
8 
Analysis of polarized states: polarimetry 

In the previous chapters we have dealt with the production of the polar
ized states that serve as initial states in reactions. Here we turn to the 
measurement of the state of polarization of an ensemble of particles, i.e. 
to polarimetry. 

In the analysis of the state of polarization we may be dealing with 
stable or unstable particles. If the particles are stable it may be possible 
to rely on well-understood reactions, such as those of QED, to achieve 
the polarization analysis, via, e.g. Coulomb interference or scattering off 
a laser beam. Or, if this is impracticable, it is sometimes possible to use a 
double-scattering technique even if the reaction mechanism is unknown. 
The only assumption needed for this is time-reversal invariance. If the 
particles are unstable their decay angular distribution gives information 
on their state of polarization prior to decay. This is not surprising if the 
decay is electromagnetic, so that the decay amplitudes are precisely known. 
What is remarkable, however, is that even when the decay mechanism is 
not known certain decays are 'magic' and still provide information on the 
polarization state of the decaying particle. Examples are p ~ nn, w ~ 
yn, D* ~ yD, 1p ~ pn, a2 ~ pn etc. 

For electron beams, where we can rely on QED, it has been possible to 
construct very accurate and rapidly acting polarimeters. 

One of the most interesting challenges at the moment is to construct 
efficient high energy proton polarimeters for use at RHIC, UNK and 
possibly at Fermilab. We shall discuss some of the current ideas in this 
field. 

We shall also give a general treatment of the measurement of the density 
matrix from sequential scattering and resonance decays. The approach is 
remarkably simple and powerful and applies to the decay of a resonance 
of arbitrary spin. 

185 

https://doi.org/10.1017/9781009402040.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.008


186 8 Analysis of polarized states: polarimetry 

8.1 Stable particles 

Here we are primarily concerned with spin-1/2 particles, electrons, protons 
and neutrons. We consider separately the following cases. 

(a) The reaction mechanism is known or essentially understood; this 
inevitably means electromagnetic or electroweak interactions. 

(b) The reaction amplitudes cannot be calculated from first principles, as 
is the case for strong interactions. 

The fundamental ingredient is the fact that differential cross-sections 
display azimuthal asymmetries if the initial state is polarized. We consider 
a fixed axis system with a polarized beam A moving along OZ and 
unpolarized target B. Then for a 2---+ 2 reaction AB---+ CD one has from 
subsection 5.4.2 

d2(J _ 1 d(J "'(2l ) 1 ( )(l . 0 0. ) -imrf> dtdcjJ - 2n dt f;;: + 1 tm A m,O,OI , ,0,0 e (8.1.1) 

where C has polar angles (}, c/J. 
For an inclusive reaction AB ---+ CX, from Section 5.8 one has 

d3(J 1 d2(J 
d dc/Jd 2 = -2 d d 2 L(21 + 1)t~(A) 

t Mx n t Mx l,m 

X (lm·O 010 o·o O)ince-imrf> 
' ' ' ' ' 

(8.1.2) 

Thus if the 'lm analysing powers' (l, m; 0, 010, 0; 0, 0) for the reaction are 
known or can be calculated one can learn about the polarization state of 
the beam from the c/J-dependence of the differential cross-section. 

For spin-1/2 beam particles, with spin-polarization vector P and with 
parity-conserving reactions, (8.1.1) and (8.1.2) simplify to (using (5.6.5) 
and (3.1.35)) 

(8.1.3) 

dtdcjJdM} 
(8.1.4) 

where the As are the analysing powers of the reactions for particle A. 
In the above we have chosen an arbitrary reference frame with the beam 

A arriving along OZ and B either at rest or moving along the negative 
Z -axis. The combination f!J> y cos cjJ- f!J> x sin cjJ is just P · fi where fi is a unit 
normal to the scattering plane, i.e. fi is along PAx PC· Thus a measurement 
of the c/J-dependence gives us the components of P perpendicular to the 
collision plane. 
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8.1 Stable particles 187 

For the case of the collision of two spin-1/2 particles whose spin
polarization vectors are unknown, the more general results (5.6.12) or 
(5.6.20) can be used to measure their polarizations, providing, of course, 
that we know the values of the various generalized analysing powers. 

8.1.1 Reaction mechanism understood 

When two hadrons interact, their interaction is controlled by a mixture 
of strong (nuclear) and electromagnetic forces, and in an exact treatment 
one would add together the nuclear and electromagnetic hamiltonians. 
Generally the nuclear forces totally dominate, but there are certain kine
matical regions where the long range of the electromagnetic forces leads 
to transition amplitudes that grow rapidly and eventually exceed the nu
clear amplitudes. Of particular interest is the region of small momentum 
transfer, where, for example, the one-photon exchange amplitudes diverge 
as t ~ 0. 

There is thus a region of very small t (typically~ w-3 (GeV fc) 2 at high 
energies) where the known electromagnetic and the nuclear amplitudes are 
comparable. Although the nuclear amplitudes cannot be calculated from 
first principles they are expected to have smooth finite limits as t ~ 0. 
Moreover any significant variation with t is expected to occur only for 
scales of order of a typical hadron mass squared, so that, to a first 
approximation, we can use just their values in the forward direction t = 0. 

In summary a knowledge of the electromagnetic amplitudes together 
with some limited information on the forward nuclear amplitudes may 
yield enough information to estimate the analysing power of the reaction, 
at least for very small t. However, it will be seen that in situations involving 
hadrons it is perhaps an overstatement to claim that the reactions are truly 
understood. 

(i) Electromagnetic-hadronic interference in proton-proton scattering 
Interference at very small angles between the electromagnetic (EM) 

and hadronic contributions to the scattering amplitudes has long been 
used as a tool in the study of the phase of the hadronic amplitude. This 
only utilizes the interference between the hadronic forces and the longest
range part of the EM interaction, namely the Coulomb force. But at high 
energies magnetic effects become important and we expect to find that 
EM contributions to helicity-flip amplitudes gives rise to spin-dependent 
interference phenomena. 

Here we shall focus only on the most dominant effects, and we shall 
approximate the amplitudes as a sum of the one-photon exchange and 
nuclear amplitudes, as shown in Fig. 8.1. For a detailed treatment and a 
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188 8 Analysis of polarized states: polarimetry 

Fig. 8.1 Approximate form of the proton-proton amplitude as a sum of 
one-photon-exchange and nuclear amplitudes. 

discussion of possible inaccuracies in this simple approach, the reader is 
referred to Buttimore, Gotsman and Leader (1978) and to Leader (1997). 

With our normalization the most singular EM contributions to the 
pp ~ pp amplitudes are, for s ~ m2, t ~ 0, 

,~.EM = HEM ,....., J4ii:rx ,~.EM = HEM ~ J4ii:rx 
'f'l - ++;++ ,....., t 'f'3 - +-;+- ~ t 

</>~M =HEM ;:::::: - J4ii:a li.K 
- ++;+- ~2m 

(8.1.5) 

where K is the anomalous magnetic moment of the proton in units of the 
proton magneton. The EM contributions to 

and (8.1.6) 

are non-singular as t ~ 0. 
The nuclear (N) contributions to all <Pi are non-singular as t ~ 0. 

Indeed from ( 4.3.1) we expect 

4>r,2,3 ;:::::: constant (8.1. 7) 

It is generally supposed, upon the basis of models and some rather sparse 
low energy data, that the double-flip amplitude 4>~ is negligible at high 
energies. Moreover, to a good approximation the non-flip amplitudes are 
imaginary, so can be estimated for very small t via the optical theorem 
(see eqn (5.1.4)). Thus, for very small t, 

i 
;:::::: i Im [</>1(0) + </>3(0)] = JA::O'tot· 

y4n 
(8.1.8) 

With the above approximations the differential cross-section is given by 
(see eqn (4.1.4)) 

(8.1.9) 
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8.1 Stable particles 189 

We see that the nuclear and electromagnetic contributions are compa
rable for 

8mx 
ltl ~ ltcl = -. 

O"tot 

For O"tot ;::: 40 mb we get electromagnetic dominance for 

ltl < 2 x 10-3 (GeV jc)2. 

(8.1.10) 

(8.1.11) 

The analysing power to be used in (8.1.3) is given by (see Table A10.5) 

A~ 
2 Im [<P;(</>1 + </>3)] 

14>11 2 + l</>31 2 
(8.1.12) 

Using (8.1.5), (8.1.7) and (8.1.9) we can eventually write, for very small 
t, 

A(t) ~ Amax ( 4 (t/tmaxr/2 ) 
3 (t/tmax) + 1 

which has a maximum value A = Amax at 

t = tmax = 

The maximum value is 

A _ K.J-3tmax 
max- 4m . 

