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Abstract
Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample
count of many microbiome studies, especially observational or cohort studies involving human subjects,
many microbiome studies have low power. This increases the importance of performing meta-analysis and
systematic review for microbiome research in order to enhance the relevance and applicability of micro-
biome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources
of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome
studies.
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Introduction

The most common experimental design used to evaluate the effects of gut microbiome (GMB) genomic
or taxonomic post-exposure remodelling has been cohort studies using either animal or human models.
Randomised controlled trials (RCTs) for microbiome interventions are less common because we are still
characterising microbiome post-exposure remodelling to identify promising markers or targets for
microbiome intervention that would warrant subsequent evaluation by RCTs. Therefore, results from a
systematic review with quantitative or pooled meta-analysis are essential in identifying candidates
for RCTs.

A diligent risk of bias (ROB) assessment is a key step in systematic review or meta-analysis to
determine the likelihood that features of the study design or conduct of the study will give misleading
results. GMB research is highly heterogeneous in its methods, reporting, and attempts to address bias.
This manuscript and its associated rubric (Table 1) are based on the Risk of Bias in Non-randomised
Studies – of Interventions (ROBINS-I) tool, and are meant to be used as a GMB-specific adjunct to
ROBINS-I. This manuscript and its associated rubric together form a tool that was developed to help
standardise ROB assessment in metanalyses and systematic reviews of GMB studies. A small-scale
validation test by first-time ROB assessors produced consistently similar ROB determinations, suggest-
ing that this tool can successfully guide consistent ROB determinations. This tool may allow for
improved ROB assessment when evaluating studies for metanalyses and systematic reviews of the GMB.
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Table 1. The rubric of domains and subdomains of bias with signalling statements to guide risk of bias assessment of gut microbiome studies.

Domain High ROB Moderate ROB Low ROB

Confounding

1. Demographic
differences

– Age: consistently different between study
arms

– Sex: consistently different between study
arms

– Age: mixed ages within a study arm, but equal in
distribution between study arms

– Sex: mixed sexes within a study arm, but equal in
distribution between study arms

– Age: consistently similar between study
arms

– Sex: consistently similar between study arms

2. Habitat stability – No acclimation period, or acclimation period
<2 days

– Acclimation period included in the
interventional period

– Acclimation period ≥2 days but <5 days – Acclimation period ≥5 days and < 9 weeks

3. Genotype, familial,
and source differences

– Significantly different subject genotypes
between study arms (where genotype effect
is not the target of investigation)

– Non-matured animal models from different
litters and/or mothers without random
assortment into study arms

– Comparison of animal subjects from different
source or vendor between study arms

– Animal subjects from same vendor, but from
separate and temporally spaced orders without
random assortment into study arms

– Adequately similar genotypes used between
study arms (where host genotype effect is
not the target of study)

– Animal subjects from same litter
– Animal subjects from same vendor and same

order
– Adult animal subjects from different litters/

mothers/vendors randomly assorted into
study arms

4. Extreme diet – No statement of dietary standards or
documentation of dietary variation

– Major deviations from stated diet

– Study uses human subjects outside of a highly
controlled environment (for example an inpatient
healthcare setting)

– Use of identical diet between study arms
where diet is not the target of study

5. GMB normalisation – No documented means of verified GMB
normalisation methods employed prior to
intervention

– Use of different normalisation methods
between study arms or use of non-validated
technique

– Antibiotic normalisation employed <7 days prior
to intervention

– Antibiotic normalisation employed ≥7 days
prior to intervention

– Validated technique of GMB normalisation
employed

Selection Bias

1. Extreme genotype – Subjects of known extremely different
genotypes

– Subjects with no established history of use

– Syngeneic subjects with limited established
history of use

– Syngeneic subjects with established history
of use
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Table 1. Continued

Domain High ROB Moderate ROB Low ROB

2. Randomisation or
demographic
balancing sufficiently
applied

– Absence of both RCT and implementation of
consistent host demographic across study

–Utilisation of RCT or implementation of consistent
host demographics across study

