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Abstract
Let p : Y → X be a finite, regular cover of finite graphs with associated deck group G, and consider the first homology
H1(Y; C) of the cover as a G-representation. The main contribution of this article is to broaden the correspondence
and dictionary between the representation theory of the deck group G on the one hand and topological properties
of homology classes in H1(Y; C) on the other hand. We do so by studying certain subrepresentations in the G-
representation H1(Y; C).

The homology class of a lift of a primitive element in π1(X) spans an induced subrepresentation in H1(Y; C),
and we show that this property is never sufficient to characterize such homology classes if G is Abelian. We study
Hcomm

1 (Y; C) ≤ H1(Y; C)—the subrepresentation spanned by homology classes of lifts of commutators of primitive
elements in π1(X). Concretely, we prove that the span of such a homology class is isomorphic to the quotient of two
induced representations. Furthermore, we construct examples of finite covers with Hcomm

1 (Y; C) �= ker(p∗).

1. Introduction

We study subrepresentations in the homology of finite covers of finite graphs, viewed as a representation
of the deck group. The subrepresentations we consider arise from homology classes of lifts of closed
curves that have interesting topological properties, for example, being primitive. One goal is to better
understand the connection between topological properties of curves and representation-theoretic prop-
erties of their homology classes. For a finite, regular cover p : Y → X of finite graphs, with associated
deck group G, we know that H1(Y; C) is spanned by a finite set of closed loops. Let n be the rank of the
free group π1(X). For a subset S ⊆ Fn = π1(X), we consider the subrepresentation:

HS
1 (Y; C) := Span

C[G] {[s̃] | s ∈ S} ≤ H1(Y; C),

where s̃, called the preferred elevation of s, is the lift of the smallest power of s such that s̃ is a closed
loop in Y , and

[
s̃
]

its homology class. If S is the set of primitive elements in Fn, that is, loops in X that are
part of a basis of π1(X), we write Hprim

1 (Y; C) for HS
1 (Y; C) and call this subrepresentation the primitive

homology of Y , following Farb and Hensel [3]. In this paper, the authors asked whether Hprim
1 (Y; C) =

H1(Y; C). This question was presumably first asked by Marché for the homology of surfaces with Z-
coefficients, see [8], and later by Looijenga in [7]. Partial results were obtained by Farb and Hensel in
[3], where they showed that in fact equality holds for finite Abelian and 2-step nilpotent groups, the
latter only when n ≥ 3; see [3, Propositions 3.2 and 3.3]. Malestein and Putman gave a complete answer
to this question in [9, Theorem C, Example 1.3]. For every n ≥ 2, they constructed a finite group which
answers the question in the negative.
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A central role is played by the theorem of Gaschütz, see [2] or [5, Theorem 2.1], which identifies the
first homology of Y as a representation of G; namely, we have an isomorphism of G-representations:

H1(Y; C) ∼=Ctriv ⊕C[G]⊕(n−1),

where we denote by Ctriv the trivial one-dimensional representation of G and by C[G] the regular
representation of G.

To obstruct primitive homology from being all of homology, Farb and Hensel used the theorem of
Gaschütz together with the following representation-theoretic property: if l is a primitive loop in X, then
the G-orbit of the homology class of its preferred elevation is linearly independent, in other words

Span
C[G]{[l̃]} ∼= IndG

〈φ(l)〉(Ctriv),

where φ : π1(X) → G is the epimorphism associated with the cover p : Y → X, compare [3,
Proposition 2.1]. From this, we obtain a necessary representation-theoretic condition for a homology
class to be the homology class of a lift of a primitive element. Recall that a homology class in H1(X; Z)
can be represented by a primitive loop in X if and only if it is indivisible. The question arises whether
there is a similar characterization for homology classes of lifts of primitive elements. Our first result
shows that the necessary representation-theoretic property of Farb and Hensel is never sufficient for
regular, Abelian covers.

Theorem 1.1. Let G be the deck group of a finite, regular cover Y → X of finite graphs with rank of
π1(X) at least 2. If G is nontrivial Abelian, then there exists z ∈ H1(Y; Z) indivisible such that

(i) Span
C[G]{z} ∼= IndG

〈g〉(Ctriv) for some g ∈ G, and
(ii) z is not represented by an elevation of a primitive loop in X.

We ask whether Theorem 1.1 also holds for non-Abelian groups.
We extend some of the above questions to other subsets S ⊆ Fn. We consider the subset of primitive

commutators, by which we mean a commutator of the form [w, w′] for w, w′ elements in a common basis
of Fn. Homology classes of elevations of primitive commutators satisfy the following representation-
theoretic property, in analogy to [3, Proposition 2.1] for primitive elements.

Proposition 1.2. Let G be the deck group of a finite, regular cover Y → X of finite graphs with associated
epimorphism φ : π1(X) → G. Let x1, x2 ∈ Fn be two primitive elements that extend to a free basis of Fn. Set
x := [x1, x2], and let K := 〈φ(x)〉 ≤ 〈φ(x1), φ(x2)〉 =: H ≤ G be the subgroups of G generated by φ(x),
respectively, φ(x1) and φ(x2). Then we have the following isomorphism of G-representations:

Span
C[G]{[x̃]} ∼= IndG

K(Ctriv)/IndG
H(Ctriv).

Note that if K ≤ H ≤ G are subgroups, then IndG
H(Ctriv) is a G-subrepresentation of IndG

K(Ctriv). Indeed,
by transitivity of induction it suffices to realize that Ctriv is an H-subrepresentation of IndH

K (Ctriv) using
for example Frobenius reciprocity; compare [10, Chapters 7.1–7.2].

