c l x (AnM)ÇA. 

Thus 

clxG4 DM) ÇA DM 

and so A Pi M is closed in X. By (1) A C\L is the union of two closed subsets of 
X and hence is closed in X. The theorem follows. 

We now can prove the main result of this section. 

Proof of 1.1. Obviously if X and Y are homeomorphic then IP(X) and 
IP(Y) are order-isomorphic. Conversely, suppose IP(X) and IP(Y) are order-
isomorphic. As X and Y have no isolated points, by 3.5 there is a crc-bijection 
/ : X —• Y (obviously f*~ : Y —» X is also a cw-bijection). We will prove that 
/ is a closed map. By symmetry f*~ will also be closed, and hence / will be a 
homeomorphism. 

Let M ÇX and clxM be compact and nowhere dense. First we show that 

f[c\xM] = cly/[Af ]. 
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Since f[c\xM] is compact and nowhere dense, then 

chf[M] Çf[c\xM] 

and cly/[M] is compact and nowhere dense. So, f~[c\Yf[M]] is compact and 
nowhere dense. Since 

M C/-[cl r / [Af ]], 

it follows that 

c\xM C/«-[cly/[Af ]] 

and that 

f[c\xM] Ç clYf[M]. 

Next, we show that / is closed. Let C be a closed subset of X. Suppose that 
B Qf[C] and that clyB is compact and nowhere dense. By 3.8 (a) and (b), since 
F is a &-space without isolated points, to show/[C] is closed in Y it suffices 
to show that clyB C/ [C] . By the assertion at the beginning of the paragraph, 

riclyB] = C\xf-[B]. 

As f~~[B] Ç C and C is closed, it follows that 

f-[clYB]ÇC. 

Hence, clyB Qf[C]. This completes the proof that/ is closed and by symmetry, 
f*~ is closed. Thus, / is a homeomorphism. 

The above proof essentially consisted of showing that a c«-bijection between 
two ^-spaces without isolated points is of necessity a homeomorphism. To show 
that this result can fail if the spaces involved are not ^-spaces, we present the 
following example. 

Example 3.9. Recall (see [1]) that r is a remote point of Q (the space of 
rational numbers) if 

r G /3Q\U{C\/3QA : A is a closed, nowhere dense subset of Q}. 

It is known [1] that 

\{r G f3Q\Q : r is a remote point of Q}\ — exp(exp Ko)-
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Since 

\{h : Q —• Q : h is a homeomorphism}| ^ exp(No), 

there are remote points p and q of Q such that if h : g —» 2 is a homeomorphism 
and ^ : /3g —• /3(? *s m e continuous extension of h, then /^(/?) ^ q. Define 

/ :euH-euM 
by f(x) — x for x € Q and /(/?) = #. Let C be a closed nowhere dense in 
QU{p}. I f p £ C , then 

f[C] = CCQ and ^ ^ c l ô u M C . 

So, C is closed and nowhere dense in Q U {q}. If p G C, then/[C] = (CD 
<2)U{g} is closed and nowhere dense in QU{q}. If C is also compact, then so 
i s / [C] . A similar argument shows that/* - preserves compact, nowhere dense 
sets. However,/ is not a homeomorphism; in fact, QU{p} and QU{q} are not 
homeomorphic. Thus cn-bijections between spaces without isolated points need 
not be homeomorphisms. 

The similar form of 1.1 and 1.4 suggests that they might have a common 
generalization. In fact they do, but its statement is rather cumbersome. We 
briefly sketch this generalization. 