– Utilisation of RCT and implementation of
consistent host demographics across study

Classification of Intervention

1. Intervention bias – Differential misclassification of intervention
or test subject based on exposures present
or suspected

– n/a – Differential misclassification of intervention
or test subject based on exposures absent
or not suspected

2. Validation of method – No validation that treatment method
produces intended effect

– Use of new method without internal
validation

– n/a – Documented use of validated methods
– Use of a newmethod with adequate internal

validation

Deviation from Intervention

1. Deviation from
intervention

– Large deviations to protocol without
adequate time stamps, rationale, and
limitations noted

– Slight deviations to protocol with adequate time
stamps, rationale, and limitations noted

– Intervention successfully carried out without
protocol deviation

Missing Data

1. Cause or category of
missing data

– Does not address missing data qualitatively
or quantitatively

– Or, does not ensure to readers the absence of
missing data

– Acknowledges missing data qualitatively or
quantitatively

– Inadequate MAR/MNAR distinction or proper
statistical correction

– Addresses missing data qualitatively or
quantitatively, or ensures the absence of
missing data

– Adequate MAR/MNAR distinction or proper
statistical correction

2. Subject dropout – Subject drop-out exceeds 20% n/a – Subject drop-out is equal to or less than 20%

3. Sequencing depth and
sampling zeroes

– Does not address sampling zeroes with
statistical correction

n/a – Addresses sampling zeroes with statistical
correction

Measurement of Outcomes

1. Sample collection – Inconsistent collection time – Animal models: Collected at same time, not in the
morning

– Human models: Inconsistent collection time, but
preserved immediately after defecation

– Animal models: Collected at same time, in
the morning

– Human models: Consistent collection time
and preserved immediately after defecation
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Table 1. Continued

Domain High ROB Moderate ROB Low ROB

2. Blinding – No double blinding when the primary
measurement is subjective

n/a – Primary outcome is objective measure such
as genetic sequencing not subject to bias by
the subject or investigator

– Primary outcome is subjective and double or
greater blinding employed

Reporting of Results

1. Selection of reported
results

Any of:
– Omission of stated outcomes that are
unfavourable or statistically insignificant

– Addition of outcomes not in the initial
protocol

– Results reported are only on a subset of data
– Changing outcome(s) of interest

– Any of the above, but with valid and satisfactory
explanation provided

– Inclusion of relevant null and significant
findings as stated in the protocol
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Using this tool

This manuscript and its associated rubric provide a framework for assessing ROB specific to GMB
research. This tool strives to provide insight and reduce variability between individual researchers and
groups conducting systematic reviews of the GMB.We do not seek to suggest best practices. Instead, we
aim to indicate potential sources of bias that may significantly impact GMB studies and are thus vital
when considering the strength of evidence for systematic review andmeta-analysis. The essential criteria
in this manuscript are summarised in Table 1, which was compiled to act as a rubric in guiding ROB
determination.

Table 1, “the rubric,” guides the determination of low, moderate, or high ROB across seven domains.
In each cell of the rubric, there are signalling statements to help guide low, moderate, or high ROB
determination in that domain. Two additional ROB determinations are not included on the rubric as
they are to be used at the judgement of the person assessing ROB in a study. They are “critical ROB” and
“no information.”Critical ROB can be determinedwhen a reviewer believes a study to be too problematic
to provide useful evidence on the effect of an intervention. As such, a study determined to be of critical
ROB in any one domain should not be included in any synthesis. A determination of no information
applies to domains where there is no clear evidence of a critical ROB and a lack of information to judge
ROB otherwise.