Our next result shows that this representation-theoretic property is not sufficient in the case n = 2.

Proposition 1.3. For n = 2 there exists a finite, regular cover p : Y → X and z ∈ H1(Y; Z) ∩ ker(p∗)
indivisible, where p∗ is the induced map on the associated homology groups, such that

(i) Span
C[G]{z} ∼= IndG

〈g〉(Ctriv)/Ctriv for some g ∈ G, where G is the deck group associated with the
cover p, and

(ii) z cannot be represented by an elevation of a primitive commutator in X.

We turn to the space HS
1 (Y; C) for S the subset of all primitive commutators over all bases of Fn

(not just some fixed one) and write Hcomm
1 (Y; C) ≤ H1(Y; C) for this subrepresentation, the primitive

https://doi.org/10.1017/S0017089523000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000150


584 Xenia Flamm

commutator homology of Y . It is clear that Hcomm
1 (Y; C) ≤ ker(p∗) �= H1(Y; C). One can ask whether

Hcomm
1 (Y; C) = ker(p∗) holds.
To obstruct primitive commutator homology to constitute all of ker(p∗), we introduce the following

notation as in [3, Definition 1.3]. Let Irr(G) be the set of representatives of the pairwise nonisomorphic
irreducible G-representations, and for S ⊆ Fn, let

IrrS(φ, G) ⊆ Irr(G)

be the subset of those irreducible representations V of G that have the property that there is an element
in S whose image has a nonzero fixed point. More precisely, V ∈ IrrS(φ, G) if and only if there exists
an element s ∈ S and 0 �= v ∈ V such that φ(s)(v) = v. If S is the set of primitive elements or primitive
commutators, we write Irrprim(φ, G) or Irrcomm(φ, G), respectively. For a G-representation M and V ∈
Irr(G), we write M(V) for the sum of all subrepresentations of M isomorphic to V and call them the
homogeneous components of M.

Theorem 1.4. Let G be the deck group of a finite, regular cover p : Y → X of finite graphs with associated
epimorphism φ : π1(X) → G. Then,

Hcomm
1 (Y; C) ≤

⊕
V∈Irrcomm(φ,G)\{Ctriv}

M(V),

for M = H1(Y; C).

The argument follows closely the one of [3, Theorem 1.4]. The main ingredient of the proof of this
theorem is Proposition 1.2. The theorem implies that whenever a group G together with an epimorphism
φ : Fn → G satisfies Irrcomm(φ, G) �= Irr(G), we conclude by the theorem of Gaschütz that Hcomm

1 (Y; C) �=
ker(p∗). We will give an example of a group with this property in the case n = 2. In fact, even more is
true.

Theorem 1.5. For every n ≥ 2 there exists a finite, regular cover p : Z → X such that Hcomm
1 (Z; C) �=

ker(p∗).

The proof of this theorem relies on the result of Malestein and Putman on primitive homology; see
[9, Theorem C, Example 1.3].

Organization

The paper is organized as follows. Section 2 is solely concerned with homology classes of elevations of
primitive elements. We will introduce the important results and finish by giving a proof of Theorem 1.1.
In Section 3, we will prove a necessary representation-theoretic property of homology classes of ele-
vations of primitive commutators (Proposition 1.2), but which is not sufficient to characterize those
homology classes; see Proposition 1.3. In Section 4, we study the primitive commutator homology,
and we will prove Theorem 1.4. We will discuss how primitive homology and primitive commutator
homology relate, which will be essential in the proof of Theorem 1.5.

2. Homology classes of elevations of primitive elements

Let n ∈N, n ≥ 2, a finite group G and a surjective homomorphism φ : Fn → G, where Fn = F〈x1, . . . , xn〉
is the free group on n generators. Let X be the wedge of n copies of S1 with vertex x0. Then we
can associate with φ a finite regular path-connected cover p : Y → X with base point y0 ∈ p−1(x0) and
p∗(π1(Y , y0)) = ker(φ). Under these assumptions, we have G ∼= Fn/ ker(φ) ∼= π1(X, x0)/p∗(π1(Y , y0)) and
G acts on Y by graph automorphisms. This action extends to a linear action of G on the finite-dimensional
C-vector space H1(Y; C).
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Recall that we call an element of a free (Abelian) group primitive if it is part of a free basis. An element
of a free Abelian group is primitive if and only if it is indivisible, that means it cannot be written as a
nontrivial multiple of some other element. Being indivisible is equivalent to the coefficient vector with
respect to a basis having greatest common divisor one. A primitive element in Fn has a primitive image
under the quotient map to Zn. On the other hand, every primitive element in Zn has a primitive preimage
in Fn.

Definition 2.1. For an element l ∈ Fn, let k(l) be the minimal number such that lk(l) ∈ ker(φ). The
preferred elevation l̃ of l is the lift of lk(l) to Y at the base point y0. Lifts of lk(l) at other preimages of
x0 are just called elevations. Unless clear from context we write l̃p, where p : Y → X is the covering map,
to specify which cover we are lifting to.

Note that k(l) is finite for all l ∈ Fn, since G is finite. By the regularity of the cover, we obtain all
elevations of l by applying the elements of G to the preferred elevation l̃. We can view l̃ as an element
in π1(Y , y0), where it will also be called l̃. Its homology class is denoted by square brackets [l̃]. It is
straightforward to verify that elevations of primitive elements are primitive.

For a cover p : Y → X we denote by p∗ the induced morphisms on the level of fundamental groups and
homology groups. Since Y is finite, we have the transfer map p# : C•(X) → C•(Y), x �→∑

x̃ lift of x x̃. The
map p# commutes with the differential operators and thus induces a map on homology, which will also
be denoted by p#. We have p∗ ◦ p# = |G| · id, which in particular implies that p∗ : H1(Y; C) → H1(X; C)
is surjective and p# : H1(X; C) → H1(Y; C) is injective.

