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DEGENERATE CRITICAL POINTS, HOMOTOPY
INDICES AND MORSE INEQUALITIES IH

E.N. DANCER

This paper contains two main types of results. Firstly, we discuss what sort of critical
points ate obtained in various direct and dual minimax principles. The techniques we
apply are widely applicable. Secondly, we obtain "best possible" results on which critical
points of a function on Rn are removable.

0. INTRODUCTION

This paper is a continuation of [6]. We prove three main results. We improve
the result in [6] on what cort of critical point is obtained in the saddle point theorem.
This was motivated by seeing an announcement of the results of [13] for non-degenerate

critical points. In addition, we prove similar results for a number of dual variational
principles. Indeed the proofs in this case are much simpler than the proofs in [6] and
the methods seem easy to apply in other situations. In particular, the technicalities
associated with the fundamental group in [6] do not appear. Solimini and Lazer [13]
have independently obtained results related to these for the case of non-degenerate
critical points. For this case, our results agree with theirs or are better. The results
which they obtain for degenerate critical points are much weaker than ours. (On the
other hand, they do consider some other different minimax points.) We also considerably
improve the result in [6] on the removability of critical points. We now consider our
results in more detail.

Firstly, consider Rabinowitz's saddle point theorem [18]. If we look at the critical
value c' obtained by a "dual" minimal agrument, we prove that there is a critical point
~x in f~1(c') such that the Betti number B*(f, a:) ^ 0 for some % 5s dim W where W is
the subspace in the saddle point theorem on which / is bounded below. In particular,
if W is one or two-dimensional, we can take i = dim W\ In addition if diinPF > 1, we
show that for the most conunon critical level c occuring in the saddle point theorem (the
one used in [6]), there is a critical point ~x in / - 1 ( c ) such that Bl(f, x) ^ 0 for some
i with 2 ^ i < dim W. This improves Theorem 3 in [6] by replacing " 1 ^ i ^ dim W"
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by "2 < i < dim FT". In both cases, we obtain better results in the infinite-dimensional

case than in [13].

Secondly, we prove the conjecture in [6] on sufficient conditions for a critical point
on Rn (where n > 6) to be removable. (A critical point x of / is said to be removable
if we can find a neighbourhood U of x~ and C2 functional g such that g = f outside
U but g has no critical points in U.) Our condition is useful because is easy to verify
in many cases. We also indicate how our methods can be used to obtain a rather more

complicated necessary and sufficient condition for removability if n^ 6.

The techniques in Sections 1 -2 here and in [6] are general techniques which can
be used to study many other variations! problems where there are degenerate critical
points. It seems to the author that the direct treatment of degenerate critical points,
while it is technical, is always likely to give better results than approximation arguments.
Note that a major motivation for studying what sort of critical points we obtain in
mini max problems is that such results can often be used to prove the existence of
additional critical points (as in [5], Section 4).

In Section 1, we prove the result on the type of critical points obtained in several
dual variational principles. In Section 2, we improve the result in [6] on the type of
critical point obtained in the most usual critical level in the saddle point theorem. We
also consider infinite-dimensional generalisations. Funally, in Section 3, we discuss the
removability of critical points.

Our notation follows that in [5] and [6], and a copy of [6] would be helpful for

reading Section 2.

1. THE TYPE OF CRITICAL POINTS IN DUAL VARIATIONAL PRINCIPLES

In this section, we obtain information on the cohomology of critical points in some

dual variational principles. We prove a result in detail in one case and sketch the proof

of another result. However, the techniques can be used for a number of other problems.

Assume that / : Rn —* R is C2 and that there is a subspace W of Rn and an

r > 0 such that

b = max{/(*) :xeW, \\x\\ = r} < mf{f(x) : a; £ Wx}

and / satisfies the Palais-Smale condition. Let Dr = {x € W : \\x\\ ̂  r } .

Let A denote the class of compact subsets A of E with property that for every

continuous map a: A —* W such that a | A n dDr — Id, a has a zero in A. If

h: E —» E is a homeomorphism such that h |oDr= Id, one easily sees that h(A) € A

is A E A.

Then one easily shows that

c' = jnf sup f(x)
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is a critical value of / and c' > b. See [13], though similar results appeared elsewhere
earlier. (See Solimini [20].)