Suppose that I is a space, U is an open set of X (possibly empty), and 
i(X) Ç U. As noted in 2.7, IP(X, U) is a complete upper semilattice. The same 
technique of proof that we indicated for 3.5 can be used to prove the following: 

THEOREM 3.10. LetXi be a space, Ui be open in Xi, and i(Xi) Ç U((i = 1,2). 
Suppose 

y:IP{XuUx)-*IP{X2,U2) 

is an order isomorphism. Then there is a bijection 

F:Xl\Ul->X2\U2 

such that {F[A] : A is a compact nowhere dense subset ofX\ and A Ç X\\U\} = 
{B : B is a compact nowhere dense subset of X2 and B Ç X2\U2}; and if 
f eIP(XuUi) then 

#(</>(/)) = ({*} : x G U2} U {F(A) : A e <P(F) and A Ç Xi\Ux}. 

Note that 3.5 is the special case of 3.10 in which U\ = U2 = 0. 
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LEMMA 3.11. Let X be a locally compact space. The function 

V>:/F(/?X,X)-^<E^(X) 

defined by 

tl>(f) = 0X/<P(f) 

is an order isomorphism (here (3X/& (f) is the obvious quotient space of (3X). 
(See 1. 3 for notation.) 

Proof Define (p : IP(/3X,X)S(X) (the set of covering partitions of f3X) as 
follows: (f(f) = fP(/). It follows quickly from 2.5(b) that <p is an order iso
morphism onto its image. By Lemma 1 of [10], there is an order isomorphism 

X:p[IP(f3X,X)]-^^(X). 

Then À o cp is the required ip. 

We can now deduce the non-trivial half of 1.4 as follows. If X and Y are 
locally compact and if *£^(X) and *E^(Y) are order-isomorphic, then IP(/3X,X) 
and IPifiY, Y) are order-isomorphic by 3.11. By 3.10 there is a bijection 

F : (3X\X - • PY\Y 

such that A is a compact nowhere dense subset of (3X contained in f3X\X if and 
only if F [A] is a compact nowhere dense subset of (3Y contained in 0Y\Y. As 
all closed subsets of f3X\X are nowhere dense in /3X, F is a closed map. By 
symmetry so is F*~, and so F is a homeomorphism. 

Hence 1.1 and 1.4 can both be viewed as consequences of 3.10. 

4. Other uses of IP(X). By 3.5, we know that if X and Y are spaces without 
isolated points and if IP(X) and IP(Y) are order-isomorphic, then there is a cn-
bijection between X and Y. In this section, we show that the converse is false. 
We are thankful to the referee for many suggestions, some of which led to the 
results in this section. 

Let X be an infinite space without isolated points and let IPdiX) denote 
{/ G IP(X) : &2(f) contains only one member, and this member is a doubleton}. 
An ideal point ofIPd(X) is a subset R of IPd(X) satisfying (1)/ , g G ft implies 
/ A g exists and is primary and (2) ft is maximal with respect to (1). The set 
of ideal points, denoted by S(X), is determined by the poset IP(X). 

For each x G X, let 

e(x) = {f e IPd(X) : x e UPz(f)}. 
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Another path to establishing 3.5 is to start with the next result which is easy to 
verify. 

PROPOSITION 4.1. Let X be an infinite space without isolated points. Then e is 
a bijection from X onto S(X) such that if'x,y £ X are distinct, then e(x) D e(y) 
is a singleton and iff G e(x)Pie(y), then Ufyif) — {*?.y}-

For B Ç S(X), let B* = {/ G IPd(X): there are A, J*' € B such that A ^ Af 

and/ G A DA'}. Now, we show that the order structure of IP(X) determines 
the compact nowhere dense subsets and the convergent sequences of X. 

PROPOSITION 4.2. Let X be an infinite space without isolated points and let 
A Ç X have at least two points. 

(a) A is nowhere dense and has compact closure if and only if (e[A])* has a 
primary lower bound. 

(b) A is compact and nowhere dense if (e[A])* has a primary lower bound 
and ifge IPd(X) and g ^ A(e[A])\ then g <G (e[A\f. 

(c) Let A — {xn : n G LU} U {y} where y ^ xn for n G LU. Then (xn) —> y if 
and only if A and A\{xn} are compact and nowhere dense sets for n G LU and 
A\{y} is not compact and nowhere dense. 