Confounding

Demographic differences

Important demographic considerations inGMB studies are sex and age. Substantial differences in the gut
microbiota are attributable to sex differences in mammals (Org et al., 2016; Kim et al., 2020). Because of
this, any study which includes one sex in one arm and a different sex in another should be classified as
having a high ROB. In addition to the ROB from sex, other demographic factors may also introduce
confounding bias into the studies being examined. The GMB changes with age across numerous
conditions, disease models, and species impacting microbial diversity and biome composition
(Ticinesi et al., 2019; Liu et al., 2020). Therefore, age differences between cohorts and study arms should
be assessed. If the study being examined uses organisms of one age in one arm and a different age in a
second arm, it should be classified as having a high ROB. The age gap which introduces significant
confounding bias, varies by organism. An example of an age gap that would introduce a high ROB is
8-week-old mice versus 1-year-old mice (Yoon et al., 2021).

Habitat stability

The habitat in which organisms are kept substantially impacts their GMB (Singh et al., 2021). Mice,
common subjects ofmicrobiome research, are known to have highly variablemicrobiomes on arrival at a
facility, likely because of transportation stress on the microbiome itself and the immune system and
hormonal functions of the host organism (Capdevila et al., 2007; Montonye et al., 2018; Lipinski et al.,
2021). Studies that do not allow for microbiome stabilisation before research begins risk confounding
bias due to a lack of habitat stability. Organisms should be acclimated to the study condition before
baseline measurements or interventions are performed. However, an extensive acclimation period risks
microbiome drift occurring due to the increasing age of the organism or other unknown factors, so
habitat stabilisation must be time-limited (Hoy et al., 2015). Additional bias would also be introduced if
the acclimation period is included in the interventional period of the research.

Genotype, familial, and source differences

Subject genotype, degree of familial relation, and in the case of animal models, the source can
significantly impact GMB composition. Differences in the genotype of animal models have been found
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to impact the diversity and abundance of organisms (Campbell et al., 2012; McKnite et al., 2012; Leamy
et al., 2014). For this reason, if the study being evaluated uses organisms of significantly different
genotypes, such as the use of different strains of mice from the Collaborative Cross, where the effect of
genotype difference is not the target of the study, it should be classified as having a highROB. Suppose the
study uses a similar genotype between treatment groups, such as the same strain of inbred animal model
ormonozygotic twin subjects. In that case, it should be considered a lowROB for confounding due to the
genotype effect.

Regarding familial relation, genetically related subjects have been demonstrated to share a core of
similar GMB for up to three generations in the female line (Turnbaugh et al., 2008; Valles-Colomer et al.,
2021). With animal models, breeding within familial relations is often used to maintain genotypically
and GMB homogeneity (Hufeldt et al., 2010). A caution regarding inbreeding is that while selective
breeding between siblings can create a more stable and uniformGMB composition, the effects of genetic
drift can also introduce confounders across multiple generations that may affect experimental repro-
ducibility with subsequent generations (Laukens et al., 2016).

Additionally, with animal models, an organism’s litter of origin impacts the gut microbiota (Fujiwara
et al., 2008; Vilson et al., 2018). Thismay relate not only to parent genetics but also to the host ofmaternal
factors that can affect the development of progeny GMB, including mode of delivery, maternal diet,
maternal stress, andmaternal antibiotic use (Bailey et al., 2004; Friswell et al., 2010; Stokholm et al., 2014;
Golubeva et al., 2015; Walker et al., 2017; Zhang et al., 2021). For these reasons, if the study being
examined utilises organisms from differing litters (from separate mothers or separate deliveries from the
same mother) that have not yet reached their mature adult development and are not randomly assorted
between research arms, it should be classified as having a high ROB. Suppose a study uses organisms
from the same mother and litter or randomly assorts progeny from different mothers and litters. In that
case, it should be classified as having a low ROB.

Regarding sourcing of animal models, subjects sourced from different vendors have substantial
differences in GMB at baseline (Rasmussen et al., 2019; Wolff et al., 2020; Long et al., 2021). The
microbiological or physiological basis of these effects is unknown but may be due to differential
exposures to environmental or infectious factors between vendors (Mandal et al., 2020).

Extreme diet

Dietary differences have been shown to alter the abundance ofmost gut microbes (Daniel et al., 2014; Do
et al., 2018; Ang et al., 2020; Li et al., 2021). Because of this, maintaining the diet of interest is essential to
avoid introducing confounding bias to the study. However, it may not always be possible to strictly
control diet. This is especially relevant to clinical studies involving humans. In this situation, an
evaluation of bias must note how a study documented these diet variations.

