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Compactifications of moduli of del Pezzo
surfaces via line arrangement and
K-stability
Junyan Zhao
Abstract. In this paper, we study compactifications of the moduli of smooth del Pezzo surfaces using
K-stability and the line arrangement. We construct K-moduli of log del Pezzo pairs with sum of lines
as boundary divisors, and prove that for d = 2, 3, 4, these K-moduli of pairs are isomorphic to the
K-moduli spaces of del Pezzo surfaces. For d = 1, we prove that they are different by exhibiting some
walls.

1 Introduction

The moduli spaces of del Pezzo surfaces have been extensively studied thanks to the
development of different approaches to construct moduli spaces.

A weighted marked del Pezzo surface is a pair (S , B) with S a del Pezzo surface and
B = ∑ b i B i a boundary divisor, where b i ∈ [0, 1] and B i ’s are all the finitely many lines
on S. The Kollár, Shepherd-Barron, and Alexeev (KSBA) moduli spaces parameterize
all such pairs such that (S , B) is semi-log-canonical and KS + B is ample. For example,
when b i = 1, for each i, the moduli of such quartic del Pezzo pairs are isomorphic to
the moduli M0,5 of rational curves with five marked points (cf. [HKT09, HKT13]).
Another interesting case is when b i = b, where b is a positive number such that (S , B)
is close to a Calabi–Yau pair (cf. [GKS21, HKT09, HKT13]).

The development of K-stability provides a moduli theory for log Fano pairs, called
K-moduli spaces. The general K-moduli theory was established by a group of people
in the past decade (cf. [ABHLX20, BHLLX21, BLX22, BX19, CP21, LWX21, LXZ22,
XZ20]). Roughly speaking, for fixed numerical invariants, we have a projective scheme
parameterizing the K-polystable log Fano pairs with these invariants. Moreover, in
the surface case, there is a wall crossing structure when we vary the coefficients of
the boundary divisors (cf. [ADL19, ADL21]). See Section 2 for definitions and more
details. We can ask the similar questions in the K-moduli spaces setting:

Question Fix a degree d ∈ {1, 2, 3, 4} and a rational number 0 ≤ c < 1.

(1) Can we describe the K-moduli space MK
d ,c of K-polystable log Fano pairs (X , cD)

admitting a Q-Gorenstein smoothing to a pair (X0 , cD0), where X0 is a smooth
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2 J. Zhao

del Pezzo surface of anticanonical degree d and D0 = ∑ L i is the sum of lines (i.e.,
−KX0 -degree 1 rational curves)?

(2) When varying c in the range such that (X0 , cD0) is log Fano, do the K-moduli spaces
of pairs in (1) change? If yes, can we determine all the values c i ’s at which the moduli
spaces get changed?

In particular, when c = 0, the K-moduli space parameterizes all the del Pezzo
surfaces of a fixed degree, which admit a Kähler–Einstein metric (cf. [MM93, OSS16]).

For c > 0, if a pair (X , cD) is a K-polystable degeneration of pairs (X0 , c ∑ L i),
then D is unique by the separatedness of the K-moduli spaces. In particular, when X0
has du Val singularities, the boundary divisor D can also be written as the sum ∑ L′i
of lines, where L′i ’s do not have to be distinct.

We prove in this paper that for d = 2, 3, 4, there are no walls for the K-moduli spaces
MK

d ,c , and they are all isomorphic to K-moduli of del Pezzo surfaces. For d = 1, we
exhibit examples to see that there is indeed some walls.

Theorem 1.1 (Corollary 3.8, Proposition 3.10, and Theorem 4.12) For any fixed degree
d ∈ {2, 3, 4}, there are no walls for the K-moduli MK

d ,c when c varies from 0 to the
log Calabi–Yau threshold, and they are isomorphic to the K-moduli space of del Pezzo
surfaces of degree d.

Theorem 1.2 (Proposition 5.2) Let 0 < c < 1
240 be a number, and let MK

1,c be the
K-moduli space defined above. Then there is a wall c = c′ < 1

288 , which is given by the
destabilization of the surface pair, where the surface acquires an A7-singularity.

2 Preliminaries

Convention In this paper, we work over the field of complex numbers C. By a surface,
we mean a complex connected projective algebraic surface. We keep the notions on
singularities of surface pairs the same as [KM98, Chapters 2 and 4].

For the reader’s convenience, we state the definitions and results in simple versions,
especially in dimension 2. Most of them can be generalized to higher dimension.

Definition 2.1 Let X be a normal projective variety, and let D be an effective
Q-divisor. Then (X , D) is called a log Fano pair if KX + D isQ-Cartier and−(KX + D)
is ample. A normal projective variety X is called a Q-Fano variety if (X , 0) is a klt log
Fano pair.

Definition 2.2 Let (X , D) be an n-dimensional log Fano pair, and let E be a prime
divisor on a normal projective variety Y, where π ∶ Y → X is a birational morphism.
Then the log discrepancy of (X , E) with respect to E is

A(X ,D)(E) ∶= 1 + coeff E(KY − π∗(KX + D)).

We define the S-invariant of (X , D) with respect to E to be

S(X ,D)(E) ∶= 1
(−KX − D)n ∫

∞

0
volY(π∗(−KX − D) − tE)dt,
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Compactifications of moduli of del Pezzo surfaces 3

and the β-invariant of (X , D) with respect to E to be

β(X ,D)(E) ∶= A(X ,D)(E) − S(X ,D)(E).

The first definition of K-(poly/semi)stability of log Fano pairs used test configura-
tions. We refer the reader to [ADL19, Xu21]. There is an equivalent definition using
valuations, which is called valuative criterion for K-stability. The advantage of this
definition is that it is easier to check.

Theorem 2.3 (cf. [BX19, Fuj19, Li17, BX19]) A log Fano pair (X , D) is:
(1) K-semistable if and only if β(X ,D)(E) ≥ 0 for any prime divisor E over X;
(2) K-stable if and only if β(X ,D)(E) > 0 for any prime divisor E over X.

The following powerful result is called interpolation of K-stability. We only state a
version that we will use later. For a more general statement, see, for example, [ADL19,
Proposition 2.13] or [Der16, Lemma 2.6].

Theorem 2.4 Let X be a K-semistable Q-Fano variety, and let D ∼Q −rKX be an
effective divisor.
(1) If (X , 1

r D) is klt, then (X , cD) is K-stable for any c ∈ (0, 1
r ).

(2) If (X , 1
r D) is log canonical, then (X , cD) is K-semistable for any c ∈ (0, 1

r ).

Theorem 2.5 Let (X , D) be a klt log Fano pair which isotrivially degenerates to a
K-semistable log Fano pair (X0 , D0). Then (X , D) is also K-semistable.

This follows immediately from the openness of K-(semi)stability (cf. [BLX22,
Xu20]), which is useful in our analysis of K-moduli spaces.

Recall that the volume of a divisor D on an n-dimensional normal projective variety
Y is

volY(D) ∶= lim
m→∞

dim H0(Y , mD)
mn/n!

.

The divisor D is big by definition if and only if volY(D) > 0.