Proof The proof is straightforward and left to the reader. 

Example 4.3. Consider the infinité space X = QU{/?} where p G (cl^N)\Q 
and the infinite space Y — Q U {q} where q is a remote point. The function 
which takes p to q and is the identity on Q is a cn-bijection from X onto Y (use 
the same argument as in 3.9). 

Assume there exists an order-isomorphism if : IP(X) —> IP(Y). By 3.5, </? 
induces a cn-bijection F : X —> Y such that 

<P(<p(f)) = {F[A] :Ae(P(f) for/ G IP(X)}. 

By 4.2, we have that (rn) —> r in X if and only if (F(rn)) —> F(r) in Y. Since 
no sequence converges to p or q and sequences converge to every point of Q, it 
follows that F[Q] = Q and F(p) — q. Also, F|Q : Q —-> Q is a cn-bijection; by 
the proof of 1.1, F|Q is a homeomorphism. Thus, F[N] is a closed and discrete 
subspace of Q and hence of Y since q is a remote point. For each n G u, let 
fn e IPdiK) such that #>(/«) = {{2n, 2n+1}}. Assume that A{fn : n e LU} exists 
and is denoted by / . Since the elements of fyif) a r e compact and only finite 
subsets of N have compact closure in X, it follows that an element of (Pi(f) 
meets N in a finite set. Let D G (P(f) be the element such that p G D: so, D (IN 
is finite. Note that D\{p} is compact, for if not then D\{p} is a closed subset 
of Q such that D is its one-point compactification. As Q is normal, D\{p} 
is C*-embedded in Q and hence in /?Q; thus D\{p} would be C*-embedded 
in D. No countable space has its one-point compactification as its Stone-Cech 
compactification (see 6J of [6], for example), so this is a contradiction. Hence 
D\{p} is compact as claimed. Similarly, N is C*-embedded in Q; hence, 

A = {In : n G LU}\D and B = N\(AUD) 
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have disjoint closures in /3Q. Thus, there are disjoint open sets U and V in X 
such that 

clxA Ç U, c\xB Ç V, and D\{p} Ç W 

where 

W =X\c\x(UUV). 

Now, p G c\xA U c\xB. If p G c\xA, then D Ç W U £/. As (P{f) is an upper 
semicontinuous decomposition of X, there is an open set R such that 

DÇRÇWUU and R = U{E e <P(f) : E HR ^ <p}. 

So, p G /? Pi cl*A and for some n G a;, In G /? such that 2AZ + 1 G 5 (the 
latter assertion is true since D PlN is finite). There is some E G 2*2(/) such that 
{2A7, 2/2 + 1} Ç E\ so, 2« + 1 G /?. This is a contradiction as 2AZ + 1 G V and 
V n R — </>. Similarly, the assumption that p G cl*/? leads to a contradiction. 
This completes the proof that {fn : n G u;} has no lower bound in IP{X). 

For AZ G CJ, let gw = <£(/«); so, 

?2(gn) = {{E(2n),E(2n+\)}}. 

Let 

IP = {{F(2«),F(2«+1)} :n<Euj}U{{y}: y eY\E[N]}. 

Since # ^ clyF[N], it is straightforward to verify that IP is a covering partition 
of Y. There is some h in IP(Y) with (P = T(h). Now gn ^ h for each n £ UJ 
implying that 

fn = <P*~(gn) = <P*~(h) for every n e v. 

So, {/„ : n £ cj} has a lower bound in IP(X). This is a contradiction to the 
assumption IP(X) and IP(Y) are order-isomorphic. 

5. When is IP(X) a lattice? Unfortunately we do not have a complete answer 
to the above question. However, non-trivial partial results of interest appear in 
5.1, 5.2, and 5.9. Although not stated in this form, 5.1 appears as theorem 2 of 
[5]. We includee a proof for completeness. We thank Professor A. W. Hager for 
calling this paper to our attention. 