GMB normalisation

It is important to assure organisms being studied in research have similar baseline GMB. This allows
for more definitive inference as to the effect of the intervention. Several strategies have been used to
make the GMB as similar as possible over time. Removal of the entire GMB through the use of germ-
free mice can allow for the artificial seeding of a select group of organisms (Yi and Li, 2012; Kennedy
et al., 2018). However, the use of these mice necessarily limits the generalizability of a study. For this
reason, research often uses organisms with populated GMBs and relies instead on antibiotics to
homogenise the microbiome. The use of antibiotics introduces additional risks of bias which must be
considered when evaluating a study (Theriot et al., 2016). The most significant ROB arises from
beginning the intervention of interest before the gut microbiota has stabilised after normalisation with
antibiotics. The GMB continues to fluctuate unpredictably for long periods following antibiotic
administration (Merenstein et al., 2021). This variance has been found for at least a year after antibiotic
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usage in humans and for times ranging between 1 week and 16 weeks in mice depending on the length
of the course of antibiotics used (Rashid et al., 2015; Elvers et al., 2020; Zhu et al., 2021). However,
short, or single doses of antibiotics such as those often used to normalise the microbiome allow for
substantial stabilisation of the GMB within 7 days (Gu et al., 2020).

A third method used to standardise the GMB is to intermix the bedding of multiple cages and then
redistribute it (Miyoshi et al., 2018). This method is less invasive than antibiotic usage and has a lower
risk of long-term impact on the GMB than the use of antibiotics. The use of homogenisation of the
bedding allows for similar microbiomes to develop in more mice than can be practically housed in a
single cage, where the organisms also share all of their bedding (McCafferty et al., 2013).

Because of the impact of different methods of GMB normalisation, it is critical to note the method
that was used to normalise the GMB and how long before the intervention this normalisation was
completed.

Selection bias

Extreme genotype

Host genotype shows a stable and heritable impact on GMB composition (Goodrich et al., 2016). In the
context of GMB research, extreme genotype selection refers to the selection of GMB subjects with
genotypes that vary significantly between subjects within a study. Selection of subjects with identical or
similar genetic makeup limits genotype confounding effects. A subject with an established history of use
along with maximised genetic correlation can be considered a low risk of selection bias. For example,
while inbred Balb/Cmice do have an extreme genotype, they also have a long-established history of use in
immunemodulation studies with their knownTh2 immune response wherein they exhibit low IFNy and
high IL-4 production (Mills et al., 2000; Watanabe et al., 2004; Khan et al., 2022). Furthermore, prior
literature has established the correlation between subject genetics and variation in the GMB population
and subsequent disease states (Xu et al., 2020).

Randomisation or demographic balancing sufficiently applied

Randomisation is essential in ensuring subject-level differences between participants in the inter-
vention and control groups can be attributed to chance alone. It is a standard method that attempts
to create the necessary pre-intervention equivalence between groups, allowing for conclusions based
on the effect of the intervention. In trials where randomisation was not appropriately utilised, the
outcome was overestimated by up to 40% compared to trials where randomisation was utilised
(Suresh, 2011). If randomisation was not applied, implementing demographic balancing is an
appropriate measure to ensure adequate control and intervention arms distribution. Any demo-
graphic balancing performed should be sufficiently described in the study. This method focuses on
ensuring each group is demographically balanced at baseline to lessen the difference between groups
and utilise randomisation if no subject background information is available (Saint, 2015). Both
randomisation and demographic balancing can be applied to human and animal model studies. For
example, in studies utilising syngeneic mice, randomisation must be performed outside the scope of
human intervention in that random number generators should assign mice numbers which can then
correlate to intervention and control groups, hence this places randomisation outside the scope of
human influence, limiting bias to a maximum degree. In syngeneic animals, demographic balancing
would have a limited impact on the bias, however, wherein studies utilise genetically unrelated
animals, the need for implementation of both randomisation and demographic balancing is
necessary for limiting substantial bias (Hirst et al., 2014). Similar principles apply in human studies.
Given a majority of human studies utilise genetically unrelated subjects, randomisation is required
to avoid the high ROB. In human studies, a step beyond randomisation should be taken, that is,
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implementing blinded randomisation with a description of the randomisation protocol to give the
reader the ability to discern breaks in randomisation or similar bias control methods within the
study (Chalmers et al., 1983).