Definition 2.6 Let x ∈ (X , D) be an n-dimensional klt singularity. Let π ∶ Y → X be
a birational morphism such that E ⊆ Y is an exceptional divisor whose center on X is
{x}. Then the volume of (x ∈ X) with respect to E is

volx ,X ,D(E) ∶= lim
m→∞

dimOX ,x/{ f ∈ OX ,x ∶ ordE( f ) ≥ m}
mn/n!

,

and the normalized volume of (x ∈ X) with respect to E is

v̂olx ,X ,D(E) ∶= A(X ,D)(D) ⋅ volx ,X ,D(E).

We define the local volume of x ∈ (X , D) to be

v̂ol(x , X , D) ∶= inf
E

v̂olx ,X ,D(E),

where E runs through all the prime divisor over X whose center on X is {x}.
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4 J. Zhao

Theorem 2.7 (cf. [Fuj18, Liu18, LL19]) Let (X , D) be an n-dimensional K-semistable
log Fano pair. Then, for any x ∈ X, we have

(−KX − D)n ≤ (1 + 1
n
)

n
v̂ol(x , X , D).

Now, let us briefly review some results on the K-moduli spaces of log Fano pairs.
We mainly state the results in our setting. For more general statements, see [ADL19,
Theorem 3.1 and Remark 3.25] or [ADL21, Theorem 2.21].

Definition 2.8 Let f ∶ (X,D) → B be a proper flat morphism to a reduced scheme
with normal, geometrically connected fibers of pure dimension n, where D is an
effective relative Mumford Q-divisor (cf. [Kol19, Definition 1]) on X which does not
contain any fiber of f. Then f is called a Q-Gorenstein flat family of log Fano pairs if
−(KX/B +D) is Q-Cartier and ample over B.

Definition 2.9 Let 0 < c < 1/r be a rational number, and let (X , cD)be a log Fano pair
such that D ∼ −rKX . A Q-Gorenstein flat family of log Fano pairs f ∶ (X, cD) → C
over a pointed smooth curve (0 ∈ C) is called a Q-Gorenstein smoothing of (X , D)
if:
(1) the divisors D and KX/C are both Q-Cartier, f -ample, and D ∼Q, f −rKX/B;
(2) both f and f ∣D are smooth over C/{0}; and
(3) (X0 , cD0) ≃ (X , cD).
Theorem 2.10 (cf. [ADL19]) Let χ be the Hilbert polynomial of an anti-canonically
polarized smooth del Pezzo surface X of degree d. Let r be the positive integer, and let
c ∈ (0, 1/r) be a rational number. Consider the moduli pseudo-functor sending a reduced
base S to

M
K
d ,c(S) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(X,D)/S
��������������

(X, cD)/S is a Q-Gorenstein smoothable log Fano family,
D ∼S ,Q −rKX/S , each fiber (Xs , cDs) is K-semistable, and
χ(Xs ,OXs (−mKXs )) = χ(m) for m sufficiently divisible.

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Then there is a smooth quotient stack MK
d (c) of a smooth scheme by a projective general

linear group which represents this pseudo-functor. The C-points of MK
d (c) parameterize

K-semistable Q-Gorenstein smoothable log Fano pairs (X , cD) with Hilbert polynomial
χ(X ,OX(−mKX)) = χ(m) for sufficiently divisible m ≫ 0 and D ∼Q −rKX . Moreover,
the stack MK

d (c) admits a good moduli space MK
d (c), which is a normal projective

reduced scheme of finite type overC, whoseC-points parameterize K-polystable log Fano
pairs.

Let X be a smooth del Pezzo surface of degree d ∈ {1, 2, 3, 4}, let L i ’s be the lines on
X, and let r be the integer such that ∑ L i ∼ −rKX .

Definition 2.11 Let MK
d ,c be the stack-theoretic closure of the locally closed substack

of MK
d (c) parameterizing pairs (X , cD), where X is a smooth del Pezzo surface and

D = ∑ L i , and let MK
d ,c be its good moduli space.

Remark 2.12 The good moduli space MK
d ,c is exactly the closed subscheme of MK

d (c),
which is the scheme-theoretic closure of the locus parameterizing smooth del Pezzo
surfaces with the sum of lines.
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Compactifications of moduli of del Pezzo surfaces 5

Theorem 2.13 (cf. [ADL19, Theorem 1.2]) Keep the notation as in the last theorem.
There are rational numbers

0 = c0 < c1 < c2 < ⋅ ⋅ ⋅ < cn = 1
r

such that for every 0 ≤ j < n, the K-moduli stacks MK
d ,c are independent of the choice of

c ∈ (c j , c j+1). Moreover, for every 0 ≤ j < n and 0 < ε ≪ 1, one has open immersions

MK
d ,c j−ε ↪ MK

d ,c j
↩ MK

d ,c j+ε ,

which descend to projective birational morphisms

MK
d ,c j−ε → MK

d ,c j
← MK

d ,c j+ε .

3 Cubic and quartic del Pezzo pairs

In this section, we focus on the cases when d = 3, 4. The K-moduli of cubic (resp.
quartic) del Pezzo surfaces are isomorphic to the GIT moduli spaces of cubics (resp.
quartics) (cf. [MM93, OSS16]). In particular, the K-polystable limits of the smooth
ones are still embedded in P3 (resp. P4) as a cubic surface (resp. complete intersection
of quadric hypersurfaces), and they have at worst A1 and A2-singularities (resp.
A1-singularities). Thus, it makes sense to discuss lines on cubic and quartic del Pezzo
surfaces with these mild singularities. The lines on singular cubic surfaces were first
studied in [Cay69]: they are the degeneration of the 27 lines on smooth cubic surfaces
with multiplicities, which are nothing but the number of lines which reduce to a given
one on a singular cubic surface.

We will prove that for all c in the Fano region, the K-moduli spaces MK
d ,c of cubic

(and quartic) del Pezzo pairs do not have wall crossings, and the moduli spaces are all
isomorphic to the K-moduli space of cubic (resp. quartic) del Pezzo surfaces. The proof
will proceed by first showing that for 0 < c = ε ≪ 1, we have the desired isomorphism
induced by the natural forgetful map, and then showing that MK

d ,c ≃ MK
d ,ε .

3.1 The cubic case

In [OSS16], the authors essentially proved that for cubic del Pezzo surfaces, the GIT-
(semi/poly)stability is equivalent to the K-(semi/poly)stability. As a consequence, the
two moduli spaces are isomorphic. However, the K-moduli space was constructed
only in recent years. Although this is well known to experts, for the reader’s conve-
nience, here we state a more recent proof using local–global volumes comparison.

Theorem 3.1 (cf. [OSS16, Section 4.2]) A cubic surface is K-semistable if and only if
it is GIT-semistable. In particular, the K-moduli space of degree 3 del Pezzo surfaces is
isomorphic to the GIT moduli space of cubic surfaces.

