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Abstract

Let D be a residually finite Dedekind domain and let n be a nonzero ideal of D. We consider counting
problems for the ideal chains in D/n. By using the Cauchy–Frobenius–Burnside lemma, we also obtain
some further extensions of Menon’s identity.
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1. Introduction

In [3], Menon obtained the identity∑
a∈U(Z/nZ)

gcd(a − 1, n) = ϕ(n)σ(n), (1.1)

where ϕ(n) is Euler’s totient function, σ(n) is the divisor function and U(Z/nZ) denotes
the group of units modulo n. In [8], Sury proved the generalisation∑

t1∈U(Z/nZ)
t2,...,tr∈Z/nZ

gcd(t1 − 1, t2, . . . , tr, n) = ϕ(n)σr−1(n),

where σr−1(n) =
∑

d|n dr−1. Tǎrnǎuceanu [9] discussed an open problem from [8,
Section 2] and Li and Kim [2] extended Tǎrnǎuceanu’s results.

Let D be a Dedekind domain such that the residue class ring D/n is finite for
each nonzero ideal n. Then D is called a residually finite Dedekind domain. Let
N(n) = |D/n| be the norm of n. In [4], Miguel extended the identity (1.1) to residually
finite Dedekind domains and obtained the following result.
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Theorem 1.1 [4]. Let n be a nonzero ideal ofD and U(D/n) be the multiplicative group
of units of D/n. Then ∑

a∈U(D/n)

N(〈a − 1〉 + n) = ϕD(n)σD(n), (1.2)

where ϕD(n) is the order of the multiplicative group of units in D/n and σD(n) is the
number of ideals that divide n.

There are some related results in [1, 5, 10]. The key tool in proving these identities
is the Cauchy–Frobenius–Burnside lemma (see [7]).

Lemma 1.2 (Cauchy–Frobenius–Burnside lemma). Let G be a finite group acting on a
finite set X and, for each g ∈ G, let Xg = {x ∈ X | gx = x} be the set of elements in X
that are fixed by g. Denote the set of orbits of X under the action of G by G/X. Then

|G/X| =
1
|G|

∑
g∈G

|Xg|.

We give a brief description of the content of this paper. In Sections 2 and 3, we
study the counting problems of ideal chains in D/n by using the group action. In
Section 4, we use the Smith normal form in a principal ideal domain Dp, which is the
completion of D under a prime ideal p, to diagonalise the matrices in D (Lemma 4.1).
As an application, we obtain some new representations of (1.1) and (1.2) (Remarks 4.4
and 4.5). In Sections 5 and 6, we obtain generalisations in residually finite Dedekind
domains of the Menon-type identities in [2, 9] (Theorems 5.2 and 6.2).

2. Some lemmas
Let D be a residually finite Dedekind domain and let n be a nonzero ideal of D.

Then the residue class ring D/n is a principal ideal ring. It is clear that the mapping

φ : D→ D/n, x 7→ x + n

is a surjective ring homomorphism. There is a one-to-one order-preserving
correspondence between the ideals a of D which contain n and the ideals a of D/n,
given by a = φ−1(a). We shall use the notation x ≡ y (mod n), meaning that x − y ∈ n.

Let n = pα1
1 · · · p

αt
t , where p1, . . . , pt are distinct prime ideals of n and α1, . . . , αt are

positive integers. By the Chinese remainder theorem, for i = 1, . . . , t, there exists πpi

such that πpi ∈ pi − p
2
i and πpi ≡ 1(mod p j) for every j , i. Hence pi = 〈πpi〉. Without

loss of generality, we always take πpi as the generator of pi in D/n. Therefore, we can
suppose any ideal a of D/n to be of the form

a = 〈πp1〉
β1 · · · 〈πpt〉

βt = 〈ηa〉, (2.1)

where 0 6 βi 6 αi for i = 1, . . . , t and ηa =
∏t

i=1 π
βi
pi

.
Considering the group action of G = U(D/n) on D/n, we define the orbit, orb(η),

of an element η in D/n under the action of G by

orb(η) = {gη | g ∈ G}.

In terms of this notation, we can state the following lemma.

https://doi.org/10.1017/S0004972718001090 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001090


58 Y.-J. Wang, Y.-J. Hu and C.-G. Ji [3]

Lemma 2.1. Let n be a nonzero ideal of D. Then in the principal ideal ring D/n, for
every element η ∈ D/n, the orbit orb(η) is the set of all generators of the ideal 〈η〉.