(8.1.13) 

(8.1.14) 

(8.1.15) 

For a proton beam with Lab momentum PL ~ 200 GeV jc and taking 
O"tot"' 100( GeV /cf one has tmax ~ -3 X 10-3( GeV /c)2 and Amax ~ 4.6%. 
A(t) and dO"jdQ are shown in Fig. 8.2. 

We see that A(t) is generally small and decreases rapidly with t. Outside 
the interference region it might well grow owing to purely hadronic effects, 
but of course we cannot calculate it. Indeed it is somewhat miraculous 
that we can estimate A for small t by lumping all our ignorance of the 
strong interactions into a few qualitative features plus the value of O"tot· 

At high energies the range oft where A(t) is a few per-cent corresponds 
to extremely small laboratory scattering angles, so that it is immensely 
difficult to carry out the asymmetry measurement. Nonetheless work has 
progressed at Brookhaven on a CNI (Coulomb nuclear interference) po
larimeter for use with RHIC and the method was tested at Fermilab 
(Grosnick et al., 1990). 

It should be noted that though the analysing power is small, it would be 
totally negligible if the proton had no anomalous magnetic moment. For 
then the helicity-flip amplitude <PrM in (8.1.5) would have arisen from yfl 
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Fig. 8.2 Differential cross-section and analysing power A(t) for pp--+ pp 

at PL = 200 GeV jc. 

coupling, which, at high energies, conserves helicity (see subsection 4.6.2), 
so that we would have found an extra factor of mf.Js in ¢rM. 

At the time of writing there is great interest in being able to measure 
beam polarizations at high energies to an accuracy of about 5%. On the 
theoretical side, attempts have been made to test or improve the accuracy 
of (8.1.13) by inclusion of hadronic helicity-flip amplitudes (Jakob and 
Kroll, 1992; Trueman, 1996). On the experimental side attempts have 
been made to measure A in the Coulomb interference region in pp elastic 
scattering at 200 GeV jc (Akchurin et al., 1993). 

The experiment is exceedingly difficult and the data points, with large 
errors, are compatible with the result (8.1.13) but do not really test it to 
any significant degree of accuracy. 

It is not clear at present whether one will be able to calculate A to an 
accuracy of 5%, though a somewhat optimistic conclusion was reached 
at the RHIC-Brookhaven workshop on CNI polarimetry (Leader, 1997; 
Leader and Trueman, 1997). This was based upon a new analysis of the 
magnitude and phase expected for the part of the hadronic-flip amplitudes 
that might survive at asymptotically high energies. It was suggested that 
a more accurate expression than (8.1.13), valid for lti,:S0.01(GeV jc)2, is 

Ada = O(G"tot (~ - Im rs) 
dt mF 2 

(8.1.16) 
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8.1 Stable particles 191 

where rs is defined by 

The unknown parameter rs is in principle a function of both energy and 
t, but it is argued that Im rs in (8.1.16) can be taken as a constant in the 
RHIC energy range and for ltl as specified above. 

Very recently it has been discovered that pp elastic scattering in the 
CNI region is self-calibrating, in the sense that if enough spin-dependent 
observables are measured then one can determine not only the values of 
the various helicity amplitudes but also, most surprisingly, the value of 
the polarizations of the initial protons (Buttimore et al., 1999). Thus in 
effect one has an absolute polarimeter for which the theoretical error in 
the expression for the analysing power is of the order of the fine structure 
constant a. This will be discussed in Chapter 14. 

(ii) Primakoff-type reactions 
In this variant of the original Primakoff effect a n° is diffractively produced 
in the interaction of a proton with the Coulomb field of a heavy nucleus Z: 

p + Z ~ p + n° + Z. 

When the final state pn° is moving almost forwards, i.e. at very small 
momentum transfer to the nucleus, the reaction is dominated by one
photon exchange, as shown in Fig. 8.3. 

The Feynman diagram involves the amplitude for the 'reaction' 

virtual photon + p ~ n + p 

and for very small momentum transfers in the Primakoff process, say 
lk21 ~ 10-3( GeV /c)2, the virtual photon is almost on mass shell. Thus to 
a very good approximation we should be able to consider the amplitude 
involved as the physical amplitude for genuine photoproduction y + p ~ 
n + p, a reaction which has been well studied at low and medium energies. 

P- .. 

Fig. 8.3. Feynman diagram for Primakoff effect. 
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192 8 Analysis of polarized states: polarimetry 

The beautiful and subtle point is that, even for a high energy initial 
proton, the CM energy of the photoproduction reaction (let us call it Mrrp) 
is small, as we shall show, and at low energies it is known empirically that 
the photoproduction analysing power is large. 

Consider a high energy proton, mass m and with magnitude of mo
mentum PL incident along OZ upon a fixed target in the Lab made up 
of heavy nuclei of mass M ~ m. If we focus only on reactions in which 
t = k2 is very small in modulus, ltl~l0-3 ( GeV /c)2, then one can show 
that the maximum value of Mrrp is given by 

( M~ax) 2 = m2 + 2PLFt· (8.1.17) 

Thus even for PL = 300 GeV jc, Mrrp~4.5 GeV jc2 and we are dealing with a 
relatively low energy reaction, which has been well studied experimentally. 

The relevant analysing power, usually denoted T(8), of the yp ~ n°p 
reaction varies both with energy and CM scattering angle e. It is large in 
the region 1.36::; Mrrp::; 1.52 GeV jc2 and has a maximum magnitude of 
about 90%. 

The realization that a measurement of the proton polarization at high 
energies can be linked to low energy photoproduction is due to Underwood 
(1979). The basic theory was developed by Margolis and Thomas (1978) 
and a practical feasibility analysis was presented by Kuroda (1982). The 
experimental possibilities of the approach were finally demonstrated at 
Fermilab in 1989 by measuring the analysing power of the Primakoff 
reaction using a 185 GeV jc proton beam of known polarization and 
demonstrating that it is in accord with the theoretical expectation. (Carey 
et al., 1990). 

Referring to Fig. 8.4, let p!l be the 4-momentum of the initial proton 
and let 

(8.1.18) 

Fig. 8.4. Kinematics for Primakoff effect. Q1, Q2 are the initial and final 
momenta of the heavy nucleus Z. 
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8.1 Stable particles 193 

be the total 4-momentum of the final np pair. Define the invariant mo
mentum transfer t for the following reactions: 

p+Z~(np)+Z: t=(P-p)2 =k2 

y + p ~ n + p: to = (p' - p )2, 

(8.1.19) 

(8.1.20) 

Then, assuming that only the diagram in Fig. 8.3 contributes, with a 
spinless target nucleus of charge Z e, one can show (Margolis and Thomas, 
1978) that 

dCJ - aZ 2 IF(t)l2 (Pi) dCJ (~~ 0 ) 
2 - 2 2 2 YP ~ n P 

dMnpdtdtodc/Jn n Mnp - m t dtodc/Jn 
(8.1.21) 

where the arrow overbars indicate a polarized particle, F(t) is an unknown 
nuclear electromagnetic form factor and P _1_ is the transverse momentum 
vector of the np system in the Lab: 

(M2 - m2)2 
2 np 

p j_ = -t - ~--------~ 
4p[ 

(8.1.22) 

The cross-section dCJ I dtodc/Jn is the differential cross-section for yp ~ np 
with polarized photon and polarized initial proton. The angle cPn is, strictly 
speaking, the azimuthal angle of the n in the np rest system, i.e. in the 
yp ~ np CM, with Z -axis along P in the Lab and some fixed Y -axis. 
Because the direction of P differs only infinitesimally from the direction 
of PL, for the kinematic region under study, cPn is then also simply the 
azimuthal angle of the produced pion in the Lab reference frame. 

Margolis and Thomas (1978) showed that the almost-real photon is 
linearly polarized. Then if c/Jy is the angle between the polarization vector 
e and the reaction plane, and if 'P is the spin-polarization vector for the 
initial proton in the CM, one has (see Storrow, 1978) 

dCJ 1 dCJ I { . 
d dA. = - -d 1 - &'lin [~( 8) cos 2c/Jy + &' xH ( 8) sm 2c/Jy 

to '1-'n 2n to unpol. 

+ &' yP ( 8) cos 2c/Jy - &' z G( 8) sin 2c/Jy] + &' y T ( 8)} 

(8.1.23) 

where 8 is the CM scattering angle, &'lin is the linear polarization and 
here the direction 0 Y is along the normal to the reaction plane, i.e. along 
k x q in the CM. The various functions ~(8), H(8), P(8), G(8) and T(8) 
are dynamics-dependent reaction parameters that also depend upon the 
energy of the yp ~ np reaction. 