Proof We know that the Fermat cubic surface is K-stable (cf. [Tia87]). By the
openness of the K-stability (cf. Theorem 2.5), a general cubic surface is K-stable.
Denote by MK

3 the K-moduli space of cubic del Pezzo surfaces, which parameterizes
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K-stable smooth cubic surfaces and their K-polystable limits. Let X ∈ MK
3 be the limit

of a one-parameter family of {Xt}t∈T/{0} K-semistable smooth cubics.
As the K-semistable surfaces have klt singularities (cf. [Oda13]), in particular have

quotient singularities, we let (x ∈ X) ≃ (0 ∈ A2/Gx) be a singular point (if it exists).
Then, by Theorem 2.7, we have that

3 = (−KX)2 ≤ 9
4

v̂ol(x , X) = 9
4
⋅ 4
∣Gx ∣

= 9
∣Gx ∣

,

which implies that ∣Gx ∣ ≤ 3. If ∣Gx ∣ = 2, then x is an A1-singularity. If ∣Gx ∣ = 3, then x is
either an A2-singularity or a 1

3 (1, 1)-singularity. The latter case is ruled out by [KSB88,
Proposition 3.10]. We thus conclude that X has at worst A1- or A2-singularities. It
follows from [Fuj90, Section 2] that X can be embedded by ∣ − KX ∣ into P3 as a cubic
surface.

Since for hypersurfaces the K-stability implies GIT-stability (cf. [OSS16, Theorem
3.4] or [PT09, Theorem 2]), then we get an open immersion MK

3 ↪ MGIT
3 of moduli

stacks, which descends to a birational and injective morphism Φ ∶ MK
3 → MGIT

3

between good moduli spaces. Notice that the MGIT
3 is normal by the properties of

GIT quotients. As both of these two moduli spaces are proper, then Φ is a finite map,
and thus Φ is an isomorphism by Zariski Main Theorem. ∎

Remark 3.2 We will frequently call MK
3 the K-moduli spaces of cubic surfaces, by

which we mean the K-moduli compactification of smooth K-polystable cubic surfaces.

In the proof of the theorem, we deduce that a K-polystable cubic del Pezzo surface
has at worst A1- or A2-singularities. This partially recovers the following classical
result of Hilbert.

Theorem 3.3 (cf. [Hil70]) A cubic surface X ⊆ P3 is:
(i) GIT-stable if and only if it has at worst A1-singularities;

(ii) GIT-strictly polystable if and only if it is isomorphic to the cubic X0 defined by
x3

0 = x1x2x3;
(iii) GIT-semistable if and only if it has at worst A1- or A2-singularities.

For the semistable cubic surfaces, we know how the lines degenerate. In other
words, we know the multiplicities of the lines (cf. [Tu05, Table 1]).

Proposition 3.4 Let X be a semistable cubic surface, and let L i ’s be the 27 lines on it.
Then the pair (X , c ∑ L i) is log canonical for 0 < c < 1

9 .
Proof It is proven in [GKS21, Proposition 5.8] that the log canonical threshold of X
is larger than 1

9 if X has at worst A1-singularities.
Now, let us deal with the surfaces with A2-singularities. We first give an explicit

construction of the surface X0 = {x3
0 = x1x2x3}. Let (x ∶ y ∶ z) be the homogeneous

coordinates of P2, then blow up the tangent vector given by {y = 0} at (1 ∶ 0 ∶ 0), the
tangent vector given by {z = 0} at (0 ∶ 1 ∶ 0), and the tangent vector given by {x = 0}
at (0 ∶ 0 ∶ 1). Denote by E i and Fi the exceptional divisors on the blowup with self-
intersection −2 and −1, respectively, and H i the (−2)-curves in the class

H − E1 − 2F1 − E2 − F2 , H − E2 − 2F2 − E3 − F3 , H − E3 − 2F3 − E1 − F1 ,

https://doi.org/10.4153/S0008414X23000743 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000743


Compactifications of moduli of del Pezzo surfaces 7

respectively, where i = 1, 2, 3. Denote this surface by X̃0. Finally, contract the three
pairs of (−2)-curves to get X0. Notice that there are four sections of ω∗X̃0

coming
from x yz, y2z, z2x , x2 y ∈ H0(P2 , ω∗

P2). They give rise to a morphism from X̃0 to P3

contracting (−2)-curves, with image X0 ⊆ P3 given by x3
0 = x1x2x3.

Let π ∶ X̃0 → X0 be the contraction map. This surface has three A2-singularities,
and the 27 lines degenerate to the images of F1 , F2 , F3, denoted by G1, G2, G3, each
of which is of multiplicity 9 (cf. [Tu05, Proposition 4.1(ii)]). Then, by computing
intersection numbers, we deduce that

π∗G1 = F1 +
1
3

E1 +
2
3

H1 +
1
3

H2 +
2
3

E2 ,

and the other two relations for π∗G2 and π∗G3. As a result, we obtain that

A(X0 ,c∑ L j)(Fi) = A(X0 ,c∑ L j)(E i) = A(X0 ,c∑ L j)(H i) = 1 − 9c > 0

for 0 < c < 1
9 . Thus, the pair (X0 , c ∑ L j) is log canonical for 0 < c < 1

9 . The other pairs
whose surfaces have A2-singularities specially degenerate to this case, so we get the
result we desire. ∎
Proposition 3.5 Let 0 < ε ≪ 1 be a rational number. Then the forgetful map φ ∶
MK

3 (ε) → MK
3 is proper.

Proof Let π○ ∶ (X ○, cD○) → T/{0} be a family of K-semistable pairs, where
(X ○, cD○)t is isomorphic to a smooth del Pezzo surface with the sum of lines, and let
X → T be an extension of X ○ → T/{0}. It suffices to show that there exists a unique
extension π ∶ (X , cD) → T of π○. The uniqueness is apparent to us: as X0 is normal,
the filling D0 must be obtained in the following way if it exists. Let X sm be the open
locus of X such that π ∶ X → T is smooth on X sm. Taking the scheme-theoretic
closure of D○, and restricting it to X sm

0 , the D0 is the extension (by taking closure)
of this restricted divisor on X sm

0 to X0 as a Weil divisor.
Now, we only need to display such a filling. Recall that the central fiber X0 has

at worst A2-singularities. It was displayed in [Cay69] that the lines on general fibers
degenerate to lines on X0 with multiplicities, denoted by ∑ L i ,0. It follows from
Proposition 3.4 that the pair (X0 , c ∑ L i ,0) is log canonical when c = 1

9 . It follows
from interpolation that the pair (X0 , c ∑ L i ,0) is K-semistable for 0 < c ≪ 1, and this
gives a desired filling. ∎
Proposition 3.6 Let 0 < ε ≪ 1 be a rational number. Then there is an isomorphism
MK

3,ε ≃ MK
3 .