For l ∈ Fn, we observe that p∗([l̃]) = |φ(l)| · [l] ∈ H1(X; Z), since k(l) = |φ(l)|. If G is Abelian, and
φ̃ : Zn → G denotes the homomorphism obtained from φ which factors through Zn then

φ(l) = φ̃([l])= φ̃

(
p∗([l̃])

|φ(l)|

)
. (1)

We summarize the general setup of this article in the following diagram, which can be consulted at
every point.

Y Fm = π1(Y ) Zm = H1(Y ;Z) H1(Y ;C) = Cm

X Fn = π1(X) Zn = H1(X;Z) H1(X;C) = Cn

G GAb

p

Ab

p∗

−⊗ZC

p∗ p∗

Ab

φ

−⊗ZC

p#

φ̃

p#

Ab

In the rest of this section, we will show that the property given in [3, Proposition 2.1] is not sufficient
to characterize elevations of primitive elements. We recall the statement here.

Proposition 2.2 (Farb–Hensel). Let G be the deck group of a finite, regular cover p : Y → X of finite
graphs with associated epimorphism φ : π1(X) → G. Let l be a primitive loop in X and let l̃ be its pre-
ferred elevation in Y . We set z := [l̃] and g := φ(l). Then there is an isomorphism of G-representations:

Span
C[G] {z} ∼= IndG

〈g〉(Ctriv).

Note that this proposition contains two statements. First, it says that the G-orbit of an elevation of a
primitive element isC-linearly independent. Secondly, it tells us that the subgroup over which we induce
is related to the primitive element l we started with. It is cyclic and generated by φ(l). If G is Abelian,
this allows us to relate z and φ(l), see equation (2.1)—a fact which will be exploited in the proof of
Theorem 1.1 to verify the insufficiency of this property.

Let V1 =Ctriv, . . . , Vk(G) be representatives of the isomorphism classes of the irreducible G-
representations, where k(G) is the number of nonisomorphic irreducible G-representations. If M is
a G-representation, we write M(Vi) for the sum of all subrepresentations of M isomorphic to Vi and
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call them the homogeneous components of M. Recall that if M =C[G], then M(Vi) ∼= V⊕ dim (Vi)
i for

all 1 ≤ i ≤ k(G), compare for example [6, Chapter 2]. The following lemma follows directly from the
theorem of Gaschütz.

Lemma 2.3. Let M = H1(Y; C). In the above setting, the following properties hold:

(a) p#(H1(X; C)) ∼= M(V1).
(b) ker(p∗) ∼=⊕k(G)

i=2 M(Vi).

Together we obtain H1(Y; C) = p#(H1(X; C)) ⊕ ker(p∗).

Proof.

(i) The group G acts trivially on p#(H1(X; C)), since an element of the deck group permutes lifts.
Hence, p#(H1(X; C)) ≤ M(V1). Since p# is injective as a map on homology, we obtain equality
by the theorem of Gaschütz and dimensionality reasons.

(ii) This follows from the theorem of Gaschütz and the fact that the map p∗ : H1(Y; C) → H1(X; C)
is surjective. Indeed, we have

M(V1) ∼=Cn ∼= H1(X; C) = im(p∗) ∼= M/ ker(p∗),

as C[G]-modules, where G acts trivially on H1(X; C), so ker(p∗) does not have simple
submodules isomorphic to V1. For dimensionality reasons, we obtain ker(p∗) ∼=⊕k(G)

i=2 M(Vi).

Let x ∈ H1(X; C) with p#(x) ∈ ker(p∗). Then p∗(p#(x)) = |G|x = 0, and hence x = 0. Thus, ker(p∗) ∩
im(p#) = {0}.

Before we prove our first result, we state the following lemma about induced representations.

Lemma 2.4. Let G be a finite group and M a representation of G over C. Assume there exists 0 �= m ∈ M
such that Gm is linearly independent. Let H := StabG(m). Then,

Span
C[G]{m} ∼= IndG

H(Ctriv).

Proof. Choose representatives g1 = 1, g2, . . . , g[G:H] for the left cosets of H in G. For all g ∈ G, g
can be uniquely written as g = gih for some 1 ≤ i ≤ [G : H] and h ∈ H. We then have gm = gihm = gim,
since h ∈ StabG(m). Also note that if gim = gjm, then g−1

j gi ∈ H, so gi ∈ gjH which implies i = j. Thus,
g1m, . . . , g[G:H]m is a basis for Span

C[G]{m}. By construction, IndG
H(Ctriv) = U1 ⊕ . . .⊕ U[G:H] as C[H]-

modules with U1 =Ctriv asC[H]-module, and Ui = giU1. Let u1 ∈ U1 \ {0}. Then U1 = 〈u1〉 and thus Ui =
〈giu1〉 for all 1 ≤ i ≤ [G : H]. Define ϕ : Span

C[G]{m} → IndG
H(Ctriv), gim �→ giu1, and C-linear extension.

This is an isomorphism of C[G]-modules.

We are now ready to prove our first result.

Proof of Theorem 1.1. Recall that we would like to prove that if G is the deck group of a finite, regular
cover Y → X of finite graphs with rank of π1(X) at least two, and G is nontrivial Abelian, then there exists
an indivisible homology class z ∈ H1(Y; Z) such that

(i) Span
C[G]{z} ∼= IndG

〈g〉(Ctriv) for some g ∈ G, and
(ii) z is not represented by an elevation of a primitive loop in X.