Margolis and Thomas (1978) also showed that ~:lies along the direction 
of the vector P _1_ as seen in the yp ~ np CM. Moreover the cross-section 
(8.1.21) is independent of the azimuthal angle <I> of Pin the Lab. Hence if 
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194 8 Analysis of polarized states: polarimetry 

for fixed cPn we average over the direction of P _1_ we are in effect averaging 
over cPy· In this case almost all terms in (8.1.23) average to zero and we 
are left with 

I da \ _ rxZ 2 IF(t)1 2 (Pl) 
\ dMlcpdtdtodc/Jn I - ---;-- Mlcp - m2 t2 

1 da I x-2 -d [1+P·nT(8)] 
n to unpol. 

(8.1.24) 

where n is the unit normal to the reaction plane and the angle brackets 
imply an average over <D. 

Since we are using the reaction as an analyser and we do not know the 
direction of P it is perhaps simplest to discuss (8.1.24) in the CM reference 
frame with fixed X- and Y -axes such that the pion has azimuthal angle 
cPn· Then the polarization-dependent term in (8.1.24) is just 

where T(8) is supposed known. 
A study of the c/Jn-dependence of the cross-section thus gives information 

on r!Jx and f!Jy. Ideally this could be done for values of e where T(8) is 
large, but it may be necessary in practice to integrate over e to increase 
the statistics. 

Unfortunately the very beautiful result (8.1.24) cannot be used directly 
for polarimetry, because we have ignored, in the above, all contributions 
arising from the purely hadronic diffraction production of the np system. 
It is usually assumed that the hadronic amplitude is due to Pomeron ex
change, does not depend on helicity and is essentially imaginary. Typically 
it is taken to be of the form iC exp( -bPi} for very small Pi, with C real. 
The slope b should reflect the 'size' R of the nucleus Z: b oc 11 R2. For Pb 
one estimates b ,...., 250 (GeV lc)2, so that the hadronic differential cross
section has a slope of about 500 (GeV lcf However, the cross-section in 
(8.1.24) has a sharp peak at 

(M2 - m2)2 
2 np 

Pj_= 22 ' 
PL 

which, for Mnp :::::::: 1.23 Ge VI c2 and PL = 200 Ge VIc, corresponds to the 
tiny value Pl = 1.5 x w-s (GeV lc)2. Thus a fit to the Pl distribution can 
help to estimate the hadronic part of the cross-section. 

For the region of such small values of Pl and ltl, the form factor F(t) 
can safely taken to be F(O) = 1. The observed Pl distribution can then 
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8.1 Stable particles 195 

be fitted by 

dO' I - dO' I c2 -bPi 
dP 2 - dP 2 + e 

j_ Expt j_ Primakoff 

(8.1.25) 

from which C and b could be determined, in principle. 
The net effect would then be that the cf>n-dependent part of (8.1.24) 

becomes 

1 + P · nT(8)f(Pi) (8.1.26) 

where 

p 2 - !5!_1 I !!!_I f( 1_) - dP 2 dP 2 
j_ Primakoff j_ expt 

(8.1.27) 

is a dilution factor such that the effective analysing power is T(8)f(Pi). 
In the experiment of Carey et al. (1990) mentioned earlier, where a 

proton beam of known polarization was used, a somewhat similar approach 
was taken to the analysis, and f, averaged over the Pi of the experiment, 
was measured to be 0.55 with an error of about ±0.18. 

Clearly there is a significant influence from the hadronic amplitude 
and (8.1.24) cannot be used as an absolute polarimeter as it stands. 
But the dilution factor is not catastrophic and (8.1.26) seems to offer 
a practicable approach to high energy polarimetry provided f can be 
measured accurately. 

The argument that led to (8.1.26) is actually flawed. The photopro
duction analysing power T(8) would be zero if the photoproduction 
amplitudes were all real! (see Appendix section A10.4). 

Thus there could be important interference effects between the Pri
makoff and hadronic amplitudes. However, as we shall now explain, this 
cannot change the form of (8.1.26) - only the physical interpretation of 
f(Pi) changes. 

Using methods based on (5.4.31) and on the analysis of resonance decay 
to be dealt with in Section 8.2, in which parity conservation is assumed, it 
is possible to show that the cross-section for 

p+Z---+n+p+Z, 

averaged over P 1_, depends on the initial proton polarization only via a 
factor 

(8.1.28) 

where A(pL, Pi, Mi;P' 8) is the proton analysing power of the reaction 

p+Z---+n+p+Z, 
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irrespective of the dynamical mechanism. It has to be determined experi
mentally. 

This can be seen in a simpler way. The cross-section must be invariant 
under space inversion. Thus the pseudovector P must occur in a scalar 
product with some other pseudovectors. A priori the latter could be k x q 
and k x p'. However, at fixed q, it follows that p' = P- q and so averaging 
over P _1_ causes P · (k x p') to reduce to - P · (k x q). Thus the only 
possibility is P · fi and (8.1.28) is the most general form possible. From 
this more general point of view the Primakoff analysis simply tells us in 
what kinematic regime we can expect to find a significant analysing power 
for the reaction 

p+Z---+n+p+Z. 

Despite these rather disappointing conclusions, it could still be possible 
to have an absolute Primakoff polarimeter if one had enough events to be 
able to restrict oneself to really very small Pi i.e. of order w-5 (GeV jc)2. 

For, from the study of Carey et al. (1990), one can deduce that in this 
kinematic region daiPrimakoff;::)OOdaiHadronic· 

(iii) M lJller scattering 
The reaction 

is, from a spin point of view, formally identical to elastic proton-proton 
scattering, so that all the formula relating CM reaction parameters to 
helicity amplitudes may be taken over from Table A10.3. 

Being an electromagnetic interaction we treat it in the Born, i.e. the one
photon-exchange, approximation, in which case all the helicity amplitudes 
are real. From the first two entries of Table A10.5 we see that the standard 
analysing power is then zero. However, the initial state spin correlation 
parameters Aap will be non-zero and the reaction can be used to measure 
the polarization of the beam provided that we use a polarized target with 
known polarization. This can be achieved by using very thin magnetized 
ferromagnetic foils, in which degrees of polarization of about 8% are 
attained. The direction of the spin-polarization is easily reversed. 

To begin with we work in the CM of the reaction. We choose our Y -axis 
such that the known target spin-polarization vector lies in the Y Z -plane. 
Let the beam and target spin-polarization vectors be specified in the CM 
frame by 

and (8.1.29) 
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8.1 Stable particles 197 

The general form of the differential cross-section d2CJ I dtd¢ is given in 
(5.6.12), in which particle B is the target. We must now calculate the 
reaction parameters Aij for our process. 

We are particularly interested in high energy electrons, so we may greatly 
simplify the calculation by going to the CM, where all the electrons are 
highly relativistic, and making use of the result (see subsection 4.6.2) that 
helicity is conserved for vector coupling in this situation. Thus neglecting 
terms of order m2 Is, where m is the electron mass, in our normalization, the 
only non-negligible, correctly symmetrized (see (4.2.16)) helicity amplitudes 
are >(Buttimore, Gotsman and Leader, 1978, Appendix A): 

cPl = Fna ( ~ + ~) 
cP3 = Fna~ (1 +Dei~ 
cP4 = -Fna~ ( 1 + ~) ei~ 

(8.1.30) 

where we have used (4.1.7) to generalize the Buttimore et al. results to 
¢ i= 0. Using these in the expressions given in Table A10.5 we find 

A(A) = A(B) = Axz = Azx = 0 

. 4 8 
A -A -- sm 
xx- YY- (4-sin2 8)2 

A _ sin2 8(8 - sin2 8) 
zz - (4- sin2 8)2 

Then (5.6.12) becomes 

d2CJ = _!_ dCJ [1 + sin4 8 fJjJ [JjJT 
dtd¢ 2n dt ( 4 - sin2 8)2 Y Y 

_ sin2 8(8 - sin2 8) fJjJ [JjJT] 
( 4 - sin2 8)2 z z 

(8.1.31) 

(8.1.32) 

Note that there is no azimuthal dependence. Under reversal of pT we 
then have the asymmetry: 

dCJ(P pT)- dCJ(P -PT) 
dt ' dt ' 

dCJ(P pT) + dCJ(P -'PT) 
dt ' dt ' 

X [sin2 8 [JjJy[JjJJ- (8- sin2 8)[JjJz[JjJ;] 
(8.1.33) 
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so that &y and [J}Jz can be determined by suitably varying &'J and &J. 
Note that the 'analysing powers' vary strongly with CM angle 8 and are 
large near 8 = n/2. Also the cross-section in this region is relatively large 
so that an efficient polarimeter is feasible. 

The technique of M0ller polarimetry has been used successfully in a 
range of experiments, most recently in the SLAC E142, E143, E154 and 
E155 experiments (Feltham and Steiner, 1997; Band, 1997) on polarized 
deep inelastic scattering. A statistical precision of 1%-2% is achieved in 
typically 15 minutes! 