Let a be an ideal of D that contains n, that is, a | n. Let a = 〈ηa〉. We can define

orb(a) = orb(ηa). (2.2)

Lemma 2.2. Let a be an ideal of D that contains n. Then

|orb(a)| = ϕD(n/a),

where ϕD(n) is the order of the multiplicative group of units in D/n.

Proof. With the above notation, we can write a = 〈ηa〉. The stabiliser subgroup of ηa
in G = U(D/n) is

Gηa = {g ∈ G | gηa = ηa}.

Here, g ∈ Gηa if and only if g ∈ 1 + n/a. For the surjective homomorphism

ψ : U(D/n)→ U(D/(n/a)),

we have 1 + n/a = Kerψ and Gηa = Kerψ. Hence

|Gηa | =
|U(D/n)|
|U(D/(n/a))|

.

By the orbit-stabiliser theorem and (2.2),

|orb(a)| = |G|/|Gηa | = |U(D/(n/a))| = ϕD(n/a).

This completes the proof of Lemma 2.2. �

Lemma 2.3. Let n be a nonzero ideal of D and let a, b be two ideals of D with
n ⊆ b ⊆ a ⊆ D. Then the number of generators of the ideal a/b in the quotient ring
D/b is ϕD(b/a).

3. Main results

Definition 3.1. Let n be a nonzero ideal of D and r be a positive integer. If the ideals
I1, . . . , Ir of D satisfy n ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ D, then we call (I1, . . . , Ir) an r-ideal
chain of the quotient ring D/n. Set I0 = n. We define

I(D/n, r) = {(I1, . . . , Ir) | I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ D}.

Theorem 3.2. Let n be a nonzero ideal of D and r be a positive integer. Then

|I(D/n, r)| =
∏
pα‖n

(
α + r

r

)
.
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Proof. Let n = pα1
1 · · · p

αt
t . Then, by (2.1), all r-ideal chains can be written as

0 ⊆ 〈πp1〉
α1−β11 · · · 〈πpt〉

αt−β1t ⊆ · · · ⊆ 〈πp1〉
α1−βr1 · · · 〈πpt〉

αt−βrt ⊆ D/n,

where 0 6 β1 j 6 β2 j 6 · · · 6 βr j 6 α j for j = 1, . . . , t. Hence,

|I(D/n, r)| =
∑

06β1 j6···6βr j6α j
j=1,...,t

1.

For 1 6 j 6 t, let 

x1 j = β1 j − 0,
x2 j = β2 j − β1 j,

...
xr j = βr j − βr−1, j,
xr+1, j = α j − βr j.

(3.1)

Then xi j > 0 for i = 1, . . . , r + 1 and j = 1, . . . , t. Hence,

|I(D/n, r)| =
t∏

j=1

∑
x1 j+···+xr+1, j=α j
xi j>0,i=1,...,r+1

1 =
t∏

j=1

(
α j + r

r

)
.

This completes the proof of Theorem 3.2. �

Definition 3.3. Let r be a positive integer and let n be a nonzero ideal of D. For every
ideal chain (I1, . . . , Ir) ∈ I(D/n, r), we define

H(D/n, I1, . . . , Ir) = {(x1, . . . , xr) | 〈xi〉 = Ii/Ii−1, xi ∈ D/Ii−1, 1 6 i 6 r}

and
H(D/n, r) =

⋃
(I1,...,Ir)∈I(D/n,r)

H(D/n, I1, . . . Ir).

Theorem 3.4. Let n be a nonzero ideal of D and r be a positive integer. Then

|H(D/n, r)| = ϕ(r−1)
D
∗ I(n),

where ϕ(r−1)
D

is the (r − 1)-power of ϕD under the Dirichlet convolution and I(n) = N(n)
for a nonzero ideal n.

Proof. Let
0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ D/n

be an r-ideal chain of D/n, as in Definition 3.1, and let n = pα1
1 · · · p

αt
t . For 1 6 i 6 r,

Ii = 〈πp1〉
α1−βi1 · · · 〈πpt〉

αt−βit .
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Hence, by Definition 3.3 and Lemma 2.3,

|H(D/n, I1, . . . , Ir)| = ϕD(n/I1) · ϕD(I1/I2) · · ·ϕD(Ir−1/Ir)

=

t∏
j=1

ϕD(pβ1 j

j ) ·
t∏

j=1

ϕD(pβ2 j−β1 j

j ) · · ·
t∏

j=1

ϕD(pβr j−βr−1, j

j )

=

t∏
j=1

ϕD(pβ1 j

j )ϕD(pβ2 j−β1 j

j ) · · ·ϕD(pβr j−βr−1, j

j ).