The proof has two parts: first, we construct an indivisible homology class z ∈ H1(Y; Z) starting from
two homology classes of elevations of primitive elements. Second, we verify that z indeed satisfies
conditions (i) and (ii).
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Claim. There are primitive loops l′, l′ ′ in X with 〈φ(l′)〉 ∩ 〈φ(l′ ′)〉 = {1} and 〈φ(l′)〉 �= {1}.
We will now prove the claim. Since G is Abelian, the map φ factors through Zn, so we obtain a sur-

jective homomorphism φ̃ : Zn → G of Abelian groups. By the invariant factor decomposition of finitely
generated modules (refer e.g. to [1, Chapter 2.9, Theorem 2]) the statement is clear for φ̃ because G is
nontrivial and n ≥ 2. Since the Abelianization Fn →Zn has the property that every primitive element in
Zn has a primitive preimage, the claim is proven.

Choose l′, l′ ′ primitive loops in X that satisfy the above claim. To simplify notation, we set g′ := φ(l′)
and g′ ′ := φ(l′ ′) ∈ G. We consider the homology classes z′ = [l̃′] and z′ ′ = [l̃′ ′] ∈ H1(Y; Z) of the preferred
elevations l̃′ and l̃′ ′ of the two primitive loops l′ and l′ ′, respectively. The elements z′ and z′ ′ will be used
to build our desired homology class z. Write z′ = z′

1 + z′
2 + . . .+ z′|G| and z′ ′ = z′ ′

1 + z′ ′
2 + . . .+ z′ ′|G| for the

decomposition into the homogeneous components, that is, z′
i, z′ ′

i ∈ M(Vi) for i ≤ 1 ≤ |G|. By the theorem
of Gaschütz, we have z′

1, z′ ′
1 ∈ V⊕n

1 and z′
i, z′ ′

i ∈ V⊕(n−1)
i for 2 ≤ i ≤ |G|.

We claim that z′
1 ∈ H1(Y; Q). Indeed, by Lemma 2.3(a), we know that there exists x ∈ H1(X; C) such

that z′
1 = p#(x), and |G| x = p∗ ◦ p#(x) = p∗(z′

1) = p∗(z′) ∈ H1(X; Z), using that z′
2, . . . , z′|G| ∈ ker(p∗); see

(b) in the same lemma. Thus, |G| z′
1 = p#(|G| x) ∈ H1(Y; Z). By the same argument z′ ′

1 ∈ H1(Y; Q).
Define b := z′ ′

1 − z′
1 ∈ V⊕n

1 and set

ẑ := z′ + b ∈ H1(Y; Q).

Let q ∈Q such that z := qẑ ∈ H1(Y; Z) is indivisible. This will be our candidate homology class.
We come to the second part of the proof. First, we verify that (i) holds for z. For this we need to

show that the projection of ẑ to M(V1), namely z′ ′
1, is nontrivial. Assuming this, it is a straightforward

computation that StabG(ẑ) = StabG(z′) = 〈g′〉, and that the G-orbit of ẑ is linearly independent over C,
since this is true for z′. Now (i) follows from Lemma 2.4 with

Span
C[G]{z} = Span

C[G]{ẑ} ∼= IndG
〈g′〉(Ctriv). (2)

To show that z′ ′
1 �= 0, we will argue by contradiction. In fact, if z′ ′

1 = 0, Lemma 2.3(b) implies that 0 =
p∗(z′ ′

1) = p∗(z′ ′) = |g′ ′|[l′′], where the last equality holds since z′ ′ is the homology class of the preferred
elevation of l′ ′. Thus, [l′ ′] = 0 which contradicts the fact that l′ ′ is primitive.

To verify (ii), we clearly need that b �= 0 because otherwise z = z′. Assume for a contradiction that
b = 0, or equivalently z′

1 = z′ ′
1. By Lemma 2.3(b), it follows that p∗(z′) = p∗(z′ ′), and thus |g′|[l′] =

|g′ ′|[l′ ′] ∈ H1(X; Z). Since [l′] and [l′ ′] are indivisible integral homology classes, they are equal. As G is
Abelian, we have g′ = φ̃([l′]) = φ̃([l′′]) = g′ ′ by equation (2.1), which contradicts the choice of l′ and l′ ′.

Knowing that b �= 0, assume now toward a contradiction that z is the homology class of an elevation
of a primitive element l in X. By Proposition 2.2, we have Span

C[G]{z} ∼= IndG
〈φ(l)〉(Ctriv). On the other hand,

by equation (2.2), we have

IndG
〈g〉(Ctriv) ∼= IndG

〈g′〉(Ctriv),

with g := φ(l). Now G Abelian implies that 〈g〉 = 〈g′〉, since representations of finite groups over C
are determined by their characters and there is an explicit formula for the character of an induced
representation; compare [6, Chapter 5]. Further, we compute

|g|[l] = p∗(z) = q p∗(ẑ) = q p∗(z′ ′
1) = q p∗(z′ ′) = q|g′ ′|[l′ ′] ∈ H1(X; Z).

Again by the indivisibility of the integral homology classes [l] and [l′ ′], we conclude that they are equal.
Since G is Abelian, we obtain g = g′ ′ again by equation (2.1). This contradicts the fact that 〈g′〉 ∩ 〈g′ ′〉 =
{1} and 〈g′〉 �= {1}.

In fact, a slightly stronger result can be verified using the same techniques as in the proof of the above
proposition.