Proof We claim that the forgetful map φ ∶ MK
3,ε → MK

3 is finite. Since φ is repre-
sentable, by Proposition 3.5, it suffices to show that it is quasi-finite. In the proof of
Proposition 3.5, we in fact show that for each K-semistable pair (X , cD) in the stack
MK

3,ε , the divisor D is the sum of the lines on X counted with multiplicities. For every
cubic surface X with at worst A2-singularities, there are only finitely many lines on
X; hence, φ is quasi-finite. The finite forgetful map φ descends to a finite morphism
between good moduli spaces ψ ∶ MK

3,ε → MK
3 . As the K-moduli MK

3 is normal, and the
morphism ψ is birational and finite, it follows from Zariski’s Main Theorem that ψ is
an isomorphism. ∎
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Remark 3.7 In fact, the forgetful map φ between stacks is an isomorphism: for the
universal family X over MK

3 , as we can still define lines with multiplicities on mildly
singular cubic surfaces, there is a divisor D on X such that each fiber (X , D)t is a
cubic with sum of lines. This gives the inverse morphism of ϕ.

Corollary 3.8 Let X be a K-semistable cubic surface, and let L i ’s be the 27 lines on it.
Then the pair (X , c ∑ L i) is K-semistable for 0 < c < 1

9 . In other words, there are no walls
for MK

3,c when c varies in (0, 1
9 ). We have a natural isomorphism

MK
3,c

∼�→ MK
3

induced by the forgetful map.

Proof This follows immediately from Propositions 3.4 and 3.6 that there are no walls
for the K-moduli spaces MK

3,c , and they are all isomorphic to the K-moduli of cubic
del Pezzo surfaces, the isomorphism being induced by the forgetful map φ. ∎

3.2 The quartic case

The existence of Kähler–Einstein metric on quartic surfaces was studied in [MM93,
OSS16].

Theorem 3.9 (cf. [OSS16, Theorems 4.1 and 4.2]) A K-semistable quartic del Pezzo
surface has at worst A1-singularities.

By [HW81, Theorem 3.4], we know that every ADE del Pezzo surface is the
contraction of the (−2)-curves of a blowup of P2 at points in almost general position
(cf. [HW81, Definition 3.2]), that is, in the position such that no (−k)-curves will be
created under the blowup for any k ≥ 3. Also, it follows from [Fuj90, Section 2] that an
ADE del Pezzo surface of degree 4 can always be anti-canonically embedded into P4

as an complete intersection of two quadric 3-folds. Therefore, similar as in the cubic
case, we have a canonical choice of the degeneration of the 16 lines on those ADE del
Pezzo quartic surfaces.

Proposition 3.10 Let X be a K-semistable quartic del Pezzo surface, and let Li ’s be the
16 lines on it. Then the pair (X , c ∑ L i) is K-semistable for 0 < c < 1

4 . Moreover, there
is a natural isomorphism MK

4,c ≃ MK
4 of the K-moduli spaces, induced by the forgetful

map MK
4,ε → MK

4 .

Proof As in the proof of Corollary 3.8, we have a family (X,D) over MK
4 such that a

general fiber is a smooth quartic with the 16 lines on it. By interpolation of K-stability
(cf. Theorem 2.4), if we prove that these pairs are log canonical for 0 < c ≤ 1

4 , then
(X, cD) has K-semistable fibers for any 0 ≤ c < 1/4. In particular, the same argument
of the second statement of Corollary 3.8 shows that MK

4,c ≃ MK
4 for any c ∈ (0, 1

4 ).
Now, we prove that each fiber in the family (X, cD) is log canonical for 0 ≤ c ≤ 1/4.

Let (X , cD = c ∑ L i) be an arbitrary fiber.
(i) If X is smooth, then the 16 lines are distinct and ∑ L i is normal crossing. Thus,

the pair is log canonical automatically.
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Compactifications of moduli of del Pezzo surfaces 9

(ii) If X has one A1-singularity p, then we claim that there exist exactly four lines of
multiplicity 2 and eight lines of multiplicity 1, and that these double lines pass
through p, while the remaining eight lines avoid it.

First, notice that a quintic del Pezzo surface X with exactly one A1-singularity is
obtained by contracting the (−2)-curve on the blowup of P2 along three distinct
points p1 , p2 , p3 and a tangent vector supported at p4. In fact, let p ∈ X be the
singularity, and let X̃ → X be the blowup of X at p with an exceptional divisor,
which is a (−2)-curve. By [HW81, Theorem 3.4], the surface X̃ is obtained from
blowing upP2; thus, there must be a (−1)-curve C intersecting E. Contracting first
C, then the proper transform of E, one get a smooth del Pezzo surface of degree
6, which is a blowup of P2 at three distinct points.

Consider a one-parameter family of projective planes P2 ×A1 → A1, and let
l1 , . . . , l5 be five sections of A1 such that over 0 ≠ t ∈ A1, l1 , . . . , l5 does not
intersect, while over 0, only l4 and l5 intersect transversely. Blowing up P2 ×A1

along l1 ∪ ⋅ ⋅ ⋅ ∪ l5 with reduced scheme structure, one gets a degeneration X →
A1 of smooth quartic del Pezzo surfaces to a singular one with exactly one A1-
singularity. Denote p i(t) the intersection of l i with the fiber P2

t over t ∈ A1.
Then, under the family X → A1, the lines L(p i(t), p4(t)) and L(p i(t), p5(t))
(for i=1,2,3) on general fibers Xt degenerate to the same line L(p i(0), p4(0)) =
L(p i(0), p5(0)), and the exceptional divisors over p4(t) and p5(t) also degen-
erate to the same line, which is the exceptional divisor over p4(0) = p5(0). The
other eight lines over general fibers degenerate to distinct lines on X0. Finally,
observe that −KX/A1 gives rise to an embedding of X into P4 ×A1 over A1. Thus,
this degeneration indeed occurs in the Hilbert scheme.

Let E be the exceptional divisor of the blowup π ∶ X̃ → X. Then E + π∗∑ L i
has simple normal crossing support. Moreover, we have that

A(X ,c∑ L i)(E) = 1 − 4c > 0

for any 0 < c < 1
4 . As the multiplicity of the proper transform of L i is at most two,

then the pair is log canonical.
(iii) If X has two A1-singularities p and q, then there exist one line of multiplicity 4, four

lines of multiplicity 2, and four lines of multiplicity 1. This follows from the same
argument as in (i), and in fact the line with multiplicity 4 passes through both p
and q, the line with multiplicity 2 passes through either p or q, and the line with
multiplicity 1 avoids both p and q. For each singularity, there are exactly eight lines
(counted with multiplicities) passing through it. Let E be the exceptional divisor
of the blowup at p. Then we have that

A(X ,c∑ L i)(E) = 1 − 4c > 0

for any 0 < c < 1
4 . As the multiplicity of the proper transform of L i is at most four,

then the pair is log canonical.
The proofs of cases (iii) and (iv) are completely the same; we will omit part of

the details.
(iv) Suppose that X has three A1-singularities. Then X is obtained as follows: blow

up P2 at a general tangent vector and at three curvilinear points on a general
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line, where two of them collide, then take the ample model. There exist two lines
of multiplicity 4, and four lines of multiplicity 2. For each singularity, there are
exactly eight lines (counted with multiplicities) passing through it. For the same
reason as in (ii), the pair is log canonical.