For access to the experimental aspects of M0ller polarimetry the reader 
is referred to the Proceedings of the 12th International Symposium on High
Energy Spin Physics, Amsterdam, 1996 (World Scientific, Singapore, 1997). 

( iv) Compton scattering 
The reaction 

y+e---+y+e 

was studied in great detail in lowest-order QED by Lipps and Tolhoek 
(1954). For an unpolarized initial photon the cross-section is independent 
of the polarization of the electron. However, it does depend upon any 
linear polarization of the photon and for a circularly polarized photon 
depends also upon the polarization of the electron. Hence by scattering a 
laser beam of known circular polarization off the electrons and measuring 
the differential cross-section, one can learn about the spin-polarization 
vector of the electrons. 

This technique has been used with great success at several e+ e- storage 
rings, most recently at SLAC and HERA. 

At the SLC/SLD at SLAC (see Fig. 8.5), a 532 nm YAG laser beam, 
corresponding to circularly polarized photons of energy 2.33 eV in the 
Lab, collides almost head-on with a high energy (45.6 GeV) polarized 
electron beam. The electrons are scattered into a narrow forward cone 
and are detected in a Cerenkov detector. The photons are backscattered 
but are not detected. The polarization measurement involves a comparison 
of the detection rates when the circular polarization of the laser beam is 
reversed. The Compton polarimeter is capable of achieving a statistical 
accuracy of 1% in 3 minutes and polarizations are now quoted with a 
total accuracy of ±0.67%! 

At HERA there are two Compton polarimeters in operation, one using 
a pulsed Nd:YAG laser, the other using a continuous argon-ion laser. In 
both it is the backscattered photons that are detected. Statistical errors of 
0.4% are achieved in 10 minutes and an overall accuracy of about 3% is 
expected. 
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Fig. 8.5 Compton polarimeter at SLC/SLD (courtesy of J. Clendenin, 
L. Piemontese and M. Swartz). 

Consider now the kinematics of Compton scattering. Usually, in the 
literature, the reaction is discussed in what is called the laboratory frame, 
meaning the frame where the target electron is at rest. Here, the collision 
in the laboratory frame is between the laser beam and the fast-moving 
electron beam. So we shall, for clarity, refer to these frames as the electron 
rest frame and the Lab collision frame. The kinematics in these frames is 
shown in Fig. 8.6. The angle between the incoming laser beam and the 
electron beam is so small that it can be ignored, so that we have, in effect, 
a head-on collision and the two frames are related by a simple boost 
along the Z -axis. We assume some fixed axis system with the electron 
beam incoming along 0 Z. The photon is scattered into polar angles 
e = n - 8y, 4> = c/>y in the electron rest frame, as shown. 

Note that in the Lab collision frame a very high energy electron collides 
with a very low energy photon, so that the final state particles are largely 
swept forward along 0 Z. On the contrary, in the electron rest frame a 
very high energy photon collides with the stationary electron and the final 
state particles are largely swept along the negative OZ direction. 
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Lab 
collision 

frame 

Electron 
rest 

frame 

Fig. 8.6 Kinematics of Compton scattering. Initially the electron moves 
along 0 Z in the Lab collision frame; in both parts of the figure the 
Z -axis is to the right. 

In the electron rest frame we have the famous Compton relation 

me me - - - = 1 -cos e . 
q qo Y 

(8.1.34) 

The connection between the electron rest frame variables and the given 
Lab collision frame variables, the photon energy ko, the electron en
ergy Ee and the angle eL as shown, are (neglecting me in comparison 
withEe), 

e (me) sin Oy tan L = - . 
Ee 1- cos8y 

(8.1.35) 

Some care must be exercised in taking over the result of the Lipps-Tolhoek 
papers. Firstly, their results are presented in an electron rest frame with the 
Y -axis perpendicular to the reaction plane whereas we wish to analyse the 
electron's spin-polarization vector with respect to some fixed-axis system. 
Secondly, their paper was written prior to the invention of helicity states, 
so their photon density matrix is given in a basis that utilizes the states 
of linear polarization le(x)) and le(y)), given in (3.1.75), rather than in 
the helicity basis. The necessary alterations to the Lipps-Tolhoek results 
can easily be made by use of the results in subsection 3.1.12 and Section 
5.4. 

We suppose that a laser beam moving along the negative OZ direction 
contains a fraction 1 - f of its photons with linear polarization ,q;Iin along 
an axis at angle y to OX and a fraction f of its photons with circular 
polarization ,q; eire, where ,q; eire > 0 corresponds to positive helicity and to 
left-circular polarization in classical optics. If the beam collides with an 
electron whose spin-polarization vector is 'P = (gtlx,,q;y,,q;z) in the fixed 
reference frame then, the invariant differential cross-section is given, in 
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the electron rest frame, by 

d(J m~r6 ( q ) { 2 1 
dtd¢ = ------;'2 qo 1 +cos e, +me (qo- q)(1- cos 8y) 

· 2 &>eire [ + (1- f)&>lin cos(2y- 2¢y) sm e, + f-- &>z(qo + q) cos ey 
me 

- (fYJ> X COS ¢y + fJ}> y Sin ¢y )q Sin ey l ( 1 -COSey)} (8.1.36) 

where ro is the 'classical electron radius' e2 j(mec2). 

If we consider a purely circularly polarized laser beam (f = 1) and 
we analyse the data in the electron rest frame then a study of the ¢y
dependence will, in principle, yield all the components of the electron's 
spin-polarization vector P. 

In practice the polarization of the laser beam is known with great 
precision, whereas the cross-section measurement suffers from significant 
normalization errors. It is therefore better to study the asymmetry under 
reversal of the circularity of the photon polarization, i.e. to study 

d(J( &>eire) - d(J( -&>eire) 
d(J(&>eire) + d(J( -&>eire) 

_ fJ}> . [ fJ}> z( qo + q) COS ey - ( fJ}> X COS ¢y + fJ}> y Sin ¢y )q Sin ey l ( 1 - COS ey) 
- eue me(1 + COS2 8y) + (qo- q)(1 -COSey) 

(8.1.37) 
For longitudinally polarized electrons, where we attempt to measure &>2 , 

one uses cross-sections integrated over the azimuthal angle ¢y, in which 
case the measured asymmetry becomes 

(d(J(&>eire)- d(J( -&>eire)) _ -&> . &> A (e ) 
(d(J(&>eire) + d(J( -&>eire)) - eue z C y 

(8.1.38) 

where the underlying Compton asymmetry is 

Ac( e ) = -( qo + q) cos ey ( 1 - cos ey) . 
Y me(1 + cos2 8y) + (qo- q)(1- cos 8y) 

(8.1.39) 

For 100% right (R) or left (L) circularly polarized light the measured 
asymmetry is thus 

(d(J(R)- d(J(L)) = &> A (e ) 
(d(J(R)+d(J(L)) z c y. 

(8.1.40) 

The basic asymmetry Ac( 8y) is shown as a function of cos 8y in Fig. 8. 7 
for Ee = 47 GeV. 

Note that (8.1.39) can be written as a function of E~/ Ee, where E~ is 
the electron recoil energy in the Lab collision frame. Figure 8.8 shows the 
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-1 0 
cos By 

Fig. 8.7 The underlying Compton asymmetry Ac(8y) as a function of 
cos 8y, for Ee = 47 GeV (from Alexander et al., 1996). 

measured and theoretical asymmetry (8.1.40) at SLAC, for flJz = 77.5%, 
as a function of E~. 

It can be seen from these figures that the asymmetries are very large for 
8y near n, which corresponds to electrons with smaller recoil energy E~. 

( v) Polarimetry via decay distributions 
A seminal series of experiments on polarized deep inelastic lepton hadron 
scattering has been in progress at CERN for more than a decade, utilizing 
a high energy polarized muon beam (the European Muon Collaboration, 
Ashman et al. 1989; the Spin Muon Collaboration, Adams et al., 1997). 

The muons, say fl+, are produced by the decay in flight of high energy 
pions, n+ ~ fl+ + Vw In the Standard Model the neutrinos are entirely 
left-handed i.e. Av = -1/2. Consequentially, in the rest frame of the pion, 
where the muon and neutrino are produced back to back, the fl+ can only 
be produced with A,Jl = -1/2, because then is spinless. Thus in the pion 
rest system (more correctly in the helicity rest frame of the muon reached 
from the pion rest frame) the muons are -100% longitudinally polarized. 