Corollary 2.5. Let z ∈ H1(Y; Z) be the element constructed in the proof of Theorem 1.1. Then there is
no element in Span

C[G]{z} which is the homology class of an elevation of a primitive loop in X.
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Proof. Assume there exists z∗ ∈ Span
C[G]{z} ∩ H1(Y; Z) indivisible with [l̃∗] = z∗ for l∗ ∈ Fn primi-

tive. Then Span
C[G]{z∗} ∼= IndG

〈g∗〉(Ctriv) with g∗ := φ(l∗) ∈ G by Proposition 2.2. We also have there exist
α1, . . . , α|G| ∈C such that z∗ =∑|G|

i=1 αigiz for gi ∈ G. Thus,

p∗(z∗) =
|G|∑
i=1

αip∗(giz) =
( |G|∑

i=1

αi

)
︸ ︷︷ ︸

:=A

p∗(z),

since G acts as homeomorphisms of the covering space which preserve the projection map p. Then
A ∈Q since both p∗(z∗), p∗(z) are in H1(X; Z). Putting everything together, we obtain

|g∗|[l∗] = p∗(z∗) = Aq p∗(ẑ) = Aq p∗(z′ ′) = Aq|g′ ′|[l′′].
Since both [l∗] and [l′ ′] are integral indivisible homology classes, they are equal, and thus g∗ = g′ ′ again
by equation (2.1). Recall that StabG(z) = 〈g′〉. We claim that G Abelian implies that StabG(z) ≤ StabG(z∗)
and StabG(z∗) = 〈g∗〉. Indeed for g ∈ StabG(z), we have

gz∗ =
|G|∑
i=1

αiggiz =
|G|∑
i=1

αigigz =
|G|∑
i=1

αigiz = z∗,

which proves the first part of the claim. For the second part of the claim, we observe that if v1, . . . , v[G:〈g∗〉]
is a C-basis for Span

C[G]{z∗} ∼= IndG
〈g∗〉(Ctriv) which gets permuted transitively by G and for which

StabG(v1) = 〈g∗〉, then StabG(vk) = 〈g∗〉 for all k = 2, . . . , [G : 〈g∗〉], and hence StabG(z∗) ≤ 〈g∗〉. By a
dimension argument, we obtain equality. Thus, we obtain that 〈g′〉 = StabG(z) ≤ StabG(z∗) = 〈g∗〉 = 〈g′ ′〉,
which contradicts the choice of l′ and l′ ′ in the proof of Theorem 1.1.

3. Homology classes of elevations of primitive commutators

We begin this section by giving a proof of Proposition 1.2, which gives a necessary representation-
theoretic property of homology classes of elevations of primitive commutators.

Proof of Proposition 1.2. Recall that we would like to prove that if x1 and x2 extend to a free basis of
Fn and x12 := [x1, x2], then

Span
C[G]{[x̃12]} ∼= IndG

K(Ctriv)/IndG
H(Ctriv),

where K := 〈φ(x12)〉 ≤ 〈φ(x1), φ(x2)〉 =: H ≤ G.
Choose a base point preserving homotopy equivalence from X to the wedge of n circles that maps x1

and x2 to two of the circles. Then there exists a unique (up to base point preserving homeomorphism that
commutes with the covering map) finite regular cover of the wedge of n circles such that the homotopy
equivalence lifts to a homotopy equivalence of the corresponding covers and preserves base points.
Since homotopy equivalences induce isomorphisms on the level of fundamental and homology groups,
we can without loss of generality assume that X is a wedge of n circles, x1 and x2 are two of those circles
and that Y is a cover of this space.

The proof now consists of two parts. First, we reduce to the case n = 2, where the statement
simplifies to

Span
C[G]{[x̃12]} ∼= IndG

K(Ctriv)/Ctriv,

since H = G. Second, we use surface topology to prove the claim in this special case. We start by
reducing to the case n = 2.

Let X1 be the union of the two circles x1 and x2. Define Y1 as the component of p−1(X1) that contains
the base point y0. Now choose representatives for the left cosets of H in G, say g1 = 1, . . . , g[G:H] and
set Yi := giY1 for 1 ≤ i ≤ [G : H]. These are pairwise disjoint subgraphs of Y , since the vertices of Y
correspond to the group elements and every group element is contained in exactly one Yi. It is easy
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to see that I :
⊕[G:H]

i=1 H1(Yi; C) ↪→ H1(Y; C) is injective, where I is induced by the inclusions of the
subgraphs into Y; see for example [4, Claim 2.4]. Note that I is a morphism of G-representations, since
the action of G on the direct sum is given by permuting the summands according to the permutation of
the subgraphs Yi. Now set v := [x̃12]. By definition of Y1, we have v ∈ H1(Y1; C) and, for every h ∈ H,
we have hv ∈ H1(Y1; C). For g ∈ G write g = gjh for some 1 ≤ j ≤ [G : H] and h ∈ H. Thus, gv = gjhv ∈
H1(gjY1; C) = H1(Yj; C). We know that Span

C[G]{v} =∑[G:H]
i=1 gi Span

C[H]{v}, and, since I is injective, we
conclude that this sum is in fact direct. Hence,

Span
C[G]{v} ∼= IndG

H(Span
C[H]{v}).

Proposition 1.2 in the case n = 2 applies to H since it is generated by two elements, and we obtain that
Span

C[H]{v} ∼= IndH
K (Ctriv)/Ctriv. By the exactness of induction (see e.g. [10, Chapter 7.1]), it then follows

that

Span
C[G]{v} ∼= IndG

K(Ctriv)/IndG
H(Ctriv).

Thus, without loss of generality, we can assume that n = 2 and G = H. To prove the proposition in
this case, we use surface topology. We would like to show that Span

C[G]{[x̃12]} ∼= IndG
K(Ctriv)/Ctriv. We

identify F2 with the fundamental group of the torus with one boundary component T and base point
t0 ∈ ∂T , with generators x1 and x2 represented by the simple closed curves as in the image below.