THEOREM 5.1. The following are equivalent for a space X 
(a) (IP(X), ^ ) is a complete lattice. 
(b) The set X\i(X) of non-isolated points ofX is compact and nowhere dense. 
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Proof, (a) => (b). Suppose X\/(X) is either non-compact or has non-empty 
interior. In either case, if / E IP(X) then/[X\/[X]] contains distinct points p 
and q. Let H be the quotient space of/(X) obtained by identifying p and q and 
let 

g:f(X)->H 

be the corresponding quotient map. Then g of G IP(X) and g of < / . Hence 
(IP(X) ^ ) has no smallest member and hence is not a complete lattice. 

(b) => (a). If X\/(X) is compact and nowhere dense, identify it to a point; let 
H be the resulting quotient space and/ : X —•> // be the corresponding quotient 
map. Then/ € /P(X). If g € /P(X) and x G /(X), then 

lsn*C*)]| = i; 

from this it follows that / is the smallest member of IP(X). But a complete 
upper semilattice with a smallest member is a complete lattice (see 2.1(e) of 
[13], for example), so we are done. 

THEOREM 5.2. Let X be a space. If X\/(X) is not countably compact, then 
IP{X) is not a lattice. 

Proof. If X\/(X) is not a countably compact space, it contains a countably 
infinite closed discrete subset D — {xn : n G IN}. Let 

A = {{xin-uXT*} :neIN}U {{y} : y G X\D} and 

$ = {{x2n,X2n+\} ' w G / # } U {{y} : j G ( X ^ U ^ } } . 

It is easy to verify that J3. and *B are covering partitions of X, so <px and 
(̂ -B G IP(X) (see 2.5(b)). If g G /P(X), g è ip*, and g û ip® then by 2.4(b) 
A and B̂ both refine (P(g). It follows that D is a subset of some member of 
(P(g), and hence is compact. This is a contradiction, and so (p& A (p$ cannot 
exist. Thus IP(X) is not a lattice. 

Theorems 5.1 and 5.2 in some sense deal with the two "extreme cases". Next 
we show that /F([0,1]) is not a lattice. This is done by exhibiting two specific 
covering partitions A and O of [0, 1] for which the corresponding covering 
maps ipx and (p$ (which will belong to /P([0,1])) have no common lower 
bound in /P([0,1]). We first record some preliminary facts. 

PROPOSITION 5.3. Let K be a compact metric space. 
(a) Let f : K —> L be a covering map. Then there is a dense G$-set G of K 

such that 

|r~[/C*)]| = 1 for each xeG. 

(b) / / (P is a covering partition of K then {z G K : {x} G ^P} is a dense 
G s-set of K. 
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Proof. Part (a) follows from 2.1 of [[9] and part (b) is an immediate conse
quence of part (a). 

PROPOSITION 5.4. Let (X,d) be a metric space and let *P be an upper semi-
continuous decomposition ofX into closed sets. If 6 > 0 let 

<P(6) = {P e? : diam (P) ^ 6}. 

Then U(P(6) is closed in X. 

Proof. Suppose r G clx[U(P(6)]\U(P(6). There exists Q e (P such that r G Q. 
Since Q g #(£), it follows that diam (Q) = a < 5. Let e = (S - a)/4; then 
e > 0. Let 

V=U{S(e,q):qeQ}, 

where S(\,y) is the open sphere of radius A about y. If a,b G V there exist 
q(a), q(b) G Q such that 

d(a, q{a)) < e and d(b, q(b)) < e. 

Thus 

d(a, b)<2e + d(q{a), q(b)) 

<2e + cr; 

therefore d(a1 b) < 6 — 2e. It follows that diam (V) < 6 — e. 
Since Q C V and Q G (P, there exists a (P -saturated open set W such that 

Q ÇW ÇV. So 

re WHcljrMPtf)], 

and there exists P e P(è) for which W DP ^ 0. As W is saturated, P Ç.W. 
But then 

« ^ diam(P) ^ diam(V) ^ « - e . 