Classification of intervention

Intervention bias

Bias in intervention can occur when interventions or outcomes are inappropriately selected for or
measured. In non-differential misclassification, test subjects’ exposures are misidentified, and they are
categorised into the wrong group (McCoy, 2017). This misclassification can dilute the effect of the
intervention causing effect estimates to favour the null (LaMorfe, 2016). The probability of non-
differential misclassification is equal across all groups. Bias may be reduced by ensuring a proper
background check on test subjects and equalising any differences. On the other hand, differential
misclassification occurs when themisclassification of exposure or outcome is not equal between subjects
and is less easily predictable in whether it will bias results towards or away from the null. Therefore, the
probability of assigning subjects to the wrong group differs based on the individual. This may also
introduce recall bias towards recalling specific exposures because the subject has the disease state versus a
subject that does not. In GMB studies, this may present in the form of researchers explaining results that
show a significant effect as attributed to specific causes but leaving out explanations for non-significant
results. Because this type of misclassification is more applicable in case studies, it is less relevant for
animal studies but can be prominent in human studies (Spencer et al., 2018).

Validation of method

The establishment of an effective intervention is imperative for a successful study. Before the
experiment, researchers must verify that their chosen intervention method will produce the intended
effect. In studies where this is not done, the produced results may or may not be relied on because the
protocol was never validated. Verification can be internal (tested and proved by the researchers) or
external (via other established studies). If the study calls for a particular disease state to be expressed, it
must be validated that the test subjects have the disease state. In studies that call for a specific
procedure, there can be potential bias in how the readers know the procedure was correctly obtained
if it is not reported. For example, in microbiome hypertension studies, animal subjects were tested
based on blood pressure measurements by a well-established method, tail-cuff plethysmography
(Marques et al., 2019). If a lesser-known and validated method was used, it could introduce a high
ROB if researchers did not verify that their method was accurate. When testing for the effect of a
disease state as influenced by the microbiome, it is helpful to transplant the experimental group
microbiome into a germ-free animal model to confirm the effect. This reduces an intermediate ROB by
demonstrating that the effect of the intervention is associated with the levels of change in the
microbiome (Gottfredson et al., 2015).

Deviation from intervention

It is well understood that experiments that deviate from their initial protocol have an increased potential
for bias in their study should they decide to include data prior to the deviation. Therefore, all deviations
from the protocol should be well documented with time stamps, and the data included in the study
should also include the time at which it was collected – either post-protocol or pre-protocol addendum.
Rationale and limitations should also be included should researchers decide to include data from any
time the protocol was different.
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Missing data

Missing data is prevalent in many academic disciplines, from the social to biomedical sciences, and may
contribute to bias in any given study. GMB research likewise suffers from inadequate consideration of
missing data and the statistical methods to address it. To begin, two types of missing data should be
distinguished: missing data due to patient drop-out in clinical, longitudinal studies andmissing data as a
result of inadequate sequencing depth leading to “false zeroes” in themicrobiome genetic data. Both have
the potential to increase ROB.