Then, x := x12 = [x1, x2] is represented by α = ∂T . We have a group homomorphism φ : π1(T) ∼=
F2 → G, and we can associate with ker(φ) a finite, regular, path-connected cover q : S → T with base
point s0 ∈ q−1(t0) and q∗(π1(S, s0)) = ker(φ). Note that S is again an orientable surface with ∂S =
q−1(∂T) = q−1(α) = α1 ∪ . . .∪ αm. The surface S is homotopy-equivalent to Y . For i = 1, . . . , m let
[αi] ∈ H1(S; C) be the homology class represented by αi and [∂S] := ∑m

i=1 [αi] ∈ H1(S; C) the homol-
ogy class represented by ∂S. Denote by C[αi] and C[∂S] their respective C-spans. Let

⊕m
i=1 C[αi] be the

m-dimensional G-representation, where G acts by permuting the homology classes [αi]. We then have
the following short exact sequence of G-representations:

0 →C[∂S]
ψ−→

m⊕
i=1

C[αi]
ϕ−→ SpanH1(S;C){[α1], . . . , [αm]} → 0,

where the map ψ is given by z �→ (z, . . . , z), and ϕ sends (z1, . . . , zm) to
∑m

i=1 zi[αi]. One can verify that
ψ and ϕ are G-equivariant. The exactness follows, for example, from the exactness of the long exact
sequence of the pair (S, ∂S).

Recall that we are interested in understanding SpanH1(S;C){[α1], . . . , [αm]}. Using the short exact
sequence, it is enough to understand

⊕m
i=1 C[αi] and C[∂S] as G-representations. Let us assume without

loss of generality that α1 contains the base point s0 ∈ S. Then,

StabG(α1) = 〈φ(x)〉 = K ≤ G,

since α is simple. The curves α1, . . . , αm are the elevations of α, and G permutes these. Hence, we can
identify the curves α2, . . . , αm with the left cosets of K in G, because K is the stabilizer of α1. Choose
representatives g1 = 1G, g2, . . . , gm ∈ G of the left cosets of K in G. Then,

m⊕
i=1

C[αi] =
m⊕

i=1

Cgi[α1] ∼= IndG
K(Ctriv)
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as G-representations by the defining property of the induced representation. Clearly, G acts trivially on
[∂S]. Thus, we have proved the proposition, since by the exactness of the short exact sequence above we
have

SpanH1(S;C){[α1], . . . , [αm]} = Span
C[G]{[α1]} ∼= IndG

K(Ctriv)/Ctriv.

It turns out that the above representation-theoretic property is in general not sufficient to charac-
terize homology classes of elevations of primitive commutators. A counterexample for n = 2 will be
given in Proposition 1.3, whose construction is based on the idea of stacking covers and the proof of
Theorem 1.1. We need some preliminary considerations.

For a group G, a subgroup H ≤ G is characteristic if it is invariant under every automorphism of G,
that is, for all ϕ ∈ Aut(G) we have ϕ(H) ⊆ H. If we have a sequence of subgroups of the form K �char

H � G with K characteristic in H and H normal in G, then K is also normal in G.

Example 3.1. For all n, m ≥ 2 the mod m-homology cover is a characteristic cover of the wedge of n
circles. Recall that the mod m-homology cover is given by the surjective group homomorphism:

φ : Fn → Fn/[Fn, Fn] ∼=Zn mod m−−→ (Z/mZ)n.

It suffices to verify that ker(φ) is characteristic in Fn. Let α ∈ Aut(Fn). Since ker(φ) = 〈[x, y], zm | x, y, z ∈
Fn〉, we conclude that α(ker(φ)) ⊆ ker(φ), and hence that the cover is characteristic.

The mod 2-homology cover has the additional property that all primitive commutators lift to primitive
elements.

Lemma 3.2. Let φ : F2 → (Z/2Z)2 be the mod 2-homology cover as in Example 3.1. Then for x := [l, l′]
any primitive commutator in F2 with l �= l′, its preferred elevation is primitive.

Proof. We denote by p : (Y , y0) → (X, x0) the associated finite, characteristic cover, where (X, x0) is
the wedge of two circles and x0 the point of identification. Let x1 and x2 be generators of the fundamental
groups of the two circles. We will show the claim for x := [x1, x2] first. Then, φ(x) = 0 and thus x lifts
to a closed curve on Y illustrated by the dotted lines.

x0

y0

x1

x2

x1

x2

x2

x1

x2

x1 p x2x1
x

We need to extend x to a free basis of π1(Y , y0). For example,

{x, x2
1, x2

2, x2x2
1x−1

2 , x2x1x2x−1
1 }

is a free basis of π1(Y , y0). Namely, consider the spanning tree illustrated by the bold lines in the above
figure.

For x′ any primitive commutator, we use that there exists a homotopy equivalence of X that sends x′

to x, since the primitive elements defining x′ form a basis of F2. Since the cover is characteristic, this
homotopy equivalence can be lifted to Y , and the same argument works.

There is one last remark before we prove Proposition 1.3. If p : Z → X and q : Y → Z are finite, regular
covers with base points z0 ∈ p−1(x0) and y0 ∈ q−1(z0), respectively, such that p ◦ q : Y → X is a finite,
regular cover, then for l any loop on X, we have by the uniqueness of lifts and the choice of base points
that

l̃p◦q = (̃l̃p)q.
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Proof of Proposition 1.3. Recall that for n = 2, we would like to prove the existence of a finite, regular
cover p : Y → X, together with z ∈ H1(Y; Z) ∩ ker(p∗) indivisible such that

(i) Span
C[G]{z} ∼= IndG

〈g〉(Ctriv)/Ctriv for some g ∈ G, where G is the deck group associated with the
cover p, and

(ii) z cannot be represented by an elevation of a primitive commutator in X.