We need some notation from [5]. Assume that zero is a critical point. Let w(t, x)

denote the flow corresponding to the differential equation x'(t) = —V/(a;(t)), let E =

{x E Rn : ir(t, x) -+ 0 as t -> - o o } and let Ec — E n / - * ( - £ ) . E is known as the
entry set (for 0). It is shown in [5, p.6] that Ee is close to zero if e is small. Choose a
manifold neighbourhood Ne of Ee in f~1(—e) and let

Ue = {0} U {n(t, x):t^0,xeNt, f(ir(t, x)) < <•} U Te

where / , = |J It and I, = {x: w(t, x) —> 0 as t —> oo, f(x) — s}. Thus, Ut is

constructed from Nc by following the flow up to f~1(e) and adding points x such that
the flow tends to zero as < -t oo. If £ is small, it is shown on p.7 of [5] that Ue is a
small neighbourhood of zero, /i(—V/, 0) = [U€/Ne] and Uc can be chosen connected.
We can use a similar construction near any critical point x~. Ue will then be a subset
of f~1[c — e, c + e] where c = f(x). H*(f, af, G) denotes the local cohomology of / at
x with coefficients in G and B'(f, x, G) the corresponding Betti numbers (as in [6]).
Also, fa is used as an abbreviation for f~1((—oo, a]).

THEOREM 1. Under the above assumptions and if each critical point in f~1(c') is
isolated in Rn then there exists a critical point x in f~1(c') such that
Hi+I(f,x, T T ^ S * - 1 ) ) ^ {0} for some j > k - 1 where k = dimW. If k = 1 or
2, we can take j = k — 1. Thus B*(f, x, Zp) ^ 0 for some j ^ k and for some prime
p while if k — 1 or 2 we can take j = k.

PROOF: Suppose e > 0 and choose box-like neighbourhood (7* of the critical
points {au}£L;i in f~1(c') such that the U\ are disjoint and, as usual, U\ intersects
fc ~c in N*. By the deformation lemma (see [18, p.162]) and by our earlier remark on
the invariance of A under suitable homeomorphisms, we see that there exists A 6 A

i m

such that f(x) < c' + e on A and A C fc ~' U |J U*c. (Remember that, in the
i=l

deformation lemma, we can obtain a homeomorphism which fixes fc ~* and with range

in fc'-e U Q {/*). If A £ A, B is compact and A C B, then B e A. Thus we
i=l

can assume without loss of generality that U'c C A for i = 1, . . . , m. Now A \
m
|J (Ul \ JV*) ^ A since otherwise it would follow that we would have an element

i=i
of A which is contained in fc ~'. This would contradict the definition of c'. Since

m
G = A \ [J {U*\Nl) £ A, there is a continuous function <p: G —» W such that

i=i
<p{x) = i o n GOdDr but <p(x) ^ 0 on G. Since c' > b, our construction ensures that
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U*ndDr = 0 for 1 ^ i ^ m . Now there must be an i such that <p \Ni has no continuous

extension to a map of U\ into W \ {0}. Otherwise, we could obtain a continuous map
ro

of GU \J U} = A into W \ {0} such that <p{x) - x on An dDr. This contradicts our
i=l

assumption that A E A.. Now W \ {0} has the same homotopy type as dDr and thus
of Sk~1. Hence we see that there is an i and a continuous map ip: N\ —> Sk~1 such
that ip has no continuous extension to a map of U\ into Sk~1. By obstruction theory
(see Hu [8, Chapter VI], this implies that 1P+1(17;, N'e, TT^S*- 1 ) ) ^ {0} for some j
(Here we are assuming that k > 2 to ensure that Sk~1 is simply connected. We return
to the other cases in a moment.) Since 7rJ(5

fc~1) = {0} if j < k — 1 and since

(f, .<, ^ (S*- 1 ) ) = Hj+1(Ui, N'e, 7ry(5fe-1))

(see [5, p.3]) the result follows. If k = 2, we can use Hu [8, Corollary II.7.4] to show
that the only obstruction lies in H2(Ul, N*, Z) and we can complete the proof as
before. If k = 1, Sk~1 is a two point space and the oidy way an extension can fail to
exist is if two distinct components of iV£' lie in the same component of U\. It follows
that H1(f, Xi, z) ^ {0}. (Otherwise, as we showed in [5, p.7 and p.10], we can choose
U\ and Nl both connected.) The last statement follows from the universal coefficient
theorem [21, p.246]. This completes the proof. D

Remarks. As usual, we can improve the result if k — 1 and either f"(x) has a negative
eigenvalue or dim N(f"(x)) ^ 1, for every critical point x in f~1(c'). In this case, as
in [5, p.10], we can deduce that

„ . _ f Z ifi = l

[ {0} otherwise.