Cause/category of missing data

Missing data falls into multiple categories based on the mechanism of missingness: Missing Com-
pletely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR)
(Groenwold and Dekkers, 2020). These categories apply assumptions to missing data based on the
cause. MCAR assumes that data is missing due to a factor entirely unrelated to the study. MAR
assumes data is missing due to observed variables relevant to the study. MNAR assumes data is
missing based on unknown or not quantifiable variables to the authors. MAR and MNAR are most
relevant to clinical research, specifically in regard to patient drop-out, including clinical GMB trials
(Pugh et al., 2021). Sampling zeroes in microbiome data are a more generalised form of missing data
but are primarily reminiscent of MAR (Kaul et al., 2017a, 2017b). Each of these areas will be further
discussed in the following sections. Under MAR, studies may utilise various statistical imputation
techniques to replace missing data, though the most well-known and effective method is multiple
imputations (Spineli et al., 2015). With MNAR, various statistical modelling techniques may address
missing data. Such techniques are further discussed in relation to GMB studies in section “Sequencing
depth and sampling zeroes.” The distinction between MAR and MNAR also indicates whether bias
related to missing data is entirely removable in analysis – the former can, while the latter cannot
(Mack et al., 2018). This should not be confused with the notion that MNAR assumptions imme-
diately denote a study as biased. If the missingness in MNAR or MAR is independent of the outcome,
then the study may be unbiased in regard to missing data. Thus, a study with MNAR data is not
necessarily high ROB.

Notably, a significant number of studies do not clearly state the mechanism of missingness or adjust
for missing data (Carpenter and Smuk, 2021). It is important that studies distinguish the mechanism of
missingness or explain relevant missing data. If a study does not acknowledge missingness in data or
ensures the absence of missing data, the study may be considered high ROB. If a study acknowledges
missing data but does not adequately address it through MAR/MNAR distinction and proper statistical
techniques related to its missing data category, then the study may be considered intermediate ROB. If a
study demonstrates all of this, it may be considered low ROB.

Subject drop-out

Missing data in the form of patient drop-out has a marked effect on statistical power, type 1 error,
and various outcome measures (Thompson et al., 2011; Fiero et al., 2016; Cai et al., 2020). In
traditional clinical research, missing data has a clear effect on useful measures, such as relative risk
and risk ratio calculations. Further, although researchers attempt to minimise drop-out and its
statistical effects, drop-out ratios were reported to be greater than 40% depending on the study and
the degree of unpleasantness in medical interventions to the patient (Schnicker et al., 2013; Li et al.,
2021). Consequently, it has been proposed that a 20% drop-out ratio is reasonable (Furlan et al.,
2009; Cramer et al., 2016). Interestingly, it has been shown that faecal sampling of patients in GMB
studies has not been a significant reason for drop-out, suggesting typical sources of patient non-
retention (Vandeputte et al., 2017). The effect of drop-out on statistical measures is expected to be
the same in clinical GMB trials. Despite drop-out being common in clinical studies, its effect on
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outcome measures involving microbial compositional data (e.g., beta diversity) is not currently well
described in clinical GMB studies. However, it is expected that such measurements relying on
consistent analysis from a wide array of samples will be biased if there is an inadequate sampling size.

The effect of bias comes into effect when there is an interpretation between samples, in that missing
data prevents consistent interpretation of genetic data through a larger body of samples. For example,
microbiome samples stratified by disease state versus control should be held to higher statistical power,
similar to traditional clinical studies. Yet, the complexity of GMB genetic analysis often prevents large
sample sizes from being a practical implementation due to costs unless utilising less-expensive protocols
such as those involving qPCR to monitor microbial composition at high taxonomic levels (i.e., phyla)
(Koliada et al., 2020). Some studies demonstrate shallow shotgun metagenomic sequencing as an
alternative methodology for large, longitudinal GMB studies (Xu et al., 2021). Nonetheless, making
interpretations in GMB data between samples stratified by host conditions may need to be more
consistent and accurate when samples are unavailable from a patient drop-out. Based on the literature
of other areas in clinical research as discussed, it is again reasonable to assert that drop-out will influence
outcome measures if authors make interpretations across hosts of varying condition states.

Due to few clinical studies analysing the effect of drop-out on GMB outcomes, it is reasonable to use a
20% patient drop-out ratio, as many clinical trials traditionally utilise. GMB studies that have a high
patient dropout are considered high ROB. GMB studies that have low patient drop-out are considered
low ROB.