We will construct Y using iterated covers. Letπ1(X) ∼= F2 be the free group on the generators x1 and x2.
Consider the primitive commutators x′ := [x1, x2], x′ ′ := [x−1

2 , x1]. We start with the mod 2-homology
cover p1 : Z → X defined by the surjective homomorphism:

F2 → Q := (Z/2Z)2 = 〈A〉 × 〈B〉, x1 �→ A, x2 �→ B.

Then l′ := x̃′ and l′ ′ := x̃′ ′ are primitive in π1(Z) by Lemma 3.2. We additionally have that l′ and l′ ′ lie in
one basis. For example, the elements x2

1, x2
2 and x2x2

1x−1
2 complete l′ and l′ ′ to a basis of π1(Z) ∼= F5, using

the same notation as in the proof of Lemma 3.2.
Consider now the mod 2-homology cover p2 : Y → Z defined by the surjection:

F5 → N := (Z/2Z)5 = 〈C〉 × 〈D〉 × 〈N1〉 × 〈N2〉 × 〈N3〉, l′ �→ C, l′ ′ �→ D

and extension. Then p := p1 ◦ p2 : Y → X is a finite, regular cover because p2 is characteristic,
and we denote its deck group by G. We have the following short exact sequence of groups
1 → N → G → Q → 1. Since 0 = [x′] = [x′ ′] ∈ H1(X; Z), it follows that

z′ :=
[
x̃′

p = l̃′p2

]
, z′ ′ :=

[
x̃′ ′

p = l̃′ ′p2

]
∈ ker(p∗).

We write z′ = z′
1 + . . .+ z′

25 and z′ ′ = z′ ′
1 + . . .+ z′ ′

25 with z′
i, z′ ′

i ∈ M(Wi), where W1 =Ctriv, W2, . . . , W25

are representatives of the isomorphism classes of the irreducible representations of N. Define ẑ := z′ −
(z′

1 − z′ ′
1). Then, ẑ still lies in the kernel of p∗: Indeed, since (p2)∗(z′) = (p2)∗(z′ ′

1) we have
(p2)∗(ẑ) = (p2)∗(z′ − (z′

1 − z′ ′
1)) = (p2)∗(z′ ′

1) = (p2)∗(z′ ′),

and consequently, p∗(ẑ) = (p1)∗((p2)∗(ẑ)) = (p1)∗((p2)∗(z′ ′)) = p∗(z′ ′) = 0, since z′ ′ ∈ ker(p∗).
By the same argument as in the proof of Theorem 1.1, ẑ ∈ H1(Y; Q) and we can choose q ∈Q such

that z := qẑ ∈ ker(p∗) ≤ H1(Y; Z) is indivisible. Using that N is Abelian, we can now copy the same idea
as in the proof of Theorem 1.1 to obtain that z is not the homology class of an elevation of a primitive
element in Z and thus also not the homology class of an elevation of a primitive commutator in X by
Lemma 3.2.

4. Primitive commutator homology

The first step in attacking the question whether Hcomm
1 (Y; C) = ker(p∗) is the obstruction in Theorem 1.4.

We adapt the ideas of the proof of [3, Theorem 1.4].

Proof of Theorem 1.4. We would like to prove that if V is an irreducible G-representation that
appears in Hcomm

1 (Y; C), then V ∈ Irrcomm(φ, G) \ {Ctriv}. Since Hcomm
1 (Y; C) ≤ ker(p∗) ∼=⊕k(G)

i=2 M(Vi) by
Lemma 2.3(b), it is clear that V �=Ctriv.

Let x = [l, l′] be a primitive commutator in Fn, and set K := 〈φ(x)〉 ≤ 〈φ(l), φ(l′)〉 =: H ≤ G. Let V be
an irreducible G-representation. Then writing VK = {v ∈ V : gv = v for all g ∈ K} for the space of fixed
points of K, Proposition 1.2 and Frobenius reciprocity (see e.g. [6, Lemma 5.2]) imply that

〈Span
C[G]{[x̃]}, V〉G ≤ 〈IndG

K(Ctriv), V〉G = 〈Ctriv, ResG
K(V)〉K = dim(VK),

where the last equality follows from the orthogonality relations.
An irreducible representation V appears in Hcomm

1 (Y; C) if and only if there exists a primitive
commutator x = [l, l′] in Fn such that

〈Span
C[G]{[x̃]}, V〉G �= 0.
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By the above, this implies dim(VK) �= 0, which is equivalent to the existence of some nonzero v ∈ V
with φ(x)(v) = v. Thus, for V to appear in Span

C[G]{[x̃]}, we necessarily need V ∈ Irrcomm(φ, G).

We will continue by studying Hcomm
1 (Y; C) in some examples. If n = 2 and G is Abelian, we have

φ(x12) = 1G and we obtain by the semisimplicity of M = H1(Y; C) that

Span
C[G]{[x̃12]} ∼= IndG

{1G}(Ctriv)/Ctriv
∼=C[G]/Ctriv

∼=
|G|⊕
i=2

M(Vi).

This implies that Span
C[G]{[x̃12]} ∼= ker(p∗) by Lemma 2.3(b), and therefore Hcomm

1 (Y; C) = ker(p∗).
On the other hand, there are examples in rank 2 with Hcomm

1 (Y; C) �= ker(p∗), since not every irre-
ducible representation has the property that the image of a primitive commutator has a nonzero fixed
point, in other words Irrcomm(φ, G) �= Irr(G).