If k = 2 , our result says that H2(f, x, Z) ^ {0}. In particular, if x~ is non-degenerate,

f"{x) has exactly two negative eigenvalues. This improves Theorem 2.2 in [13] in

the finite-dimensional case. Note also that, in the finite-dimensional case, Theorem 1

improves Theorems 2.2 and 2.5 in [13].

The same idea can be used to obtain results for a number of other dual variational

principles. For example, assume that / : Rra —> R is C2, / (0) = 0, / is even and

satisfies the Palais-Smale condition. Assume that k Js 1 and

—oo < Cfc+i = inf sup f(x) < 0

where F m denotes the compact, symmetric subsets of R" which do not contain zero
and which have genus at least m. Here a compact symmetric set A not containing
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zero has genus greater than or equal to t if and only if there is no continuous odd map
ip: A —» Re \ {0} for e < t (see Rabinowitz [19]). Then C^+i is a critical value of /
(see [3]). If there are only a finite number of critical points on Rn then the conclusion of
Theorem 1 holds. (Note also that, if fc = 0, we would have a local minimum of / ) . We

m
merely sketch this. If e > 0, we can choose A G Tk+1 such that A C fck+i-' \j \J U*

t=i

where U* are our usual box-like neighbourhoods of the critical points. We can choose
the Ul so as to preserve the symmetry and, as in the proof of Theorem 1, we can ensure

m
that U; C A. Since G = A \ \J (U* \ N'c) is not in rfc+1, genus G < k + 1. Hence
there is a continuous odd map tp: G —> R \ {0}. However, since genus A ^ k + 1, ip
does not extend to a continuous odd map of A into R \ {0}. This implies that for
some i, x/> \Ni does not extend to a continuous map of V\ into R* \ {0}. (We can
preserve the oddness by noting that, if we can define tj> on Ul we can define rj> on {//'
(where — X{ lies in J// ) by using the oddness.) The proof can now be completed in the
same way as in Theorem 1. A related but weaker result appears in [1].

Remarks. In this case, we obtain good results for k = 0, 1, 2.

2. AN IMPROVEMENT ON OUR EARLIER RESULT ON THE SADDLE POINT THEOREM

In this section, we improve our result in [6] on the type of critical point obtained
in the saddle point theorem.

As in Section 1, assume that / : Rn —> R is C2 and that there is a subspace W of
R" and an r > 0 such that

6 = max{/(a:) : x € W, \\x\\ = r} < inf{/(x) : x € Wx}

and / satisfies the Palais-Smale condition.
Let F denote the set of continuous maps 7: DT —• H such that 7 \dDr= Id.

Rabinowitz [18, Theorem 1.2] proved that, under these assumptions,

c = inf sup f{j(x))

is a critical value of / and c> b. Let / " = {x G Rn : f(x) < a}.
We say that c is a nice critical value of / if, for every critical point x in f~1{c)

(i) dim N(f"{x)) ^ 2 or (ii) f"(x) has at least one negative eigenvalue or (iii) I is a
local rninimim of / .

THEOREM 2. If the above assumptions hold, if each critical point in f~1(c) is
isolated in Rn, if c is a nice critical value of f and if k > 2, then there is a critical
point ~x in f~1{c) such that Hj(f, a:, Z) ^ {0} for some j in {2, . . . , fc}.
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Remarks . This improves Theorem 3 in [6] by replacing j € {1, ..., k} by j £
{ 2 , . . . , * } .

PROOF: Let {xi}'=1 denote critical points in f~1(c) and, if e is small and positive,
choose disjoint box-like neighbourhoods U\ of the critical points in /~1(c) as in the
proof of Theorem 1. Let N\ — U\ C\ f~1(c — e). As in the proof of Lemma 1 in
[0], there is a continuous map 7: £>r —> Rn such that 7 \BDT