Sequencing depth and sampling zeroes

GMB researchers should consider sequencing depth as a contributor to missing data and subsequent
bias. It is established that low-sequencing depth (2000 single-end reads per sample) can adequately
predict the same diversity patterns as high-depth sequencing (on the scale of millions of reads per
sample) (Caporaso et al., 2011; Lundin et al., 2012; Xiao et al., 2018). Experiments that quantify GMB
outcome measures (like alpha and beta diversity) should utilise the same depth for all samples. Bias
would be introduced if different sequencing depths are used for a set of samples. It should be noted,
however, that false zeroes influence microbiome genetic data at both high and low depth. While true
zeroes (or biological zeroes) represent true taxonomic absences, false zeroes (or sampling zeroes)
represent a lack of sequencing depth to adequately detect certainmicrobial taxa. Notably, low sequencing
depth, as is often the case of 16S rRNA sequencing, may not detect low abundance taxa or low taxa
(subspecies) due to lower resolution. Though whole genome sequencing (WGS), such as shotgun
metagenomic sequencing, utilises high sequencing depth to sequence entire genomes, sampling zeroes
still persist (Pereira-Marques et al., 2019).

At the time of writing, this issue of zero-inflation – or the excess of sampling zeroes at high and low
depth – and the resulting bias in GMB genetic data is an active area of research. Interestingly, relatively
few studies utilise any statistical modelling to correct for such missing data. Yet, various modelling
techniques were recently developed to address zero-inflation (Ha et al., 2020; Zhang et al., 2020; Deek
and Li, 2021). Similar to modelling techniques, imputation is a method traditionally used to address
missing data in the form of patient drop out, but a promising imputation method is recently available to
also deal with GMB sampling zeroes. Previous studies showed an increase in Pearson correlation from
0.59 (between 16S and WGS in non-corrected data) to 0.64 (between 16S and WGS in corrected data)
(Jiang et al., 2021). There were also marked differences in mean and standard deviation of abundances
per taxon between corrected and non-corrected data. This suggests greater homogeneity of samples
across sequencingmethods if imputation is utilised to correct data. However, as our article focuses on the
role of bias in GMB research, we do not yet place best-practice recommendations for a particular method
of missing data correction.
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As of date, few GMB studies utilise statistical techniques to correct for sampling zeroes. Furthermore,
common bioinformatics pipelines (such as QIIME2) do not incorporate such techniques into data-
correction programs.

As such, the available literature suggests futureGMB studies that do not consider sampling zeroes and
lack a statistical technique for missing data correction may be considered high ROB. Studies that utilise
missing data correctionmay be considered lowROB. These data correctionmethods, oncemore, include
various modelling techniques or imputation.

Measurement of outcomes

Sample collection

Currently, there is no standardmethod for sample collection for GMB studies. While biopsy of the lower
intestine provides a controlled sampling site and an accurate microbiota account, it is expensive, time-
consuming, and unsuitable for healthy control groups. In contrast, the faecal collection is non-invasive
and cost-effective (Tang et al., 2020). Thus, it is a standard samplingmethod in both clinical and research
applications. However, faecal sample collection introduces temporal inconsistency which can be a source
of bias.

Faecal samples collected at different times of the day are at risk for inaccurate representation of the
absolute abundance of gut microbiota (Caporaso et al., 2011). Specifically for mouse studies, the
snapshots of the microbiota provided by the faecal samples are more accurate and consistent within
treatment groups when collected in themorning due to the nocturnal feeding nature ofmice (Jones et al.,
2021). For studies involving subjects with unpredictable and inconsistent bowel movements, samples
should be preserved immediately after defecation as oxidation of the outer layer can alter the microbiota
(Pepper and Rosenfeld, 2012). Specifically, Firmicutes and Bifidobacteria spp. are two known phylum
that are unstable in the outer microenvironment when exposed to oxygen (Gorzelak et al., 2015).
Therefore, to minimise the differential errors, the methods of measurement must be consistent between
control and intervention groups.