(v) If X has four A1-singularities, then it is obtained as follows: blow upP2 at a general
point P and at two tangent vectors whose supporting lines pass through P, then
take the ample model. There are four lines of multiplicity 4. For each singularity,
there are exactly eight lines (counted with multiplicities) passing through it. For
the same reason as in (ii), the pair is log canonical. ∎

In the proof of Proposition 3.10, we can deduce the following result, which is proved
in [Tu05] for cubic surface case. The explicit equations of the lines on any A1 cubic del
Pezzo surface can be carried out from the normal form as a cubic hypersurface in P3.
When reducing from the smooth surface to a singular one, the 27 lines on a smooth
surface reduce to the lines on the corresponding singular surface. The multiplicity (cf.
[Cay69]) of a line l of a singular surface is nothing but the number of lines which
reduce to l.

Corollary 3.11 Let X ⊆ P4 be a quartic del Pezzo surface with at worst A1-singularities,
and let l be a line on it. Then:
(1) If l does not contain any singular point, then l is of multiplicity 1.
(2) If l contains exactly one singularity, then l is of multiplicity 2.
(3) If l contains two singularities, then l is of multiplicity 4.

Remark 3.12 Using the same argument as in Theorem 3.1, one can prove that the
K-moduli space of quartic del Pezzo surfaces is isomorphic to the GIT-moduli space

Gr(2, H0(P4 ,OP4(2)))ss //PGL(5).

See [OSS16, SS17] for details. As a consequence, each K-moduli space MK
4,c is isomor-

phic to this GIT-moduli space.

4 Degree 2 case

In this section, we prove that there are no walls for the K-moduli spaces MK
2,c when

we vary the coefficient c from 0 to 1
28 .

Recall that a smooth del Pezzo surface of degree 2 is a double cover of P2 branched
along a quartic curve, and the 56 lines are sent pairwise to the 28 bitangent lines of
the quartic. Thus, the K-stability of a degree 2 del Pezzo surface X is equivalent to the
K-stability of a del Pezzo pair (P2 , 1

2 C4) (cf. [ADL19, Remark 6.2]), where C4 is the
quartic plane curve along which the double cover X → P2 is branched.

In [OSS16], the authors give a description of the K-moduli space of del Pezzo sur-
faces of degree 2. It is diffeomorphic to the blowup of PH0(P2 ,OP2(4))ss //PGL(3) at
the point parameterizing the double conic. Moreover, each point [s]on the exceptional
divisor E represents a surface which is a double cover of P(1, 1, 4) branched along
a hyperelliptic curve z2 = f8(x , y), where f8 is a GIT-polystable octic binary form.
In [ADL19], the authors study the wall crossing of the K-moduli of pairs (P2 , cC4)
when c varies from 0 to 3

4 . They proved that there is a unique wall c = 3
8 . As a result,

https://doi.org/10.4153/S0008414X23000743 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000743


Compactifications of moduli of del Pezzo surfaces 11

the K-moduli of degree 2 del Pezzo surfaces is isomorphic to a weighted blowup of
the GIT moduli space PH0(P2 ,OP2(4))ss //PGL(3) at the point parameterizing the
double conic. For a rigorous proof, we refer the reader to [ADL21, Proposition 6.12],
where the authors prove that the K-moduli of the quartic double solids are isomorphic
to the K-moduli space of K-polystable pairs (X , 1

2 D) which admit a Q-Gorenstein
smoothing to (P3 , 1

2 S) with S ∈ ∣ − KP3 ∣ a smooth quartic K3 surface.
Observe that the degeneration of P2 to P(1, 1, 4) can occur in P(1, 1, 1, 2) (cf.

[ADL19, Theorem 5.14]); thus, there is a canonical choice of the degeneration of the
curves and the bitangent lines, and the multiplicity is well defined. Therefore, we can
apply the same approach as in the degree d = 3, 4 cases, to show that there are no
walls. By interpolation of K-semistability, it suffices to check that the (X , 1

28 ∑E i)
is log canonical, where X is a K-polystable degree quadric del Pezzo surface and
E i ’s are the lines on it. It further reduces to checking that (P2 , 1

2 C + 1
28 ∑ L i) or

(P(1, 1, 4), 1
2 C + 1

28 ∑ L i) is log canonical (cf. [KM98, Proposition 5.20]), where C is
the branched curve and L i ’s are the bitangent lines of it.

The classification of the semistable plane quartics is well known to the experts (cf.
[MFK94]). For the reader’s convenience, we state the result here.

Lemma 4.1 (cf. [HL10, Theorem 2]) Let G = PGL(3) act on the space of plane quartic.
A plane quartic curve C4 ⊆ P2 is:
(i) stable if and only if it has at worst A1 or A2 singularities;

(ii) strictly semistable if and only it is a double conic or has a tacnode. Moreover, C4
belongs to a minimal orbit if and only if it is either a double conic or the union of
two tangent conics, where at least one is smooth.

Remark 4.2 In the case (ii), if both of the (distinct) conics are smooth, then we call it
cateye; if there is a singular one, we call it ox. These are the only two types of polystable
quartics with infinite stabilizers.

4.1 Singularities of plane curves with infinite stabilizers

Let us first compute the log canonical property for the special cases where the quartics
have infinite stabilizers.

Lemma 4.3 The pair (P2 , 1
2 (C2 + C′2) + c ∑ L i) is log canonical for 0 < c < 1

28 , where
C2 and C′2 are two smooth conics tangential at two points p and q.

Proof First, observe that the (P2 , C2 + C′2) is the degeneration (in the Hilbert
scheme) of pairs (P2 , C2(t) + C′2(t))t∈T where the boundary divisors consist of two
smooth conics with a tacnode and two nodes. It follows from [CS03, Section 3.4 case 2]
that the arrangement of the 28 bitangent lines of C2 + C′2 is ∑ L i = 6Lp + 6Lq + 16Lpq ,
where Lp and Lq are tangent lines of the conics at p and q, respectively, and Lpq is the
line connecting p and q. It follows immediately that the coefficients of 1

2 (C2 + C′2) +
c ∑ L i are all smaller than 1.

Take the minimal log resolution of (P2 , 1
2 (C2 + C′2) + c ∑ L i). By symmetry, we

only need to look at the log resolution at q. Let E and F be the exceptional divisors
over q with self-intersection −2 and −1, respectively. Then one has A(E) = 1 − 22c and
A(F) = 1 − 28c, which are positive when 0 < c < 1

28 . ∎
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The ox case is similar.

Lemma 4.4 The pair (P2 , 1
2 (C2 + M1 + M′1) + c ∑ L i) is log canonical for 0 < c < 1

28 ,
where C2 is a smooth conic, and M1 , M′1 are two distinct lines tangential to C2 at two
points p and q, respectively.