This contradiction implies no such r exists, and it follows that UfP (6) is closed. 

Definition 5.5. For « G IN, let 

Z)w = {m/2n : m is an odd integer and 1 è m è 2n — 1} 

Let 

D =U{Dn :neIN}. 
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The set D is just the dyadic rationals in (0, 1); it is obviously dense in [0, 1]. 
We will construct two covering partitions A and $ of [0, 1], each of which will 
consist of singletons and doubletons. Each doubleton will be a subset of Dn for 
some n, and the corresponding covering maps <̂ # and Lp% will have no lower 
bound in IP([011]). To prove that A and <B are upper semicontinuous, we will 
need the following elementary number-theoretic fact. 

LEMMA 5.6. Suppose that n, sj\ m E IN and that m is odd. Suppose s è n + 2 
and 1 ^ 7 ^ 2s"2. Then: 

(a) m/2n < 4/ - 1/25 implies m/2n < 4/ - 3/2*, and 
(b) m/2n > 4j - 3/25 implies m/2n > 4/ - \/2s. 

Proof. We sketch the proof of (a); (b) is proved similarly. The hypothesis of 
(a) implies that 

0 < 4/ - 1/25 - m/2n = 4/ - 1 - (4m)(2s'n"2)/2s. 

Thus 4(y* — m • 2s~n~2) — 1 is a positive integer and hence is at least as big as 
3. Thus 

4(7 - m • 2s'n'2) - 3 > 0. 

The conclusion of (a) quickly follows. 

Definition 5.7. For each n E IN, let 

j ^ = {{4m - 3/2", 4m - 1/2"} : m E IN and 1 ^ m ^ 2"~2}, 

#n = {{4m- 1/2", 4m+1/2"} : m E/N and 1 ^ m ^ 2"~2 - 1}, 

J* = 1>{X : n G / # } U {{x} : x E [0, 1]} and 

x g U{A : A E An for some n}, 

and 

# = U{#„ :nG/Af}U {{x} : JC G [0,1] and 

JC £ U{B \B E(Bn for some n}, 

LEMMA 5.8. J3 tf/td $ are covering partitions of [0,1]. 

Proof Evidently A and $ are partitions of [0, 1] into compact sets. Only 
countably many points of [0, 1] belong to some non-singleton member of A 
(resp. *B ), so if A (resp. *B ) is upper semicontinuous, then it will be a covering 
partition (see 2.4). It remains to prove upper semicontinuity. We do this for A ; 
the proof for *B is similar. 

Let A E A and let A — {r,s} (where r and s can be distinct or equal). 
Suppose V is open and A Ç V. As D is dense in [0, 1] there exist n E IN, and 
m,k E {1 ,3 , . . . ,2" — 1}, such that 

A Ç (m/2",m + 2/2") U (£/2",£ + 2/2") C V 
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(these intervals are chosen to be disjoint or equal according to whether \A\ — 2 
or |A| = 1). Let 

W = (m/2% m + 2/2") U (k/2n, k + 2j2n\ 

let 

s ={c ex :cnw^®^c\w}, 

and put S = US. It follows from 5.6 that 

S Ç U { ^ : 1 ^ y ^ / 2 + 1 } , 

and so S is a finite collection of closed sets. Hence S is closed and so W\S 
is open. Evidently A Ç W\S Ç V, and W\S is an .# -saturated open set. It 
follows that SA is upper semicontinuous. (This argument needs obvious and 
easy modifications if A = {0} or {1}.) Thus A is a covering partition of [0, 1]; 
a similar argument shows that (B is too. 

THEOREM 5.9. IP([0,1]) w «6>r a lattice. 