In the Lab frame (more correctly in the muon helicity rest frame reached 
from the Lab frame) the muon spin-polarization vector will be different 
on account of the Wick helicity rotation discussed in subsection 2.2.2. The 
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Fig. 8.8 The measured and theoretical Compton asymmetry &>zAc(E~) 
at SLAC for Ee = 45.6 GeV and for &>z = 77.5%, as a function of 
electron recoil energy E~. The solid line gives the theory; the points are 
the measurements, made using a Cerenkov detector. 

203 

Wick angle 8wick will be given by (2.2.6), in which b = 8 = 8* is the 
angle between the muon and pion directions of flight, in the pion rest 
system and f3 = -f3n ~ -1. The rotation is about an axis perpendicular 
to the plane containing the muon and pion momenta, the latter taken to 
be along 0 Z in the Lab. 

As a consequence the purely longitudinal mean spin vector of a given 
muon in the pion rest frame will appear in the Lab frame to have z
component 

g;(lll(8*) = _ E" cos 8* + p* 
z E* + p* cos 8*' 

(8.1.41) 

where E* and p* are variables in the pion rest system, and will also have 
a component of 'P perpendicular to OZ. Averaging over the azimuthal 
angles of all muons with a given value of 8* yields g;~l(8*) = 0 for the 
ensemble. 

Only for strictly forward-going muons 8* = 0, i.e. the most energetic 
ones in the Lab, will g>z = -1. (Indeed for 8* = n, g>z = +1!) But the 
muon beam, of necessity, contains a cone of particles with a range of 
momenta. It will thus be an ensemble that is longitudinally polarized, 
with p(Jl) = g>~le(z), where l&>~ll < 1. For accurate work it is therefore 
necessary to measure g>~) for the beam. 
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Consider the concrete case of positively charged muons. The f.l+ eventu
ally undergo /3-decay in flight, f.l+ ~ e+vevf-i, and the shape of the positron 
energy spectrum is sensitive to the polarization of the muon and is con
trolled by the so-called Michel parameter (see Commins and Bucksbaum, 
1983, Chapter 3.2; for the transformation to the Lab see Combley and 
Picasso, 1974). One has 

dN = N [2 - 3i + 4y3 - p;;(l-l) (~ - 3i + 8y3) l 
dy 3 3 z 3 3 

(8.1.42) 

where y = Eel Ell is the ratio of the Lab energies of the e+ and f.l+ and N 
is the total number of muon decays. 

The spectrum dN jdy is shown as a function of yin Fig. 8.9. In practice 
QED corrections, which have a small but non-negligible effect on the 
spectrum, are also taken into account (Adeva et al., 1994). 

Using this approach the SMC were able to determine that &z = -0.82 
with an error of ±3% for their 100-200 GeV muon beam. 

1.5 

~ 
~ 1.0 

0.5 

0.8 1.0 
y 

Fig. 8.9 Positron energy spectrum in f.l+ - e+vev.u as a function of 
y = Ee/E.u with(---) and without(-) QED corrections (from Adeva 
et al., 1994.) 
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8.1.2 Reaction mechanism not known 

It is sometimes possible to use a reaction as a polarization analyser even 
though its analysing powers are not calculable from first principles. Often, 
some ingenuity is required in order to do so. 

(i) Beam and/ or target polarization adjustable 
If the target and/ or the beam can be put into a state of known polari
zation, either by electromagnetic means or by utilizing a parity-violating 
decay to produce the beam (see Section 6.4), so that the initial t~ or 
tt are known, then by measuring the </>-dependence of d2(J j dtd</> one 
can measure the generalized analysing powers (l, m; 0, 010, 0; 0, 0) and/or 
(0, 0; L, MIO, 0; 0, 0). This is discussed at length in Section 5.4. 

(ii) Double-scattering experiments 
Another approach is to rely on time-reversal invariance and to do a 
double-scattering experiment A+ B --+ C + D followed by C + D --+ A+ B. 
The initial beam is scattered through an angle e off one target and the 
scattered beam is re-scattered off an identical target through the same 
angle e. Suppose that both targets are unpolarized and that the initial 
beam is also unpolarized. The scattered beam C will be polarized, in 
general, so an analysis of the </>-dependent cross-section asymmetries for 
the second reaction, in the natural Lab analysing frame SLc, will yield the 
combination, see (5.4.14), 

Cm(e) = ~)21 + 1) [t~(C; e)] 
l SLc 
~m 

X (l, m; 0, 010, 0; 0, 0)~;~=-tB. (8.1.43) 

In deriving (8.1.43) we have used a form of (5.4.11) in which C is now 
the beam particle and we have stressed the e-dependence. C is produced 
with multipole parameters t~(C; e) in the CM of the first reaction, but, 
as discussed in subsection 3.3.2(ii), it is the multipole parameters in the 
appropriate frame SLc, where C is the incoming beam particle, that must 
be used in (8.1.43). From eqn (3.3.14), 

[t~(C;e)J = Ld~mr(rxc)t~r(C;e). (8.1.44) 
SLc , 

m 

Now from (5.4.2), for an unpolarized initial state, 

t~( C; e) = (0, 0; 0, Oil, m; 0, O)ff~-;;:gv (8.1.45) 

and assuming time-reversal invariance we have, from (5.3.9) and (5.3.3), 

(0, 0; 0, Oil, m; 0, O)ff~-;;:gv = (l, m; 0, 010, 0; 0, O)~;~:>:B 

= e-imn(l, m; 0, 010, 0; 0, 0)~;~:'<1B (8.1.46) 
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Thus 

[t~(C;e)Js = Ld~m'(o:c)e-im'n 
LC m' 

x (1, m'; 0, 0[0, 0; 0, O)CD--->AB. (8.1.47) 

We see from (8.1.43) and (8.1.47) that what is measured is a bilinear 
combination of the analysing powers of the reaction CD ~ AB. If the 
beam can be passed through a magnetic field between the two scatterings 
(see subsection 5.4.2(ii)) then for the same angle e several combinations 
Cm(e, bi) can be measured, involving different bilinear combinations, with 
known coefficients, of the analysing powers. A sufficient number of mea
surements with various values of the magnetic field may allow one to 
solve (8.1.42) and (8.1.47) for the (l,m;O,O[O,O;O,O), though sign ambigui
ties may remain that must be settled by other means. A beautiful example 
of this technique can be found in Button and Mermod's experiment on 
non-relativistic deuteron-deuteron scattering (Button and Mermod, 1960). 

A word of caution is necessary, however. What is hidden in the usual 
discussion (and in the above) is the fact that the reaction parameters 
one is trying to measure also depend, in principle, on the CM energy 
of each collision. Since the scattered particle from the first reaction loses 
energy in the Lab frame, especially if it scatters through a large angle, 
the CM energy of the second reaction will be less than for the first. Care 
should be taken to assess in any given situation whether this is a relevant 
consideration. 

We consider some interesting practical examples. 

(a) p + p ~ p + p followed by p + p ~ p + p 
After the first reaction, taken to lie in the XZ -plane, proton C emerges 
with spin-polarization vector 'P = (0, A( e), 0) where A( e) is the analysing 
power. There is no Wick helicity rotation in this case (as can be seen using 
(8.1.44) or from the fact that the rotation is about OY), so that the same 
vector 'P specifies the spin polarization for the incident nucleon in the 
second reaction. For the second reaction the Y -axis of the SLc is in the 
same direction as the Y -axis of the Lab frame so we may use (5.6.12) to 
get 

(8.1.48) 

so that the ¢-dependence yields A( e) up to a sign. The method is relatively 
simple for spin-1/2 particles. The practical problem is that A(e) gets very 
small at high energies, at least for moderate t-values. 
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(b) A + B --+ y + D followed by y + D --+ A + B 
Consider the state of polarization of the y produced in the first reaction 
from an unpolarized initial state. From (5.4.2) 

t1 (y e)= (0 O·O Oil m·O O)A+B->y+D 
m ' ' ' ' ' ' ' . 

(8.1.49) 

The absence of helicity zero for photons implies, from the properties 
of the matrices T~(s = 1), see (3.1.26), that the only non-zero reac
tion parameters, see (5.3.2), have m = 0 or m = 2. Also, from (5.3.7), 
(0, 0; 0, Oil, 0; 0, 0) = 0. Thus (3.1.84) and (3.1.87) imply that the photon can 
only be linearly polarized. Moreover, from (5.3.8), for a parity-conserving 
reaction (0,0;0,012,2;0,0) is real. Thus in (3.1.87) y = 0 and from (3.1.86) 
the photon is linearly polarized along OX in its standard helicity frame. 

Because we are dealing with a photon there is no Wick helicity rotation 
and the t~(y; e) given by (8.1.49) are the correct multipole parameters 
for the photon as the beam particle in the second reaction. (The second 
reaction is described in a frame whose Y -axis is in the same direction as 
the Lab Y -axis of the first reaction.) 