Proof First, observe that the (P2 , C2 + M1 + M′1) is the degeneration (in the Hilbert
scheme) of pairs (P2 , C2(t) + M1(t) + M′1(t))t∈T where the boundary divisors consist
of two distinct lines M1(t), M′1(t) and a smooth conic C2(t) tangent to M1(t) at a
point p(t) and meeting M′1(t) transversely. It follows from [CS03, Section 3.4 case
10] that the arrangement of the 28 bitangent lines of C2 + M1 + M′1 is ∑ L i = 6M1 +
6M′1 + 16Lpq , where Lpq is the line connecting p and q. It follows immediately that the
coefficients of 1

2 (C2 + C′2) + c ∑ L i are all smaller than 1.
Taking the minimal log resolution of (P2 , 1

2 (C2 + M1 + M′1) + c ∑ L i). By symme-
try, we only need to look at the log resolution at q. Let E and F be the exceptional
divisors over q with self-intersection −2 and −1, respectively. Then one has A(E) =
1 − 22c and A(F) = 1 − 28c, which are positive when 0 < c < 1

28 . ∎

4.2 Singularities of reducible plane curves with finite stabilizers

Now, we consider the reducible quartics with finite stabilizers.

Proposition 4.5 Let C4 be a reducible quartic curve in P2 with finite stabilizers under
the PGL(3)-action, and let L i ’s be the degeneration on C4 of the 28 bitangent lines of
smooth quartics. Then (P2 , 1

2 C4 + c ∑ L i) is log canonical for 0 ≤ c ≤ 1
28 .

Proof The classification of C4 is listed in [CS03, Section 3.4]. For each class, we can
run the same argument. For simplicity, we only prove the statement for one class where
C4 = M1 + M2 + M3 + M4 is the union of four general lines (forming three pairs of
nodes). In this case, we have that∑ L i = 4(M1 + ⋅ ⋅ ⋅ + M7), where M5 , M6 , M7 are the
lines joining the three pairs of nodes (cf. [CS03, Section 3.4 case 11]). Then the blowup
of the pair (P2 , 1

2 C4 + c ∑ L i) at the six nodes (with exceptional divisors E1 , . . . , E6)
is log smooth. As the boundary divisors 1

2 C4 + c ∑ L i have coefficients less than 1 and
A(P2 , 1

2 C4+c∑ L i)(E i) = 1 − 12c > 0, then the pair we consider is log canonical. ∎

4.3 Singularities of irreducible plane curves with finite stabilizers

Now, we deal with the general case: an irreducible plane quartic C4 with at worst A1
or A2 singularities. We first assume that C4 is irreducible. Then [CS03, Table 3.2 and
Lemma 3.3.1] describe how these bitangent lines degenerate. We claim that all these
curves give log canonical pairs (P2 , 1

2 C4 + c ∑ L i).

Lemma 4.6 The pair (P2 , 1
2 C4 + c ∑ L i) is log canonical for 0 < c < 1

28 , where C4 has
three nodes.

Proof We know from [CS03, Lemma 3.3.1] that the 28 lines degenerate to 4 bitangent
lines of multiplicity 1 not passing through the nodes, 6 tangent lines of multiplicity
2 passing through exactly one node, and 3 lines of multiplicity 4 containing two
nodes. Thus, for each node p, there are 12 lines passing through it, and at most 4
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lines tangential to it. One can blow up at p twice to get a log resolution. We have
A(E) = 1 − 16c > 0 and A(F) ≥ 3

2 − 20c > 0 for 0 < c < 1/28, where E and F are the
two exceptional divisors over p with self-intersection −2 and −1, respectively. The
singularities at other points are milder; thus, (P2 , 1

2 C4 + c ∑ L i) is log canonical as
desired. ∎
Lemma 4.7 The pair (P2 , 1

2 C4 + c ∑ L i) is log canonical for 0 < c < 1
28 , where C4 has

three cusps.

Proof We know from [CS03, Lemma 3.3.1] that the 28 lines degenerate to 4 bitangent
lines of multiplicity 1 not passing through the cusps, and 3 lines of multiplicity 9
containing two cusps. Thus, for each cusp p, there are 18 lines passing through it,
and none of them are tangential to it. One can blow up at p three times to get a
log resolution. Let E , F , G be the exceptional divisors with self-intersection −3,−2,−1,
respectively. We have A(E) = 1 − 18c > 0, A(F) = 3

2 − 18c > 0, and A(G) = 2 − 36c > 0
for 0 < c < 1/28. The singularities at other points are milder; thus, (P2 , 1

2 C4 + c ∑ L i)
is log canonical as desired. ∎
Lemma 4.8 The pair (P2 , 1

2 C4 + c ∑ L i) is log canonical for 0 < c < 1
28 , where C4 has

one node and two cusps.

Proof By [CS03, Lemma 3.3.1], we see that the 28 lines degenerate to 1 bitangent line
of multiplicity 1 not passing through the singularities, 2 tangent lines of multiplicity 3
passing through exactly one cusp, 1 line of multiplicity 9 containing two cusps, and 2
lines of multiplicity 6 passing through one node and one cusp.

Thus, for the node p, there are 12 lines passing through it, and none of them are
tangential to it. One can blow up at p to get a log resolution and the log discrepancy
with respect to the exceptional divisor is 1 − 12c > 0.

For each cusp q, there are 18 lines passing through it, and at most 3 lines tangential
to it. Resolving q by blowing up three times, one gets three exceptional divisors E , F , G
with self-intersection −3,−2,−1, respectively. We have A(E) = 1 − 18c > 0, A(F) ≥ 3

2 −
21c > 0, and A(G) ≥ 2 − 39c > 0 for 0 < c < 1/28. The singularities at other points are
milder; thus, (P2 , 1

2 C4 + c ∑ L i) is log canonical as desired. ∎

Lemma 4.9 The pair (P2 , 1
2 C4 + c ∑ L i) is log canonical for 0 < c < 1

28 , where C4 has
one cusp and two nodes.

Proof By [CS03, Lemma 3.3.1], we see that the 28 lines degenerate to 2 bitangent lines
of multiplicity 1 not passing through the singularities, 2 tangent lines of multiplicity 3
passing through exactly the cusp, 2 tangent lines of multiplicity 2 passing through
exactly one node, 1 line of multiplicity 4 containing two nodes, and 2 lines of
multiplicity 6 passing through one node and one cusp.

Thus, for the cusp p, there are 18 lines passing through it, and at most 6 of
them are tangential to it. Resolving p by blowing up three times, one gets three
exceptional divisors E , F , G with self-intersection −3,−2,−1, respectively. We have
A(E) = 1 − 18c > 0, A(F) ≥ 3

2 − 24c > 0, and A(G) ≥ 2 − 42c > 0 for 0 < c < 1/28.
For each node q, there are 12 lines passing through it, and at most 2 lines tangential

to it. One can blow up at p twice to get a log resolution. We have A(E′) = 1 − 12c >
0 and A(F′) ≥ 3

2 − 14c > 0 for 0 < c < 1/28, where E′ and F′ are the two exceptional
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divisors over p with self-intersection −2 and −1, respectively. The singularities at other
points are milder; thus, (P2 , 1

2 C4 + c ∑ L i) is log canonical as desired. ∎

The other pairs with C4 irreducible have milder singularity than the four types in
the above four lemmas. Applying the same argument to all these pairs, we conclude
the following.

Proposition 4.10 Let C4 be a GIT-semistable plane quartic which is not a double conic.
Then the pair (P2 , 1

2 C4 + c ∑ L i) is log canonical for 0 < c < 1
28 . In particular, these pairs

are K-semistable for 0 < c < 1/28.