Hence,

|H(D/n, r)| =
t∏

j=1

∑
06β1 j6···6βr j6α j

ϕD(pβ1 j

j )ϕD(pβ2 j−β1 j

j ) · · ·ϕD(pβr j−βr−1, j

j ).

Define xi j for 1 6 i 6 r + 1, 1 6 j 6 t as in (3.1). Since xi j > 0 for i = 1, . . . , r + 1 and
j = 1, . . . , t,

|H(D/n, r)| =
t∏

j=1

∑
x1 j+···+xr+1, j=α j
xi j>0,i=1,...,r+1

ϕD(px1 j

j )ϕD(px2 j

j ) · · ·ϕD(pxr j

j ).

Hence,

|H(D/n, r)| =
t∏

j=1

∑
p

x1 j
j ···p

xr j
j |p

α j
j

ϕD(px1 j

j )ϕD(px2 j

j ) · · ·ϕD(pxr j

j )

=

t∏
j=1

∑
p

x1 j
j ···p

xr−1, j
j |p

α j
j

ϕD(px1 j

j )ϕD(px2 j

j ) · · ·ϕD(pxr−1, j

j )
∑

p
xr, j
j |p

α j−x1 j−···−xr−1, j
j

ϕD(pxr j

j ).

Since
∑α

i=0 ϕD(pi) = N(p)α,

|H(D/n, r)| =
t∏

j=1

∑
p

x1 j
j ···p

xr−1, j
j |p

α j
j

ϕD(px1 j

j ) · · ·ϕD(pxr−1, j

j )N(pα j

j /p
x1 j

j · · · p
xr−1, j

j )

=

t∏
j=1

ϕ(r−1)
D
∗ I(pα j

j ) = ϕ(r−1)
D
∗ I(n).

This completes the proof of Theorem 3.4. �

4. Matrix diagonalisation in Mr(D/n)

Let K be the field of fractions of D. From [6, Theorem 3.2, page 90], every discrete
valuation v of K is induced by a prime ideal p of D. The completion of K under v will
be denoted by Kp and called the p-adic f ield, and the ring Dp will be called the ring
of integers of Kp. The ring Dp is a Dedekind domain with unique maximal ideal pDp.
Hence Dp is a principal ideal domain.
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Lemma 4.1. Let n be a nonzero ideal of D and let Mr(D) be the set of r × r matrices
with elements in D. For A ∈ Mr(D),

|{x ∈ (D/n)r | Ax ≡ 0 (mod n)}| =
∏
pα‖n

r∏
i=1

Np(〈di〉 + p
α),

where d1, . . . , dr are all invariant factors of the matrix A inDp with d1 | d2 | · · · | dr and
Np(m) = |Dp/m|. If di = 0, then di+1 = · · · = dr = 0 and we define 0 | 0.

Proof. By the Chinese remainder theorem, it is enough to prove the case n = pα. Since
A ∈ Mr(D) ⊆ Mr(Dp), according to the Smith normal form over Dp, there are two
invertible matrices P and Q ∈ GLr(Dp) such that

PAQ = Ap =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dr

 ∈ Mr(Dp),

where d1, . . . , dr are all invariant factors of A in Dp and d1 | d2 | · · · | dr. If di = 0, then
di+1 = · · · = dr = 0 and we define 0 | 0.

It is easy to see that the number of solutions of Ax ≡ 0 (mod pα) is equal to that of
Apx ≡ 0 (mod pα). By [4, Theorem 2.3], the number of solutions of Ax ≡ 0 (mod pα)
is

r∏
i=1

Np(〈di〉 + p
α).

This completes the proof of Lemma 4.1. �

Denote the set of r × r invertible matrices in D/n by GLr(D/n). Define the set

X =



x1
x2
...
xr


∣∣∣∣∣∣∣∣∣∣∣∣ xi ∈ D/n, i = 1, . . . , r

 .
Definition 4.2. For every invertible matrix A ∈ GLr(D/n), we define

%r,n(A) = |{x ∈ X | Ax ≡ x (mod n)}|.

The next theorem is an immediate consequence of Lemma 4.1.