For the time-reversed reaction y + D --+A+ B, with linearly polarized 
y, we have from (5.4.11) 

(2) 1 d(J ""' l . 3 2n dt 7,;;'(21 + 1 )tm(Y, e) 

x (l, m; 0, 010, 0; 0, 0)~~-->AB (8.1.50) 

If conventionally we define the photon tensor analysing power of the 
above reaction yD --+ AB by 

_ 2.j5 . . yD->AB 
~(e)= v'3 (2, 2, 0, OJO, 0, 0, O)e,Q>=O (8.1.51) 

and use the fact that for photons (as can be deduced from (5.3.2) and 
(3.1.26) or from (5.4.2) and (3.1.87)) 

1 
(2, 0; 0, OJO, 0; 0, 0) = fffi (8.1.52) 

ylO 

and that 

d(Y; e)= (O, o; o, 012, 2; o, o)AB->yD = (2, 2; o, 010, o; o, o)~~-;AB 
by time reversal, and so by (5.3.3) 

t~(y;e) = (2,2;0,0J0,0;0,0)~~;AB 

= v'3 ~(e) 
2.j5 ' 
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then we eventually end up, for the second reaction, with 

d2(J 1 d(J { 2 } 
dtd¢ = 2n dt 1 + [~(e)] cos 2¢ (8.1.53) 

so that ~( 8) can be found, up to a sign, from the azimuthal dependence. 
Of course if one has a photon beam of known linear polarization, ~( 8) 

can be measured in a much simpler fashion: see Appendix 10.4. 

(iii) Asymmetries in inclusive reactions 
It is an empirical fact that many high energy inclusive hadronic reac
tions have a significant polarizing power (e.g. pp ~AX) and/or a large 
analysing power (e.g. pp ~ n±X). These polarizing and analysing pow
ers appear to remain big even for large-momentum-transfer reactions, 
in contradiction to naive perturbative QCD expectations. Some possible 
mechanisms for these are discussed in Chapter 13. 

There is, to date, no generally agreed dynamical explanation for the 
observed behaviour. However, the event rates are high and provided the 
analysing power can be measured empirically to sufficient accuracy they 
can be utilized as polarimeters. 

Perhaps the most promising reaction for polarization analysis of proton 
beams is 

p + p ~ n+,-,o +X. (8.1.54) 

For an unpolarized target, let the unknown spin-polarization vector for 
the incoming proton beam be 'P = (21\, &Py, &Pz) with respect to some 
fixed Lab or CM reference frame. Then, according to the arguments given 
in Section 5.8, the differential cross-section will be given by eqn (5.6.12) 
with the target spin-polarization vector pB put to zero and the various 
analysing powers now referring to the reaction (8.1.54). One has then 

d2(J 1 d(J . 
dtd¢ = 2n dt [1+AN(&Pycos¢-&Pxsm¢)] (8.1.55) 

where we have followed convention and utilized (see (5.6.13) and discussion 
thereafter) 

(8.1.56) 

for the proton analysing power of the reaction. 
For an unpolarized beam and polarized target exactly the same formula 

holds with AN ~-AN (since A(B) = -A(A) in this case) provided the spin
polarization vector of the target is specified in its natural helicity rest 
frame reached from the CM, as explained in subsection 3.3.1. 

The azimuthal dependence in (8.1.55) then allows us to determine the 
component of 'P perpendicular to the collision axis, provided AN(e) is 
known. 
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Measurements of AN(8) were originally carried out at Argonne, Brook
haven and CERN, but the experiments of most relevance to high energy 
polarimetry have been those carried out at Fermilab using the 200 Ge V / c 
tertiary polarized proton beam described in Section 6.4. 

8.2 Unstable particles 

There is a vast literature concerning the derivation of the properties, 
especially the spin and parity, of a resonance from an analysis of its 
decay, stemming from the heyday of the 1960s when vast numbers of new 
particles were discovered (Jackson, 1965). Recently this kind of analysis 
has again come into vogue with the study of the charm and bottom 
families and the search for glueballs. Our concern is with cases where the 
resonance or mistable particle is well known and we wish to use its decay 
purely to learn about its density matrix as it emerges from the production 
reaction. 

The resonance typically decays into two or three particles and their 
angular distribution is presented in their CM, i.e. in a rest frame of the 
decaying particle. As mentioned in subsection 3.3.2 several choices of 
frame are popular - helicity, Gottfried-Jackson, Adair, transversity. The 
density matrix in one of these frames then differs from the density matrix 
in the CM of the production reaction by at most a rotation. 

We shall discuss decay distributions almost entirely in the helicity rest 
frame of the decaying particle. Details about other frames can be found 
in the review article by Bourrely, Leader and Soffer (1980). The treatment 
we shall give is both general and straightforward, and the use of multi pole 
parameters is far simpler and clearer than density matrix elements. 

8.2.1 Two-particle decay of spin-J resonance 

We consider the decay of particle C of arbitrary spin J, C ~ E + F, where 
E, F are also of arbitrary spin. We consider this decay in the helicity rest 
frame Sc of C, where E emerges with momentum PE = (PE, 8E, cPE). The 
initial state of C is then described by the CM helicity density matrix p( C) 
or the CM multipole parameters t~(C) of the production reaction. 

The decay amplitude is a special case of (4.1.8) in which the initial state 
has a unique value of J: 

Hef;c(8E, cPE) OC (efiT1 1c)eicrf>Ed1Jl.(8E) 

where e, f, c refer to the helicities of E, F and C and fl = e- f. However, 
for a single particle C we must have c = .Ac = Jz. Then by rotational 
invariance the matrix element cannot depend on c. 

We thus write 

(8.2.1) 
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where the Mc(e,f), the reduced helicity amplitudes, are dynamics dependent 
parameters describing the decay. 

We shall normalize the Mc(e,f) so that 

L 1Mc(e,f)l2 = 1. (8.2.2) 
e,f 

(i) The decay angular distribution 
From (5.2.1) and (5.2.3) the normalized angular distribution of E is given 
by 

ic/JE(c-e')dJ ((} ) (C)dJ ((} ) 
X e CJ.l E Pee' c'J.l E · 

Since p is hermitian (8.2.3) can be rewritten as 

2J+1" 2{ [ '] W((}E, cf>E) = ~ ~ IMc(e,f)l cos cf>E(c- c) Re Pee' 
e,f 
c,d 

-sin [cf>E(c- c')] Im Pee'} d~i(}E)d~J.l((}£). 

If parity is conserved in the decay then from (4.2.3) 

Mc(e,f) = '1E'1F (-1)J-sE-sF Me( -e, -f) 
'1C 

and one obtains, for any production process, 

(8.2.3) 

(8.2.4) 

(8.2.5) 

(8.2.6) 

for a parity-conserving decay, W is symmetric under reflection through 
the origin of Sc. 

If parity is conserved in the production reaction and if either 

(1) the initial state in that reaction is unpolarized, or 
(2) it is polarized, the state of polarization satisfies the experimental 

conditions (sl)-(s3) of subsection 5.4.2(iv) or (s4) of subsection 5.4.4 
and C emerges in the beam-containing plane perpendicular to the 
quantization plane 

then p(C) will satisfy (5.4.8) and for any decay mechanism, one has 

(8.2.7) 

i.e. W is symmetric under reflection through the Y -axis of Sc. 
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If the above holds for the production reaction and the decay conserves 
parity then (8.2.6) and (8.2.7) give 

(8.2.8) 

which implies that the part of (8.2.4) that depends on Im Pee' must vanish 
in this case, and one has 

2J+1 2 I 
W(OE, 4JE) = ~ L IMc(e,f)l cos [4JE(c- c)] 

e,f 
c,d 

x Re Pee' d:ieE)d:,11(8£). (8.2.9) 

Hence the decay distribution in this case yields information only on 
Re Pee'· Since for this case (5.4.8) holds, this is equivalent to obtaining 
information only on the even-polarization part of p. In fact, this is a 
special case of a completely general result (see the next section) that in 
any parity-conserving decay, no matter what the production reaction is, 
W(8E,4JE) depends only on the even multipole parameters t~(C) of C. 