 1S the identity and

•y(x) £ fc-'U (J Ui for x 6 Dr. We order the x{ such that Hj(f, xt, Z) = {0} if j > k

m

and i ^ m (where m < s ). We next show 7 can be chosen such that ~y(x) € fc~'U |J (7̂

for x 6 Z?r. This is effectively proved in [6]. In the proof of Lemma 1 there, it is shown
that if Ttj(Ui,Ni) - {0} for 1 < j < Jfc, we can modify 7 on 7~1(^<) so that
it only takes values in N\ C fc~e. Now the proof of Theorem 3 in [6] shows that
TTJ(U*, N*) = {0} for 1 < j < ik if and only if Hj(U'c, N}, Z) = {0} for 1 < 3 ^ k. (It
is here that we use that c is a nice critical value.) Since Hj(f, Xi, Z) = Hj(Ul

c, i\TJ, Z) ,
our claim follows. By a similar, but much easier argument we can change 7 so as not
to take values near Xi if Xi is a local minimum of / .

m

Hence we can choose 7 such that 7(x) € fc~e U \J U\ for x £ Dr where

Hj(f, Xi, Z) ^ {0} for some j in {1, . . . , k} (depending on«) for each i in {1, . . . , m}.
If our result is false, Hj(f, Xi, Z) = {0} for 2 < j- ^ k and 1 < i < m. Hence
^ i ( / , x<, Z) ± {0} for 1 < i < m.

Since k > 1, 9£)r is connected and hence 7(5Z?r) lies in a single component
m

C1 of / c ~ e . Let M = U JVJ n C1. We set W = {a; £ £>r : 7(1) ^ C1} and

5 = { u e i ? r ; 7(3;) G M} . Then 5 is a closed set and 7(5) C M.
If we show that the inclusion i: M —* fc~e is a homotopic to a constant, then it

will follow that 7:5—+ fc~e is homotopic to a constant (since 7(5) C M ) . Thus, by
the homotopy extension property, 7 extends to a map of W into fc~* and hence the
result follows. (Note that, if e is small, c — e > b and thus W does not intersect dDr.)

It remains to prove that i is homotopic to a constant. We first prove that N*, i =
1, ..., m, can be chosen such that each component is contractible. Consider x1. The
other cases are similar. Let E\ denote the exit set at xj for the flow corresponding to
x' = V/(a;) and let El = Ex nfc~c. Since Hi(f, xlt Z) ^ {0} the shifting lemma (see
[5, Theorem 3]) implies that f"(xi) has zero or one negative eigenvalue. In the latter
case, Theorem 4 in [5] implies that 0 must be a local minimum for the corresponding
bifurcation equation and hence the exit set for the flow corresponding to the bifurcation
equation is empty. We can then use Palmer's change of coordinates as in the proof of
Lemma 2 in [6] to calculate the exit set for the flow. By a similar but easier argument
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to that in the proof of Lemma 2 in [6] we see that El consists of 2 points. We can
then choose iV* to be the union of contractible neighbourhoods of each of these points
in f~1(c-e). Now consider the case where / " ( x i ) has no negative eigenvalues. In
this case, by the proof of Lemma 2 in [6]. 23' is homeomorphic to the corresponding
exit set Ee for the bifurcation equation on N(f"(xi)) (intersected with f~1(c — e)).
We consider the case where N(f"(%i)) is 2-dimensional. The other cases are easier.
Then Ee is a closed subset of the one-manifold / - 1 ( c - e) in N{f"{x-j)). By [6, p.12],
it has only a finite number of components. Hence E€ is a finite disjoint union of sets
homeomorphic to [0, 1]. Here we are using essentially that / - 1 ( c — e)DiV(/"(a;1)) is a
one-manifold. Hence there is a finite union of disjoint contractible sets in f~x(c — t) PI
N(f"(xi)) with Ec in the union of their interiors. It is now easy but tedious to construct
nice contractible neighbourhoods of each component of E\ in f~*(c — e). (One way is
to use Palmer's change of co-ordinates and the neighbourhoods of Ec above to construct
a neighbourhood in f~1(c — e) for a different but related function / and then use
the flow to obtain a neighbourhood in / ~ ] ( c - e) . Here f(x) = l/2f"(0)x2 + g(Px)

where P is the orthogonal projection onto iV(/"(0)) and the bifurcation equation is
the gradient of g on N{f"(0)).

By the previous paragraph, we can obtain contractible neighbourhoods of each
component of El. The union of these is defined to be Nj . As in [5], we can then
construct the corresponding V\ . We do this for each Xi, i = 1, . . . , m. Let {Aj}'=1

be the components which lie in C j . Choose Xj £ Aj.