Theorem 4.3. For every invertible matrix A ∈ GLr(D/n),

%r,n(A) =
∏
pα‖n

r∏
i=1

Np(〈di〉 + p
α),

where d1, . . . ,dr are all invariant factors of the matrix A − Er inDp with d1 | d2 | · · · | dr.
Here, the matrix Er stands for the identity matrix of order r.
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Remark 4.4. If r = 1, then A ∈ U(D/n) and X = D/n. For every a ∈ U(D/n), we shall
write %(a) = %1,n(a). Then %(a) = N(〈a − 1〉 + n). By (1.2),∑

a∈U(D/n)

%(a) = ϕD(n)σD(n).

Remark 4.5. In particular, let r = 1 and D = Z. Then, by (1.1),∑
a∈U(Z/nZ)

%(a) = ϕ(n)σ(n).

5. An application

Let D be a residually finite Dedekind domain, let n be a nonzero ideal of D and let
r be a positive integer. Let G denote the group

G =



a11 a12 · · · a1r

0 a22 · · · a2r
...

...
...

0 0 · · · arr


∣∣∣∣∣∣∣∣∣∣∣∣

aii ∈ U(D/n), i = 1, . . . , r,
ai j ∈ D/n, 1 6 i < j 6 r


and let X denote the set

X =



x1
x2
...
xr


∣∣∣∣∣∣∣∣∣∣∣∣ xi ∈ D/n, i = 1, . . . , r

 .
Lemma 5.1. Let n be a nonzero ideal of D and r be a positive integer, and define the
group G and the set X as above. Then the number of orbits of X under the action of G
is

|G/X| =
∏
pα‖n

(
α + r

r

)
.

Proof. Two elements x and y of X belong to the same orbit if and only if there exists
an element g ∈ G such that gx = y. Let

g =


a11 a12 · · · a1r

0 a22 · · · a2r
...

...
...

0 0 · · · arr

 ∈ G.

Then 
a11x1 + a12x2 + · · · + a1r xr ≡ y1 (mod n),
a22x2 + · · · + a2r xr ≡ y2 (mod n),

...
arr xr ≡ yr (mod n).

(5.1)
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Consider the system of congruences
〈xr〉 = 〈yr〉 in D/n,
〈xr−1 + I1〉 = 〈yr−1 + I1〉 in D/I1,

...
〈x1 + Ir−1〉 = 〈y1 + Ir−1〉 in D/Ir−1,

(5.2)

where the ideals I j are given by

I1 = 〈xr〉 = 〈yr〉,

I2 = 〈xr−1, xr〉 = 〈yr−1, yr〉,

...

Ir = 〈x1, . . . , xr〉 = 〈y1, . . . , yr〉.

It is easy to see that if x, y ∈ X are in the same orbit under the action of G,
that is, x, y satisfy (5.1), then x, y satisfy (5.2). Conversely, for any r-ideal chain
I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ D/n, defined as above, there is exactly one orbit of G acting on X.
Hence |G/X| is the number of distinct r-ideal chains in D/n. By Theorem 3.2,

|G/X| = |I(D/n, r)| =
∏
pα‖n

(
α + r

r

)
.

This completes the proof of Lemma 5.1. �

Theorem 5.2. Let r be a positive integer and n be a nonzero ideal of D. Let

G =

(ai j)r×r

∣∣∣∣∣∣∣∣
aii ∈ U(D/n), i = 1, . . . , r,
ai j ∈ D/n, 1 6 i < j 6 r,
ai j = 0, 1 6 j < i 6 r


and define %r,n(A) as in Definition 4.2. Then∑

A∈G

%r,n(A) = N(n)r(r−1)/2ϕD(n)r
∏
pα‖n

(
α + r

r

)
.

Proof. Consider the group action of G on X. By Definition 4.2, for any element A ∈G,

%r,n(A) = |{x ∈ X | Ax ≡ x (mod n)}| = |XA|.

Using the Cauchy–Frobenius–Burnside lemma and Lemma 5.1,∑
A∈G

%r,n(A) = |G| · |G/X| = N(n)r(r−1)/2ϕD(n)r
∏
pα‖n

(
α + r

r

)
.

This completes the proof of Theorem 5.2. �
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Lemma 5.3. Let n be a nonzero ideal of D and r be a positive integer. Define
τ1(n) = σD(n) and τi(n) =

∑
d|n τi−1(d) for i > 2. Then

τr(n) =
∏
pα‖n

(
α + r

r

)
.

Proof. Let n = pα1
1 · · · p

αt
t . We shall prove the lemma by induction on r. For r = 1,

τ1(n) = σD(n) =
∏
pα‖n

(
α + 1

1

)
.