(ii) Distribution of the final state multipole parameters 
The reaction formalism developed in Section 5.3 simplifies enormously 

when the initial state consists of a single particle. With the multipole pa
rameters all specified in the helicity rest frame of C, the final state multipole 
parameters are controlled by reaction parameters (l, mil', m'; L', M')¢E in 
which the dependence on eE is now explicit: 

(l,mil',m';L',M')¢E = 4
1 ~Cz(l',m';L',M') 
n 21 + 1 

X ~~m'-M'(4JE, 8E, 0) (8.2.10) 

where the Cz, the decay parameters dependent on the decay amplitude, are 
constants and the angular functions are the well-known representation 
functions of the rotation group (Rose, 1957). In fact 

~~m'-M'(4J,8,0) = e-im¢d~,m'-M'(8). (8.2.11) 

Explicitly, with our normalization convention (8.2.2) and when the spin 
of Cis J, 

Cz(l',m';L',M') = [(2J + 1)(2sE + 1)(2sp + 1)] 1/2 (-l)J+srsE 
(21' + 1)(2L' + 1) 

x LM~(e,f)Mc(e- m',f- M') (l',m'lsE,e;sE,m'- e) 
e,f 

x (L',M'Isp,f;sp,M'- f) 
x (l,m'- M'IJ,e- f;J,m'- M'- e +f). (8.2.12) 
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The relation between the initial and final state multipole parameters is 
then 

,j2l + 1 Cz(l', m'; L', M') 

m 

The decay parameters enjoy the following properties: 

(Q() Normalization: 

Co(O,O;O,O) = L 1Mc(e,f)l2 = 1. 
e,f 

({3) Z-value constraint: 

c (l' I. L' M') = 0 l ,m, ' if I m' - M' I > l. 

(y) Reality: 

Ci(l',m';L',M') = Cz(l',-m';L',-M'). 

(6) Parity: if parity is conserved in the decay then 

C (l' -m' · L' - M') = (-1)1+1' +L' C (l' m' · L' M') 
l ' ' ' l ' ' ' • 

Thus 

Cz(l', 0; L', 0) = 0 if l + l' + L' is odd. 

(8.2.13) 

(8.2.14) 

(8.2.15) 

(8.2.16) 

(8.2.17) 

(8.2.18) 

When (8.2.18) is combined with (8.2.16) we have, for a parity conserving 
decay 

C (l' m' · L' M') is { . re~l } if l + l' + L' is { even} . (8 2 19) 
1 ' ' ' 1magmary odd · · 

It is clear from (8.2.12) that there will be linear relationships amongst the 
different Cz(l',m';L',M') for afixed set of values ofm' and M', since they 
are all expressed in terms of the same product M~(e,f)Mc(e-m',f -M') 
of matrix elements. An example will be given in subsection 8.2.1(ix). 

As a special case of (8.2.13) the decay distribution is 

1 2J 

W(eE, ¢E)= 4n L Cz(O, 0; 0, 0) L t~(C)Yzm(eE, ¢E) 
lzO m 

(8.2.20) 

where we have used the relation for the spherical harmonics 

(I) - ~ * ~m.o(¢, e, 0)- v 2T+1 Y1m(e, ¢) (8.2.21) 
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as well as 

and 

A crucial feature is that for a parity-conserving decay only even values of 
l appear on the right-hand side of (8.2.20). 

It is important to note that the t~f~,(E, F) are the multipole parameters 
in the helicity rest frame Sc of C. They are also the correct multipole 
parameters in the helicity rest frames SE, Sp of E and F reached from Sc. 

The generalization of (8.2.20) to the two-body decays of unstable par
ticles C1, C2 of spin J1 and h created in some reaction, i.e. 

A+B ~ C1 +C2 

C1 ~ E1 +F1 

C2 ~ E2 +F2, 

where the decays are independent of each other, is straightforward: 

1 2J, 2h 

W(e1, </>1; e2, </>2) = 4n L L Cz, (0, 0; 0, O)C~z(O, 0; 0, 0) 
h?:O l2?:0 

X L t~:2m/C1, C2)Yz1m1 (81, <f>l)Yz2m2(82, </>2) 

(8.2.22) 

where the t~;2m2 ( C1, C2) are the joint multi pole parameters for the produced 
C1 and C2 particles. Of course all angles in (8.2.22), i.e. 81, </>1 for E1 and 
82, </>2 for E2, refer to the helicity rest frames Sc1 and Sc2 of C1 and C2. 
(There is also an obvious generalization of (8.2.13).) A nice application of 
this formalism to e-e+ ~ r-r+ followed by r- ~ re-v, and r+ ~ n+v, 
will be given in subsection 9.2.1(iii). 

In the following we shall deal just with the simpler case (8.2.20). 
We note the following general properties that follow from (8.2.20) or 

(8.2.13). 

(ex) If parity is conserved in the decay then (8.2.18) implies that W(8E, <f>E) 
depends only on those t~( C) with l even. 

(/3) For an unpolarized initial state, i.e. t~( C) = 0 for l ;::: 1, 

l'L' tm'M'(E,F) = 0 if m' =/= M'. (8.2.23) 

In particular, for the effective multi pole parameters of E (or F) 

l' tm,(E) = 0 if m' =/= 0. (8.2.24) 

Note that (8.2.23) and (8.2.24) are much stronger results than in the 
2 ~ 2 reaction case. 
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(y) If parity is conserved in the decay then 

(8.2.25) 

For an unpolarized initial state the only non-zero effective multipole 
parameters for E (or F) are the tb with 11 even. 

(<5) If the production reaction gives a p(C) that satisfies (5.4.8) (see the 
discussion after eqn (8.2.6)) and if the decay conserves parity then 

(8.2.26) 

Equation (8.2.8) for W(OE, <fJE) is just a special case of this general 
relation. 

(iii) Moments of the experimental distributions 
Let G(OE, <fJE) be any function of the polar angles of E in Sc. We denote 
by (G) the average, over all angles, of G weighted by the normalized decay 
distribution W(OE, </JE), i.e. 

(8.2.27) 

By taking moments of suitable multipole parameters of the decay 
products one can isolate individual multipoles t~( C) of the initial state. In 
complete generality one has, from (8.2.13), 

( [' L' (l)* ) _ 1 I I • I I I ) 
tm'M'~mm' M' - ~C1(l ,m ,L ,M )tm(C 

' - y2l + 1 
(l ::;; 2J). (8.2.28) 

The simplest example, where no spin properties of E or F are measured, 
is (see (8.2.13) and (8.2.21)) 

1 I 
(Yim) = ~~~:=CI(O,O;O,O)tm(C) (l::;; 2J). (8.2.29) 

y4n 

To use (8.2.28) in practice one requires a table of ~-functions. These 
can be obtained from (8.2.11) and the explicit table of d~11 in Appendix 
1. For l ~ 3 one must resort to recursion relations. A new and simplified 
form of these is given in Appendix 1, where also the detailed symmetry 
properties of the d~11 are stated. 

Note that: 

(a) In principle, a particular t~(C) can be found from many different 
moments, i.e. from all those with lm1 - M11 ::;; l. In practice, however, 
one will not know the C1(l1, m'; L', M1) needed on the right-hand side 
of (8.2.28) for arbitrary values of its arguments and one will not, in 
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any case, be able to measure joint multipole parameters very easily. 
The simplest way to obtain the t~( C) is discussed below. 

({J) For a parity-conserving decay the right-hand side of (8.2.29) is zero 
for l odd. The equation is nevertheless useful, and the left-hand side 
should be calculated from the data also for odd l as a check on 
experimental biases. 

(y) Moments with l > 2J must give zero. (This is a general result on the 
maximal angular complexity in the decay of a spin-J particle.) If they 
do not there are either experimental biases or C is not what it was 
thought to be! 

We see in general that the moments of the angular distribution of the 
particles, or of their multi pole parameters, give us information only about 
the product of t~( C) and certain decay parameters whose value depends 
upon the decay mechanism. 

For a parity-violating decay, the decay distribution functions as a com
plete analyser of the polarization state of C, so all we require to know are 
the decay parameters Cz(O, 0; 0, 0). Of these, 

N = min{(2sE + 1)(2sp + 1) -1;2J} 

are independent. 
For a parity-conserving decay we need the decay distribution and the 

distribution of any one of the odd multipole parameters of either E or F 
in order to get a complete analysis of the state of polarization of C. We 
thus require to know the Cz(O,O;O,O) and, say, the Cz(1,0;0,0). In total 
these depend upon 

min { (2sE + 1 ~2sp + 1) _ 1; 2J} 
N9 = or 

. {(2sE + 1)(2sp + 1) _ !. 21} 
mm 2 2' 

real parameters, for (2sE + 1)(2sp + 1) even or odd, respectively. 
If we cannot calculate the C1 from first principles, then in order to use 

a decay as an analyser we must first carry out N or N &' measurements 
on the decay products in such a way that the polarization state of C is 
irrelevant, i.e. by measuring moments with l = m = 0 (see eqn (8.2.28)). 
This gives us the minimum required number of Cz and thereafter the decay 
can function as a complete analyser for arbitrary states of polarization of 
c. 

Fortunately many decays in Nature have N9 = 0 or N = 1 so the 
whole problem of finding the C1 disappears or at least becomes relatively 
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simple. We shall refer to decays with N fl' = 0 and which thus automatically 
function as analysers as magic decays. 