Since each Aj is contractible, i: M —> fc~' is homotopic to the map which sends

all of Aj to Xj. Since each Xj is in the path connected set C\, it follows easily that i

is homotopic to the map which sends M to x1 and hence the result follows. D

Remarks. If k = 2, we have that H2(f, x, Z) ^ {0}. Our result improves Theorem
3 in [6] and Theorems 2.4 and 2.7 in [13] (at least in the finite-dimensional case).

With more care, we can replace 6imN(f"(x)) ^ 2 by dimi\F(/"(ffi)) ^ 3 in
the definition of a nice critical point and retain Theorem 2. This depends upon re-
sults in [11]. As in [6], we can use the universal coefficient theorem to deduce that
B'(f,x, Zp) 7̂  0 for some prime p and some j in {2, . . . , k}. Remember that
Hi{f, ~x, Z) and H1(f, x~, Z) have no torsion.

It is unclear if our techniques can be used to obtain a result for the critical value c
of / in [13]. We could certainly use our ideas to give an alternative proof of Theorems
2.3 and 2.65 in [13]. In the case of degenerate zeros, one might hope to prove that there
is a critical point x in /~*(c) such that Bl{f, TE, Zp) ^ 0 for some i in {1, . . . , k}
and some p and for some i in {fc, k + 1, . . . .} and some p (where the two p's may be
different). This appears rather harder to prove.

https://doi.org/10.1017/S0004972700003531 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003531


104 E.N. Dancer [8]

As one might expect, one can prove the natural analogues of Theorems 1 and

2 for maps f on a Hilbert space which satisfy the Palais-Smale condition and where

D2f(x) is Fredholm at each critical point. This is in line with the author's contention
that if one can solve a problem in the large finite dimensional case, it is often easy to
modify the proof to do the infinite-dimensional problem. We show briefly how this
can be done We need to use the definition of the homology of a critical point in [7].
We first consider Theorem 3 in [6] in the infinite-dimensional case. By Mawhin and
Willem [16], we can, by using a local homeomorphism, assume that near a critical
point x, f(x + x) = f(x) + l/2||Pi*||2 - l/2\\P2xf + g(Pox) where P^Pi) is the
orthogonal projection onto the space spanned by the eigenvectors corresponding to
positive (negative) eigenvalues, PQ = I — Pj — P2, g(0) = g'(0) = 0. Note that, by
the definition of the homology of a critical point in [7], it is not changed by a local
homeomorphism. Since decreasing ||Pix|| decreases / near x, we see that we can also
choose the function 7 in the definition of c such that, if j(x) is near "x, then 7(3;) is
in {x + x : P\x = 0}. Note that, by the shifting lemma, the Betti numbers on this

subspace are the same as on the whole space. We can now choose our good pair ( V, V J
as in the proof of Lemma 1 in [6] on the subspace {x : Pi x = 0} where for simplicity we
are assuming that ~x = 0. The proof of Lemma 1 still shows that itj(V, Vj ^ {0} for
some j in {1, . . . , k}. For the moment, let us assume that R{P2) is finite-dimensional.
In this case one obtains the result essentially as in the proof of Lemma 2 and Theorem
3 in [6] except one uses a different flow. One uses the flow generated by the gradient
of —1/2 ||P2a;||2 + g(Pox) in the subspace of {x : Ptx = 0}. Since this space is a
finite-dimensional space we can use the homotopy index methods in [6] and obtain the
result. The exit sets will be different from those in [6] because we are using a different
flow. (Note that this means we can avoid using Palmer's theorem). Now assume R{Pi)
is infinite-dimensional. Let us first assume that ic (where without loss of generality
x — 0) is non-degenerate. In this case we can take our pair (v, V) to be a ball B
and its boundary dB in an infinite—dimensional Hilbert space. Since B and dB are
contractible in an infinite—dimensional Banach space (see Bessaga and Pelczynski [2,
Corollary III.5.1]) ITJ(B, dB) - {0} for j = 1, . . . , k. This contradicts Lemma 1 in
[6]. Now suppose that a; = 0 is degenerate but R{Pi) is infinite-dimensional. In this
case one can use a standard approximation lemma (see Marino and Prodi [15, Lemma
1.2]) to modify / near 0 to / so that / has only non-degenerate critical points near
0, each is at the same level */(0) and each has -R(p2) infinite-dimensional. We can
now combine our argument above with the proof of Lemma 1 in [6] to deduce that we
can modify 7 so that 7 does not take values in the Uc 's for each of the critical points
near 0. In particular f{l{x)) < /(0) when f(x) is small. We can now deform along
gradient lines (that is, using the deformation lemma) to obtain a new 7 such that ~f(x)
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is never close to zero. Thus f{-f{x)) = f{i(x)) for all x in Dr (since / and / only