Proof. Let J2 and # be as in 5.7. Suppose g G //*([(), 1]) with g ^ (p% 
and g ik y® (see 2.4(c) and 2.5(b)). As T(g) is refined by both Si and # , it 
is evident that for each n G IN there exists /% G ^P(g) for which £)„ Ç Tn. 
But diam(D„) = 1 — \j2n~x for each n e IN; hence diam(P„) ^ 1/2 whenever 
n^2. Thus 

U{/? e<P(f): diam(#) S 1/2} D U{D« : A2 S 2} = D\{ l /2} , 

which is dense in [0, 1]. It follows from 5.4 that 

U{R e(P(f): diam(#) è 1/2} = [0,1]. 

Hence fP(g) has no singleton sets, which contradicts 5.3(b). Thus ip^ and <̂ # 
have no common lower bound, and ZP([0,1]) is not a lattice. 

PROPOSITION 5.10. Let X be a space, let f G IP(X), and suppose IP(Rf) is 
not a lattice. Then IP(X) is not a lattice. 

Proof. Suppose g,k G IP(Rf) have no common lower bound. Observe that 
g of\k of G IP(X). If h were a common lower bound of g of and k of in 
IP(X), there would be covering maps / : Rg —* /?/* and j : Rk -^ Rh such that 
i o g of —jokof. As / is surjective it follows that / o g = j o k, and so 
/ o g ^ g, / o g ^ k, and / o g G Ir(Rf). This contradicts our hypothesis; hence 
7P(X) is not a lattice. 

COROLLARY 5.11. If X is a space and f : X —> [0, 1] is a covering map, then 
IP(X) is not a lattice; in particular IP(C) is not a lattice if X is either the 
Cantor set or the absolute of [0,1]. 
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Proof. The first assertion follows from 5.9 and 5.10. The absolute of a T3 
space Y is mapped onto F by a covering map (see 2.1 of [17] or 6.6(e) of [13], 
and the Cantor set can be mapped onto [0, 1] by a covering map (seee 61 of 
[13], for example); this verifies the second assertion. 

We conclude this paper by generalizing 5.9 and proving that if K is a compact 
metric space without a dense set of isolated points, then IP(K) is not a lattice. 
This will not render 5.9 redundant, as we will use 5.9 to prove its generalization. 

The following result is well-known and easily verified. 

LEMMA 5.12. LetX be a space, letf G IP(X), and let U be open in X. Define 
f*[U] to be Rf\f[X\U]. Thenf[U] is open in Rf and 

f*~[f*[U]]=U{Pe<P(f):PÇU}. 

LEMMA 5.13. Let K be a compact space without isolated points and letf, g G 
IP(K). Suppose that 

u[T2(f) n v2(g)] = MP2(/)] n Mftte)]. 

Thenf A g G IP(K) (see 2.4(b) for notation). 

Proof. First observe that 

MP2(/)] n MP2(g)] = u[<p2(f) n <p2(g)} 

if and only if whenever A G ^2(A B € T2{g\ and A HB ^ 0, then A = B. 
Now let 

T = <P2(f) U <P2(g) U {{x} : x € K\[(UT2(f)) U (U^(g))]}. 

By hypothesis and the preceding sentence, IP is a partition of K into compact 
sets. To show that T is upper semicontinuous, suppose that P G ¥, U is open 
in K, and P Ç U. Let 

V =r[f[g^[g*[U]]]]. 

By 5.12 V is open in K and 

V Qg^[g\U]]<ZU. 

If P is a singleton set, obviously T ^ ^P2(g) so 

by 5.12. Hence P Ç V (also by 5.12). If P G 2>2(g), then 

/> Ç g*~[g#[U]] 
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by 5.12. By hypothesis (see the first sentence of this proof) either P G ̂ ( / X 
in which case P Ç V by 5.12, or else f~[f(x)] = {x} for each x G P, in 
which case P Ç V. If F ç ^ ( / X a similar argument yields that P ÇV. Thus 
P C V Ç U. An argument essentially identical to the above also shows that V 
is & -saturated. Hence <2 is upper semicontinuous. 