Hence the lemma holds for r = 1. Assume that the lemma holds for r = k, that is,

τk(n) =
∏
pα‖n

(
α + k

k

)
.

Now we show that the lemma holds for r = k + 1. By the induction hypothesis,

τk+1(n) =
∑
d|n

τk(d) =
∑
d|n

∏
pα‖d

(
α + k

k

)

=
∑

06βi6αi
16i6t

t∏
i=1

(
βi + k

k

)
=

t∏
i=1

αi∑
βi=0

(
βi + k

k

)

=

t∏
i=1

(
αi + k + 1

k + 1

)
=

∏
pα‖n

(
αi + k + 1

k + 1

)
,

showing that the lemma holds for r = k + 1. Thus Lemma 5.3 follows by induction. �

The next theorem follows at once from Theorem 5.2 and Lemma 5.3.

Theorem 5.4. For every nonzero ideal n of D and a positive integer r,∑
A∈G

%r,n(A) = N(n)r(r−1)/2(ϕD(n))rτr(n),

where G is defined as in Theorem 5.2.

Using Theorem 4.3, we have the following corollary.

Corollary 5.5. For every nonzero ideal n of D and a positive integer r,∑
A∈G

∏
pα‖n

r∏
i=1

N(〈di〉 + p
α) = N(n)r(r−1)/2ϕD(n)rτr(n),

where d1, . . . , dr are all invariant factors of the matrix A − Er in Dp satisfying
d1 | d2 | · · · | dr.

Remark 5.6. If D = Z, then Corollary 5.5 reduces to the main theorem of [9].
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6. Another application

In this section, we define the group

U =



1 a11 a12 · · · a1r

0 1 a22 · · · a2r
...

...
...

...
0 0 0 · · · 1


∣∣∣∣∣∣∣∣∣∣∣∣ ai j ∈ D/n, 1 6 i 6 j 6 r


and consider the action of U on the set

X =



x0
x1
...
xr


∣∣∣∣∣∣∣∣∣∣∣∣ xi ∈ D/n, i = 0, . . . , r

 .
Lemma 6.1. Let n be a nonzero ideal of D and r be a positive integer. Then the number
of orbits of the set X under the action of the group U is

|U/X| = ϕ(r)
D
∗ I(n).

Proof. If two elements x, y ∈ X are in the same orbit, then there exists an element g ∈ U
such that gx = y. That is,

x0 + a11x1 + a12x2 + · · · + a1r xr ≡ y0 (mod n),
x1 + a22x2 + · · · + a2r xr ≡ y1 (mod n),

...
xr ≡ yr (mod n).

Consider the system of congruences
〈xr〉 = 〈yr〉 in D/n,
〈xr−1 + I1〉 = 〈yr−1 + I1〉 in D/I1,

...
〈x0 + Ir〉 = 〈y0 + Ir〉 in D/Ir,

with the ideals

I1 = 〈xr〉 = 〈yr〉,

I2 = 〈xr−1, xr〉 = 〈yr−1, yr〉,

...

Ir+1 = 〈x0, . . . , xr〉 = 〈y0, . . . , yr〉.

Let I1 ⊆ I2 ⊆ · · · ⊆ Ir ⊆ Ir+1 ⊆ D/n be an (r + 1)-ideal chain in I(D/n, r + 1). Then,
for any vector (x1, . . . , xr+1) ∈ H(D/n, I1, . . . , Ir+1), there is exactly one orbit of U
acting on X. Hence |G/X| = |H(D/n, r + 1)|. By Theorem 3.4, |U/X| = ϕ(r)

D
∗ I(n). This

completes the proof of Lemma 6.1. �
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Theorem 6.2. For every nonzero ideal n of D and a positive integer r,∑
A∈U

%r+1,n(A) = N(n)r(r+1)/2ϕ(r)
D
∗ I(n).

Proof. The theorem can be proved in a similar way to Theorem 5.2 by using the
Cauchy–Frobenius–Burnside lemma. �

Using Theorem 4.3, we have the following corollary.

Corollary 6.3. For every nonzero ideal n of D and a positive integer r,

∑
A∈U

∏
pα‖n

r+1∏
i=1

N(〈di〉 + p
α) = N(n)r(r+1)/2ϕ(r)

D
∗ I(n),

where d1, . . . , dr+1 are all invariant factors of matrix A − Er+1 in Dp satisfying d1 | d2 |

· · · | dr+1.

Remark 6.4. If D = Z, then Corollary 6.3 reduces to [2, Theorem 3.1].
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