disagree near zero). Thus, if zero is a critical point with R(P2) infinite-dimensional

we can always choose 7 so that f(x) is never close to zero. Thus the critical point

with Hjl V, VI ^ {0} for some j in {1, . . . , k} obtained in the proof of Lermna 1

in [6] must have R{P2) finite-dimensional. This completes the proof of the infinite-

dimensional analogue of Theorem 3 in [6]. The same ideas can be used to prove an

infinite-dimensional version of Theorem 2 here. One combines the proof of Theorem 2

here with the ideas above. Once again one chooses 7 such that, near a critical point

x, 7 takes values in {x + x : P\% = 0 } , one chooses Uc, Ne for the gradient flow of

—1/2 j | JF*2 a; 11 + g(Pox) on {S + i : P\X = 0} and one uses this flow rather than the flow

for the original equation. Otherwise the proof is much as before.

One can also prove a version of Theorem 1 here in the infinite-dimensional case.

We sketch a proof of this. One shows that A £ A can be chosen such that, near a critical
point ~x, A C {x + x: PjX = 0} . First suppose that R(P2) is always finite-dimensional.
To simplify the notation, we assume that a; = 0. Choose one of our nice neighbourhoods
Uc for the gradient flow of - 1 / 2 \\P2x\\2 + g(Pox) on {x : Pxx = 0} . As in the proof of
Theorem 1, we assume that Uc C A. We can now complete the proof as before. Next
suppose that x = 0 is a non-degenerate critical point with R[P2) infinite—dimensional.
In this case, we can take Ue to be a ball in {x : P\x = 0} and Ne its boundary. Now
A n U€ is compact and hence there exists XQ £ (intf7e) \ A. (Remember that Ue is not
compact.) It is easy to construct a homeomorphism R: Ue —> Ue such that R = Id on
dUe and R(XQ) = 0. We extend R to be the identity outside Ue. Thus we can replace
A by a homeomorphic set A = R(A) such that 0 ^ A and f{x) ^ / (0 ) if x E A and
x is close to zero. We can now deform along the gradient flow of —(l/2)||P2a;||2 to
obtain A £ A such that f(x) < / (0) when x is close to zero. We can now complete
the proof as before. We can use the same approximation argument as in the previous
paragraph to handle the case where ^ ( i ^ ) is infinite—dimensional and x is degenerate.
This completes the proof of the infinite-dimensional version of Theorem 1. Note that
this improves Theorems 2.2 and 2.5 in [13] because we show that there must be a critical
point with finite Morse index.

3. REMOVABILITY OF CRITICAL POINTS

Assume / : R" —* R is C2 and zero is an isolated critical point of / . We prove a
conjecture in [0] on when we can find a C2 functional g which agrees with / except
near zero but has no small critical points. This gives a tidier result and one which is
much easier to apply than the one in [6]. In fact, as we sketch briefly, our ideas can be

used to obtain a necessary and sufficient condition for removability.

THEOREM 3. Assume tlmt n ^ 6, / : Rn —» R is C2, zero is an isolated critical
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point of f, zero has trivial homotopy index and /"(0) has at ieast one positive and one

negative eigenvalue. Then there is a neighbourhood U of zero and a C2 functional g

which is C° close to f, which equals f outside U and which has no critical points in

W.

Remarks. The necessity of many of the conditions is discussed in [6, Section 4]. We

still do not know if g can be chosen C1 close to / . (As pointed out in [6], it cannot

always be chosen C2 close to / . )