Example 4.1. For n = 2 any surjective homomorphism φ : F2 → S3, where S3 denotes the symmetric
group on three elements, satisfies Irrcomm(φ, S3) �= Irr(S3). In fact, the irreducible two-dimensional rep-
resentation of S3 does not lie in Irrcomm(φ, S3). It can be realized by S3 acting on V := C3/〈e1 + e2 + e3〉
by permutation of the coordinates. Since φ is surjective, the image of a primitive commutator is either
the cycle (123) or (132). Computing the action of (123) on V , we see that one is not an eigenvalue, so
(123) does not have a fixed vector. Similarly for (132). Thus, V /∈ Irrcomm(φ, S3).

A more general answer to this question is presented in the following for every n ≥ 2. To see that there
are examples where Hcomm

1 (Y; C) �= ker(p∗) for certain covers p : Y → X, we use iterated covers to relate
the question to the one for primitive homology. Note that in general the composition of two regular covers
is not again regular, but every finite, regular cover is itself covered by a finite, characteristic cover. This
is true by the following observation: if G is a finitely generated group and H � G a normal subgroup
of finite index k, then there is a subgroup H∗ ≤ H which is of finite index in G and characteristic in G.
Namely, we can take H∗ := ⋂

H′�G normal, [G:H′]=k H′.
In order to prove that in general Hcomm

1 �= ker(p∗), we reduce the case of primitive commutator homol-
ogy to the case of primitive homology by looking at the mod 2-homology cover. The proof of Lemma 3.2
can be generalized to show that for every n, the mod 2-homology cover as in Example 3.1 has the prop-
erty that primitive commutators lift to primitive elements. Then, we can apply the result of Malestein
and Putman in [9, Example 1.3] to conclude. For this, we need to understand how primitive homology
behaves in iterated covers. To avoid confusion, we introduce the following notation: if Y → X is a finite,
regular cover of finite graphs, we will from now on write HS

1 (Y → X; C) instead of HS
1 (Y; C).

Lemma 4.2. Let q : Z → Y and p : Y → X be finite, regular covers of finite graphs such that p ◦ q : Z → X
is a finite, regular cover. Then

q∗(Hprim
1 (Z → X; C)) ⊆ Hprim

1 (Y → X; C).

In other words, primitive homology gets mapped into primitive homology.

Proof. For l a primitive element in π1(X), we have for some k ∈Z

q∗
([

l̃p◦q

])
= k

[
l̃p

]
∈ Hprim

1 (Y → X; C).
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Corollary 4.3. Let the setup be as in Lemma 4.2 with the condition that Hprim
1 (Y → X; C) �= H1(Y; C) as

K-representations where K := Deck(Y , p). Then,

Hprim
1 (Z → X; C) �= H1(Z; C)

as G-representations with G := Deck(Z, p ◦ q).

Proof. This is straightforward using that q∗ : H1(Z; C) → H1(Y; C) is surjective.

The last corollary implies that we can assume without loss of generality that the cover constructed by
Malestein and Putman in [9, Example 1.3] is characteristic by passing to a finite, characteristic cover,
which will satisfy that primitive homology is not all of homology. We bring everything together in the
following proof.

Proof of Theorem 1.5. Recall that for every n ≥ 2 we would like to construct a finite, regular cover
p : Z → X such that Hcomm

1 (Z → X; C) �= ker(p∗).
Let p′ : Y → X be the mod 2-homology cover with group of deck transformations K = (Z/2Z)n. By

Example 3.1, we know that this cover is characteristic. Lemma 3.2 tells us that all primitive commutators
in X lift to primitive elements in Y . The space Y is again a connected graph with free fundamental group,
so we can apply the result of Malestein and Putman, see [9, Theorem C, Example 1.3], to find a finite,
regular cover q : Z → Y with deck group H such that

Hprim
1 (Z → Y; C) �= H1(Z; C)

as H-representations. By the above considerations, we can assume that this cover is characteristic.
Therefore, p := p′ ◦ q : Z → X is regular. Denote its deck group by G.

Let us assume for a contradiction that Hcomm
1 (Z → X; C) = ker(p∗). Then Lemma 2.3(b) implies

that Hcomm
1 (Z → X; C) =⊕k(G)

i=2 M(Vi), with M = H1(Z; C) as G-representations. We also know by
Lemma 2.3(a) that

M(V1) = p#(H1(X; C)) = p#

(
Span

C
{[l] | l ∈ π1(X) primitive}) .

By definition, we have p#([l]) =∑
g∈G g [l̃]. For l a primitive element, it follows that p#([l]) ∈ Hprim

1 (Z; C).
Thus, we obtain M(V1) ≤ Hprim

1 (Z → X; C). This implies that

H1(Z; C) = Hprim
1 (Z → X; C) + Hcomm

1 (Z → X; C).

We would like to conclude from this equality that H1(Z; C) ≤ Hprim
1 (Z → Y; C), which contradicts

the choice of the cover q : Z → Y . We know that lifts of primitive elements are primitive, and by
Lemma 3.2 that for the mod 2-homology cover primitive commutators in X also lift to primitive elements
in Y . Set

S := {
x̃′

p | x ∈ π1(X) primitive or a primitive commutator
}⊆ π1(Y).

Then S ⊆ {l ∈ π1(Y) primitive}. Clearly, for any two subsets S′ ⊆ S′ ′ ⊆ Fm we have HS′
1 (Y; C) ≤

HS′′
1 (Y; C). By the above equation together with the last observation, we obtain

H1(Z; C) = HS
1 (Z → Y; C) ≤ Hprim

1 (Z → Y; C).
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