Blinding

In a GMB study, the primary outcome is based on definitive and objective genetic sequencing. Therefore,
assessor bias is typically negligible, and a low ROB is expected (Higgins et al., 2022).

Reporting of results

Selection of reported results

Selective reporting of results can lead to biased interpretations of significance and or non-significance
via particular selection of results from multiple outcome measures in estimating outcome effect. Bias
in the selection of reported results can be difficult to detect without access to a protocol from which
one can compare pre-specified intended outcomes of interest to the outcomes analysed in the
published paper (Heneghan et al., 2019). Often, results are selected for significance, omitted for
non-significance, or omitted for adverse effect of intervention (Dwan et al., 2013; Hedin et al., 2016;
Van der Steen et al., 2019).

Validation test

Four medical students with no prior experience in ROB assessment were recruited to test this tool by
using it to independently assess ROB on three selected studies of similar length in a predetermined
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Figure 1. Inter-rater variability in ROB determinations by subdomain for validation test study 1 byWu et al. (2017), where “1” on the y-axis indicates that the rater determined the study to be at low ROB
for the subdomain indicated on the x-axis; “2” indicates medium ROB and “3” indicates a high ROB determination by the individual rater.
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sequence (Wu et al., 2017; Mohammed et al., 2020; Saunders et al., 2020). Subjects were provided
with the manuscript and ROB rubric. They were asked to track time to completion per study and
complete the ROB rubric for each study. Subjects assessed ROB in an average of 44.75 minutes per
study with time to completion generally decreasing from the first study assessed to the last study
assessed.

Inter-rater variability was assessed by assigning values of 1, 2, and 3 to low, medium, and high ROB in
order to construct visual representations of rater scores in each sub-domain of bias and to compare
summed ROB scores between raters for each study. Figures 1–3 demonstrate variability within a study in
each subdomain of bias assessed by this tool between raters. The figures demonstrate similar ROB
judgements between at least three of four raters in the majority of subdomains across the three studies
assessed.

Figure 4 demonstrates variation in summed ROB score by rater for each of the three studies. It
shows the decreasing magnitude of difference between raters’ summed ROB scores with each
subsequent use of the tool from a max-score min-score difference of six points in study 1 and study
3, and of four points in study 2 out of 45 possible points. One-way ANOVA test of rater subdomain
scores across all subdomains for each study returned p-values of 0.554, 0.568, and 0.399 for study
1, study 2, and study 3, respectively indicating no significant difference between overall ROB
assessment scores between raters of the same study. First-time ROB assessors using this tool showed
a relatively high degree of concordance in ROB determination at the subdomain level and in the
magnitude of summed ROB score.

Conclusion

ROB assessment is a crucial step in systematic review and meta-analysis to assess the quality of
information being collected. By outlining common sources of bias that can impact GMB research
following the structure of the ROBINS-I tool, this tool can serve as an adjunct to improve and standardise
ROB assessment of GMB studies. A standardised ROB assessment for GMB studies will improve the
accuracy of risk assessment, improve reproducibility between researchers, and promote the inclusion of
high-quality information in systematic reviews and meta-analyses of the GMB.

Figure 2. Inter-rater variability in ROB determinations by subdomain for validation test on study 2 by Mohammed et al. (2020), where
“1”on the y-axis indicates that the rater determined the study to be at lowROB for the subdomain indicated on the x-axis; “2” indicates
medium ROB and “3” indicates a high ROB determination by the individual rater.
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Figure 3. Inter-rater variability in ROB determinations by subdomain for validation test on study 3 by Saunders et al. (2020), where “1” on the y-axis indicates that the rater determined the study to be at
low ROB for the subdomain indicated on the x-axis; “2” indicates medium ROB and “3” indicates a high ROB determination by the individual rater.
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Figure 4. Visual representation comparing summed ROB score (as determined by assigning point values of 1, 2, and 3 to low, medium, and high ROB respectively) by rater for each of the three studies
assessed in the validation test where each increasingly large concentric triangle indicates an increase of 5 points.
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