PROOF: The proof is essentially the same as the proof of the proposition in [6,
Section 4] except that we use the 5-cobordism theorem (as in Kirby and Siebenmann
[10, p.4], or Mazur [IT]) instead of the fo-cobordism theorem. As in [6], if we can prove
the result with no condition on g, we can easily modify the proof to get g C° close
to / . We choose one of our nice "box-like" neighbourhoods Ue of zero such that zero
is the only critical point of / i n Uc. As in [6], we can approximate / by / ] , where
/ j = / near dUc and / i has only non-degenerate critical points in Us and which are
close to zero. In [6], we then used King's [0] variant of the /i-cobordism theorem to
obtain g such that g = ft near dUe and g has no critical points in Ue. Since we do
not know that Ue , Ne, Ne are simply connected this argument fails. Here we use the
notation of [5]. However, if the natural inclusions i j : Ne —> Ue and i2 : Ne —> U€ are
both simple homotopy equivalences in the sense of Cohen [4, Section 22], then we can
apply the s-cobordism theorem. Here, as in [6], we need to check through the proof
of the 3-cobordism theorem and check that all the perturbations in / can be done by
purely local changes. This essentially the same as the corresponding check in [6]. The
remarks in [10, p.4] are helpful here.

Hence the proof reduces to showing that ij is a simple homotopy equivalence.
(A similar argument works for i-i.) Now we need four properties of simple homotopy
equivalences. Firstly whether a map is a simple homotopy equivalence depends only
on its homotopy class. Secondly, a homeomorphism is a simple homotopy equivalence.
Thirdly if any two of g, f, go f are simple homotopy equivalences then so is the third
(where the maps are such that go f makes sense). These results can be found in Cohen
[4, Section 22 and appendix]. Fourthly, if / : X —* Y is onto and cell-like (that is
f~1(y) has the shape of a point (in the sense of Mardesic and Segal [14]) for y £ Y

and if X and Y are compact ANR's) then / is a simple homotopy equivalence. This
is the theorem in Section 4 of Lacher [12].

Now the natural inclusion i of U'e = Uc n f° into Uc is a simple homotopy equiv-
alence (where f° = /-1((—oo, 0])). To see this, we will prove that the map P of Ue

into U'€ denned by following the flow till we first hit f° (as in [5, p.ll]) is a simple
homotopy equivalence. Since P o i is homotopic to the identity map and is thus a sim-
ple homotopy equivalence, it will then follow from our third statement in the previous
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paragraph that I is a simple homotopy equivalence. Now we only have to prove that
P is cell like. Now the fibres of P are points or honieomorphs of an interval except for
P - ^ O ) . Now P - 1 ( 0 ) is Ie U {0} (with the notation of [5, p.6]). This is easily seen
to be homeomorphic to a cone CI€ over Ie. Since CIe is compact and contractible, it
has trivial shape and hence the result follows.

By the result of the previous paragraph, it suffices to prove that the natural inclu-
sion i'i of Ne into U'e is a simple homotopy equivalence. Now it is proved in [5, p.11-12]
that the pair (U'e, Ne) is homeomorphic to ({Ne x [0, l))/(Ee x {1}), Ne x {0}). Thus
it suffices to prove that the natural inclusion fi of Ne x {0} into (Ne x [0, l])/(Ee x {1})
is a simple homotopy equivalence. Now (i — r o i where i is the natural inclu-
sion of Nc x {0} into Ne x [0, 1] and T is the quotient map of Ne x [0, 1] into
(Ne x [0, l])/(Ee x {1}). We can prove t is a simple homotopy equivalence by a sim-
ilar argument to the one we used for i. Thus it suffices to prove that r is a simple
homotopy equivalence. This follows if r is cell-like and hence if Et x {1} has trivial
shape. We can use the proof of Lemma 2 in [6] to show that Ec is 1-shape connected.
Now Ec has trivial Cech cohomology. (This follows from equation (1) of [5]). It then
follows as in the proof of Lemma 2 in [6] that Ee has the shape of a polyhedron. By
the argument in the proof of Theorem 3 in [6], all the pro-groups ITJ(EC) are trivial
and hence, since Ec is finite-dimensional, Ee has trivial shape by Theorem II.5.7. in
[14]. This completes the proof. U

Remarks . We could replace the assumption on the eigenvalues of /"(0) by the as-
sumption that dimiV(/"(0)) ^ 3. We could replace our conditions on the homotopy
index and the spectrum of /"(0) by the two conditions that Ee and It have trivial
shape. In this form it can be proved that the converse of Theorem 3 is true (for n ^ 6).
The idea is that the removability assumption implies that Ue and Ne are homotopy
equivalent. Thus, if n ^ 6, we obtain a necessary and sufficient condition for remov-
ability. However, it is usually not such an easy condition to check. Note that if V / has
trivial homotopy index at zero then this condition is satisfied if and only if Ec and Ie

are 1-shape connected.
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