4.4 Singularities of curves in P(1, 1, 4)

We first point out an explicit degeneration of P2 to P(1, 1, 4) in P(1, 1, 1, 2). Let
(x0 ∶ x1 ∶ x2 ∶ x3) be the homogeneous coordinate of P(1, 1, 1, 2) and then consider the
hypersurface

X ∶= {(t, (x0 ∶ x1 ∶ x2 ∶ x3)) ∶ t ⋅ x3 = x0x2 − x2
1 } ⊆ A1 × P(1, 1, 1, 2).

The natural projection π ∶ X → A1 gives a special degeneration of P2 to P(1, 1, 4).
Recall that an octic binary form f8(x , y) is GIT-semistable if and only if each of its

zeros has multiplicity at most 4 (cf. [MFK94] Section 4.1). Also, notice that if the point
(x ∶ y ∶ z) is a singularity of the curve C = {z2 = f8(x , y)}, then z = 0 and (x ∶ y) is a
multiple root of f8(x , y).

Let p i be the intersection points of C and {z = 0}, where i = 1, . . . , 8. Another
important observation is that a bitangent line of a plane quartic degenerates under
π to two rulings of P(1, 1, 4), each of which passes through some p i , and there are
(8

2) = 28 pairs in total. Thus, we only need to focus on the vertex p of P(1, 1, 4) and the
singularities of C.

Proposition 4.11 The pair (P(1, 1, 4), 1
2 C + c ∑ L i) is log canonical for 0 < c < 1

28 .

Proof Notice that C does not pass through the vertex p. Let E be the exceptional
divisor of Blp P(1, 1, 4) → P(1, 1, 4). Then A(E) = 1

2 − 14c > 0 for 0 < c < 1
28 .

Suppose that p i = (x ∶ y ∶ 0) is a singular point of C. We may assume that x = 0
and y = 1, and locally the equation of C is z2 = x t , where t ∈ {2, 3, 4}. When t = 4, p i
is a tacnode, and there are 28 lines passing through it. Let F and G be the exceptional
divisors of the minimal resolution of p i with self-intersection −2 and −1, respectively.
Then A(F) = 1 − 28c > 0 and A(G) = 1 − 28c > 0 for 0 < c < 1

28 . This is also true for
the cases t = 2 and t = 3. ∎

To sum up, we conclude the following by the same argument as in Corollary 3.8.

Theorem 4.12 Let MK
2 be the K-moduli space of degree 2 del Pezzo surfaces. Then there

are no walls for the K-moduli stacks MK
2,c , and there is an isomorphism

MK
2,c ≃ MK

2

for any 0 < c < 1
28 .
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5 Discussion on degree 1 case

In this section, we display some examples to show that there exist some walls for MK
1,c

when c varies from 0 to 1
240 . The following result describes the K-polystable del Pezzo

surfaces with at worst ADE singularities. For the analytic description of the K-moduli
space MK

1 , see [OSS16, Section 5].

Proposition 5.1 (cf. [OSS16, Section 6.1.2]) A nodal del Pezzo surface X of degree 1
is K-polystable if and only if it has either only Ak-singularities with k ≤ 7, or exactly
two D4-singularities, and X is not isomorphic to one of the surfaces parameterized by
(a1 ∶ a2) ∈ P1, which are hypersurfaces in P(1, 1, 2, 3) defined by the equations

w2 = a1z3 + z2x2 + zy4 + a2z2 y2 .

5.1 Degree 1 del Pezzo with an A7-singularity

We aim to prove the following statement.

Proposition 5.2 Let Y be a del Pezzo surface of degree 1 with an A7-singularity, and
let L i ’s be the degeneration of the 240 lines. Then the pair (Y , c ∑ L i) is K-unstable for
c ≥ 1

288 .

Proof Let Y be a degree 1 del Pezzo surface with an A7-singularity. Then Y is
obtained by blowing up P2 at eight curvilinear points on a smooth cubic curve
supported at a single point and taking the ample model. Let E1 , . . . , E8 be the eight
exceptional divisor on the blowup Ỹ in the order of blowup, and let H be the class of
the pullback of OP2(1). Then the proper transform to Ỹ of the 240 lines on Y are of
the following types:
(a) E8, intersecting E7, of multiplicity 8;
(b) H − E1 − 2E2 − 2E3 − ⋅ ⋅ ⋅ − 2E8, intersecting E2, of multiplicity 28;
(c) 2H − E1 − 2E2 − 3E3 − 4E4 − 5∑i≥5 E i , intersecting E5, of multiplicity 56;
(d) 3H − 2E1 − 3E2 − ⋅ ⋅ ⋅ − 8E7 − 8E8, intersecting E1 and E7, of multiplicity 56;
(e) 4H − 2E1 − 4E2 − 6E3 −∑i≥4(i + 3)E i , intersecting E3 and E8, of multiplicity 56;
(f) 5H −∑6

i=1 2iE i − 13E7 − 14E8, intersecting E6 and E8, of multiplicity 28;
(g) 6H − 3E1 −∑i≥2(2i + 1)E i , intersecting E1 and intersecting E8 twice, of multi-

plicity 8;
Denote by L i and l i the line and its image on Y of one of the above types, and a i be

the multiplicity of the line L i , where i = 0, 1, . . . , 6 is the coefficient of H in the class.
Let π ∶ Ỹ → Y be the blow-down morphism. Then we have

π∗ l0 = E8 +
7
8

E7 +
6
8

E6 +
5
8

E5 +
4
8

E4 +
3
8

E3 +
2
8

E2 +
1
8

E1 ,

π∗ l1 = L1 +
1
4

E7 +
2
4

E6 +
3
4

E5 +
4
4

E4 +
5
4

E3 +
6
4

E2 +
3
4

E1 ,

π∗ l2 = L2 +
5
8

E7 +
10
8

E6 +
15
8

E5 +
12
8

E4 +
9
8

E3 +
6
8

E2 +
3
8

E1 ,

π∗ l3 = L3 + E7 + E6 + E5 + E4 + E3 + E2 + E1 ,

π∗ l4 = L4 +
3
8

E7 +
6
8

E6 +
9
8

E5 +
12
8

E4 +
15
8

E3 +
10
8

E2 +
5
8

E1 ,
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π∗ l5 = L5 +
3
4

E7 +
6
4

E6 +
5
4

E5 +
4
4

E4 +
3
4

E3 +
2
4

E2 +
1
4

E1 ,

π∗ l6 = L6 +
1
8

E7 +
2
8

E6 +
3
8

E5 +
4
8

E4 +
5
8

E3 +
6
8

E2 +
7
8

E1 .

In particular, one gets that the log discrepancy

A(Y ,c∑ a i L i)(E3) = A(Y ,c∑ a i L i)(E4) = A(Y ,c∑ a i L i)(E5) = 1 − 288c < 0

when 1
288 < c < 1

240 . Thus, there is a wall 0 < c < 1
288 given by the degeneration of such

pairs. ∎

5.2 Degree 1 del Pezzo with two D4-singularities

Proposition 5.3 Let Z be a del Pezzo surface of degree 1 with exactly two D4-
singularities, and let L i ’s be the degeneration of the 240 lines. Then the pair (Z , c ∑ L i)
is K-stable for any 0 < c < 1

240 .