If W is a non-empty open subset of K, there exists P G 2*2(/) such that 
PCW (since/ is a covering map). As ^ ( / ) Ç fp, it follows that V̂  contains a 
member of fP, and so IP is a covering partition. By 2.5(b) ip<p ^f and (p? ^ g 
as # ( / ) and ^P(g) refine fP (see 2.4(c) for notation). Obviously (/?$> = / A g 
from the construction of <2. 

LEMMA 5.14. Let K be a compact metric space without isolated points, and 
let fjg^h G IP(K). Suppose that g Ah does not exist and that 

[(uv2(g)) u (uv2(h))] n MP2(/)] = 0. 

Then IP(Rf) is not a lattice. 

Proof. Our hypotheses imply that 

(UIP2(/0) n (u^CO) - u^(A) n #>(/)), 

and similarly for g and / . Hence by 5.13 / A h G /P(/0 and so there exists 
m G IP(Rf) such that m o / =f/\h. Similarly / A g G /P(/0 and there exists 
« G IP(RF) such that nof=fAg.lfmAn existed in IP(Rf), then 

m o / ^ (m An)of. 

Thus 

h^f Ah — mof ^ (m A/) o / 

and similarly 

^ / A g = / i o / ^ ( / n A « ) o / . 

Thus g and /z have a common lower bound and so g A h exists by 2.3, in 
contradiction to hypothesis. Hence m An cannot exist in IP(Rf), and the lemma 
follows. 

THEOREM 5.15 Let K be a compact metric space without isolated points. Then 
IP(K) is not a lattice. 

Proof. As noted in the proof of 5.11, there is a covering map t : C —» K. 
(Here C denotes the Cantor set.) By 5.3(a) the set 

{ J C G C : \r(t(x))\ = 1} 
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contains a dense G^-set of C, say G. There is a covering m a p / : C —> [0, 1] 
such that UP2(f) is a countable dense subset of C (see 3.2B of [[3]). By 5.9 
and its proof there exist g,/i Ç /^([O,1]) for which g A h does not exist and 
[UP2(g)]U[UT2(h)] is a countable dense subset of [0,1]. It follows that [UT2(ho 
/ ) ] U [U&2(g of)] is a countable dense subset of C. Let D be a countable dense 
subset of G. By 4.3H of [[3] there is a homeomorphism k : C —> C for which 

*[D] = Mft(A of)] U Mft(g o/)] . 

By our choice of G it follows that 

[(U2MA o / o *)) U (U#>(£ o / o h))] H (U4>2(0) = 0. 

By 5.11 (g of ok) A (h of o k) does not exist in IP(C). Hence by 5.10 IP(Rt) 
is not a lattice, i.e., IP(K) is not a lattice. 

COROLLARY 5.16. Ler K be a compact metric space. The following are equiv
alent: 

(a) K has a dense set of isolated points. 
(b) IP(K) is a complete lattice. 
(c) IP(K) is a lattice. 

Proof (a) =>(b). This follows immediately from 5.1. 
(b) =>(c) is obvious. 
(c) =>(a). Suppose (a) fails; let 

L = c\K(K\clKi(K)) 

where i(K) is the set of isolated points of K. It is immediate that L is a compact 
metric space without isolated points, so by 5.15 there exist / , g G IP(L) for 
which/ A g does not exist in IP(L). Let 

A = ¥(f)U{{x} :x eK\L} and 0 =îP(g)U{{x} : x G tf\L}. 

A straightforward calculation verifies that A and # are covering partitions of 
K. If (c) were to hold, there would be a space Y and covering maps 

5 :*(¥>*)->7, t-.R^-^Y 

for which s o (p# = t o ip^. Then (up to equivalence) 

s o ( ( ^ | L ) ^ / and 5 o ( ^ |L) g g 

(in IP(L)), which is a contradiction. Hence (c) must fail, and so (c) implies (a). 

The authors wish to thank the referee for his or her numerous helpful sug
gestions. 
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