Proof Let Z be a degree 1 del Pezzo surface with exactly D4-singularities. Such
surfaces are weighted hypersurfaces inP(1, 1, 2, 3), and there is a one-parameter family
parameterizing them (cf. [OSS16, Example 5.19]). For us, a description by blowing up
projective plane is more useful, since we need to figure out the degeneration of the 240
lines.

We see that Z can be obtained by blowing up P2 in the following way. Fix four
distinct points p1 , p2 , p3 , p4 on a line L in P2, and another point p ∈ P2/L. Blow up
P2 at p1 along the tangent direction to p with exceptional divisors E1 , F1; at p2 along
the tangent direction to p with exceptional divisors E2 , F2; and at the point p3 with
exceptional divisors E. Finally, blow up the length 3 zero-dimensional curvilinear
subscheme supported on the line pp4 and concentrated at p with exceptional divisors
E3 , F3 , G3 (see Figure 1 for the blowup procedure and Figure 2 for the configuration of
the (−1)-curves and (−2)-curves on Z̃). Denote this surface by Z̃, and the ample model
by Z.

Let H be the class of the pullback of OP2(1). Then the proper transform to Z̃ of the
240 lines on Z are of the following types:
(a) E, of multiplicity 24;
(b) H − E − E3 − F3 − G3, of multiplicity 24;
(c) F1, of multiplicity 64;
(d) F2, of multiplicity 64;
(e) G3, of multiplicity 64.

Notice that the configurations of the curves in Figure 2 are symmetric: the black
curves denote the (−2)-curves and the red lines denote the (−1)-curves. Using the same
computation as in Section 5.1, one sees that the minimal log discrepancy of the pair
(Z , c ∑ a i L i) is 1 − 240c > 0, when 0 < c < 1

240 . Thus, the surfaces with exactly two
D4-singularities do not contribute any wall. ∎

Remark 5.4 Notice that the four points p1 , . . . , p4 on P1 have a cross-ratio. This
also explains why we have a one-dimensional family of surfaces with exactly two D4-
singularities.
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Figure 1: Blowup of P2 to get Z̃.

Figure 2: Configuration of the lines on Z̃.

5.3 Degree 1 del Pezzo with an A8-singularity and two 1
9(1, 2)-singularities

Among all K-polystable degenerations of smooth degree 1 del Pezzo surface, there is
a special one X∞ with an A8-singularity and two 1

9 (1, 2)-singularities. The surface
X∞ can be viewed as a degree 18 hypersurface in P(1, 2, 9, 9) given by the equation
z3z4 = z9

2 , where (z1 ∶ z2 ∶ z3 ∶ z4) is the coordinates of weights 1, 2, 9, 9, respectively.
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Moreover, projecting to P(1, 2, 9) by

(z1 ∶ z2 ∶ z3 ∶ z4) ↦ (z1 ∶ z2 ∶ z3 + z4)

realizes X∞ as a double cover of P(1, 2, 9) branched along the curve C∞ = {v9 = w2},
where (u ∶ v ∶ w) is the coordinate of P(1, 2, 9). In fact, this double cover map is given
by the linear system ∣ − 2KX

∞

∣.
Recall that for a smooth del Pezzo surface Xt of degree 1, the map given by the

linear system ∣ − 2KX t ∣ is a double cover toP(1, 1, 2) ⊆ P3 branched along a sextic curve
Ct . The 240 lines on Xt are sent pairwise to the 120 conics on P(1, 1, 2) obtained by
intersecting the P(1, 1, 2) with the 120 tritangent planes of Ct in P3. See [KRSNS18] for
details.

The degeneration of P(1, 1, 2) to P(1, 2, 9) can be observed in P15: they are embed-
ded intoP15 by the complete linear series ∣O(6)∣ and ∣O(18)∣, respectively. In particular,
the 120 conics degenerate to curves in P(1, 2, 9) of degree 6. Notice that the pair
(P(1, 2, 9), 1

2 C∞) is a T-variety of complexity one: there is a Gm-action given by

λ ⋅ (u ∶ v ∶ w) = (u ∶ λ2v ∶ λ9w).

In particular, each of the 120 sextic curves is Gm-invariant, and hence is defined by
one of the following four equations:

u6 = 0, u4v = 0, u2v2 = 0, v3 = 0.

However, the multiplicity of them is not clear to us. We have the following partial
result.

Proposition 5.5 Let X∞ be the degree 1 del Pezzo surface as above, and let L i ’s be
the 240 lines on it counted with multiplicities. Then the pair (X∞, c ∑ L i) is either
K-polystable for any 0 < c < 1

240 or K-unstable for any 0 < c < 1
240 . Moreover, it is K-

polystable if and only if

ordu=0 (∑ l j) = 240 and ordu=0 (∑ l j) = 240,

where li ’s are the 120 sextic curves in P(1, 2, 9) given by the images of L i ’s.

Proof The main tool here we use is equivariant K-stability (cf. [Zhu21]). Assume
that we are in the case when ordu=0 (∑ l j) = 240 and ordu=0 (∑ l j) = 240. By [LZ22,
Theorem 1.2], it suffices to check the K-stability of the pair (P(1, 2, 9), 1

2 C∞ + c ∑ l i),
which is a T-pair of complexity one. By [ACC+21, Theorem 1.3.9], we only need
to compute the β-invariant of the pair with respect to all Gm-invariant divisors on
P(1, 2, 9) (see also [Zha22, Theorem 2.9] for the statement for pairs). The divisor
{u = 0} is the unique horizontal divisor on X∞. We have that

A(P(1,2,9), 1
2 C
∞
+c∑ l i)({u = 0}) = 1 − 240c

and that

S(P(1,2,9), 1
2 C
∞
+c∑ l i)({u = 0}) = (3 − 720c)

O(1)2 ∫
1

0
O(1 − t)2dt = 1 − 240c,
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and thus β(P(1,2,9), 1
2 C
∞
+c∑ l i)({u = 0}) = 0. For the vertical divisor {v = 0}, we have

that

A(P(1,2,9), 1
2 C
∞
+c∑ l i)({v = 0}) = 1 − 240c

and that

S(P(1,2,9), 1
2 C
∞
+c∑ l i)({v = 0}) = (3 − 720c)

O(1)2 ∫
1
2

0
O(1 − 2t)2dt = 1

2
(1 − 240c).

For other vertical divisors Dt = {v9 = tw2} with λ ∈ C∗, similarly, we have
that β(P(1,2,9), 1

2 C
∞
+c∑ l i)(Dt) > 0. This concludes for the case ordu=0 (∑ l j) =

ordu=0 (∑ l j) = 240. For the other case, the β-invariant for the horizontal divisor
{u = 0} is nonzero when 0 < c < 1

240 , so the pair is K-unstable. ∎
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