Moreover, many high-spin resonances undergo a 'decay chain', i.e. a 
sequence of two-body decays of which the last, at least, has Nfl' = 0 or 
N = 1, and we shall show later how this fact can be used to bypass the 
problem of finding the C1 for the intermediate links of the chain. 

(iv) Magic decays 
We now list the magic decays. The decay parameters are given in terms 
of vector addition coefficients, which are fully tabulated in Appel (1968) 
or can be extracted from the table of Clebsch-Gordan coefficients in any 
biennial 'Review of particle properties' in Phys Rev D, for example Barnett 
et al. (1996). The following results are for the case where the particle with 
non-zero spin has decay angles 8£, cPE· 

(a) J ~ 0 + 0 (e.g. p ~ nn, f ~ nn, D ~ Kn): 

Cz(O, 0; 0, 0) = ( -1)1 .j2J + 1 (l, OIJ, 0; J, 0) l even. (8.2.30) 

(b) J ~ 1/2+0 with parity conserved and J ~ v +0 with maximal parity 
violation as in the Standard Model (e.g.~~ Nn, c ~ vn): 

C1(0, 0; 0, 0) = ( -1)1- 112 .j2J + 1 (l, OIJ, 1/2; J, -1/2) 

C1(1, 0; 0, 0) = ~( -1)1- 1/ 2 .j2J + 1 (l, OIJ, 1/2; J, -1/2) 

Cz(1, 1;0,0) = 0. 

l even. 

l odd. 

(8.2.31) 

(c) J ~ photon + 0, parity conserved (e.g. w ~ yn, D*+ ~ yD): 

Cz(O, 0; 0, 0) = ( -1)1- 1 .j2J + 1 (Z, OIJ, 1; J, -1) l even 

C1(1,0;0,0) = (-1)1 .j2J + 1 (Z,OIJ, 1;1,-1) l odd 

Cz(2, 0; 0, 0) = ( -1)1- 1 /I .j2J + 1 (l, OIJ, 1; J, -1) l even 

C1(2,2;0,0) = (-1)1- 1/{.}21 + 1 (1,211, 1;J, 1) l even 

C1(1, 1; 0, 0) = C1(2, 1; 0, 0) = 0. (8.2.32) 

(d) J ~ 1 +0, parity conserved and intrinsic parities satisfy 170171 = ( -1)1 111 
(e.g. lp ~ pn, a2 ~ pn, w(1670) ~ pn): same as (c). 

(v) The decay C(spin J) ~ E(spin 1/2) + F(spin 0) 

The decay J ~ 1/2+0 with or without parity conservation is of particular 
interest, so we study it in some detail. We split each decay amplitude into 
a parity-conserving (PC) and a parity-violating (PV) piece, 

M(A) = Mpc(A) + Mpv(A) A= ±1/2, (8.2.33) 
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such that 

where the plus and minus apply to Mpc and Mpv respectively and where 
17 is the phase factor in eqn (8.2.5). 

There are three real linearly independent parameters controlling the 
decay, 

oc = 2 Re (MpcMf.v) f3 = 2 Im (MpcMf.v) 
IMPcl2 + IMPvl 2 ' IMPcl 2 + IMPvl2 ' 

IMPcl2 -IMPvl2 
y = - -,----------c~---:---= 

IMPcl2 + IMPvl 2 

(8.2.34) 

which satisfy oc2 + /3 2 +y2 = 1. Our definitions of oc, /3, y have been chosen so 
as to agree with those used in the Review of Particle Properties (Particle 
Data Group, 1978) for the case A --+ Nn. As a consequence our y is 
opposite in sign to they defined in Jackson (1965). 

If parity is conserved one has oc = f3 = 0, y = -1. 
The decay parameters are given in terms of these by 

Cz(O,O;O,O) = (-1)J-l/2 .j2J + 1 (l,OIJ,1/2;J,-1/2) 

x { ~} for l { ~v;~ } 

Cz(1,0;0,0) = (-1)J-l12{f.j2J + 1 (l,OIJ,1/2;J,-1/2) 

x { ~} for l { ~v;~ } 

C1(1, 1;0,0) = r,{f.j2J + 1 (l, 11J, 1/2;J, 1/2) (-y + i/3) 
= 0 for l even 

with f( = 1'/C1'/E1'/F in terms of intrinsic parities. 

for l odd 

(8.2.35) 

From these and eqns (8.2.13), (8.2.20) and (8.2.28) we learn the following. 
(a) If parity is conserved we have a magic decay; thus a measurement of 

W(OE, c/JE) and the distribution of any one component of the polarization 
of E will yield a complete analysis of the t~(C). (Recall that f!/Jz = .J3tb(E), 
f!/Jx = J372(t~1 - tl} and f!/Jy = i.J372(t~ 1 + tl), the components referring 
to the axes in the helicity rest frame of E.) 

(b) If parity is not conserved a measurement of the decay distribution 
W(OE, cfJE) yields the t~(C) for l even and oct~( C) for l odd. The asymmetry 
parameter oc can be found most simply from the average longitudinal 
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polarization of E: 

(.9Jz(E)) = y'3C0(1,0;0,0) =a. (8.2.36) 

The most common decays of this type are e.g. A---+ Nn, L ---+ Nn. 
Let us assume C is produced in a parity-conserving reaction in a 

situation such that eqn (5.4.8) is satisfied. Then t~ 1 (C) = t~(C), t6{C) = 0 
and the polarization vector of C is normal to the production plane, i.e. 
along the Y -axis in the helicity rest frame of C. Explicitly then 

W((h, </JE) = 4~ ( 1 + a£?1>; sin (}e sin (/JE) (8.2.37) 

g1vmg rise to the well-known up-down symmetry with respect to the 
production plane. 

If (£?1>~,, £?1>;,, £?1>~) are the components of the polarization vector for E in 
its helicity rest frame SE, one has 

W ( 8 E, cp E )£?1>~ = 4~ ( Cl. + g>; sin 8 E sin cp E) 

11g>C 
W(eE, c/YE)£?1>~, = - 4: (y cos eE sin c/YE + f3 cos c/YE) (8.2.38) 

E 11£?1>~ 
W(eE, c/YE)g>y' = ~ (/3 cos eE sin c/YE- y cos c/YE) 

where 11 is the phase factor in eqn (8.2.5). 
If we define a 3-vector ii!JE in the rest frame Sc of C, such that its 

components (ii!J~, q;;, ii!J~) are numerically equal to the components of 
g>E along the axes of the Adair rest frame of E (the Adair rest frame is 
reached from Sc by a pure Lorentz transformation along the direction of 
motion of E), then (8.2.38) can be written as a 3-vector equation in Sc: 

4n W(eE, c/YE)ii!JE =(a+ e · 'Pc)e + 11Y [ex (ex 'Pc)J 

+ 11f3(e X pC) (8.2.39) 

where e is a unit vector along the momentum of E. Note that our formula 
has explicit reference to the relative parities of the particles in it (through 
11) and also to the spin J of C. It will thus only agree with the formula 
given by the Particle Data Group in reactions like A ---+ N n where 11 = -1. 

(vi) Fermionic decay C(J) ---+ E(lt) + 0, J 2: 3/2 
It is now necessary to measure the average values for each of the tb(E), 
which, from (8.2.28) yield 

I l' ) I \t0 (E) = Co(l ,0;0,0). (8.2.40) 

(If parity is conserved in the decay, the right-hand side = 0 for l' odd.) 
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Then from (8.2.12) we obtain 

CI(O,O;O,O) = J2T+1Co(l,O;O,O), (8.2.41) 

which is another example of a reaction's power to analyse being related 
to its power to polarize. 

There are then two possibilities. 

(a) If parity is not conserved, all the C1(0, 0; 0, 0) being now known the 
distribution of E functions as a complete analyser for the state of 
polarization of C. 

(b) If parity is conserved the C1(0,0;0,0) with odd l are zero. The decay 
distribution yields the t~( C) only for l even. 

To find the t~( C) with odd l, one studies the distribution of tb (E) for 
any odd value of l'. One thus requires the decay parameters C1(l', 0; 0, 0), 
which are calculated as follows. 

One solves (8.2.12) for the moduli squared of the decay matrix elements 

2 1 "'"' 1Mc(21)1 = 2h + 1 ~(21 + 1) (h, 2tlh,2t; l, 0) 

x Co(l, 0; 0, 0) (8.2.42) 

(note that the left-hand side is just p;.1;_1 (El) if C is unpolarized) and then 
substitutes in 

C1(l',O;O,O) = J2T+1L \lt,2tlh,2t;l',O) 
At 

X (J, 2tll, At; l, 0) 1Mc(21)12. (8.2.43) 

In electroweak interactions, which violate parity, it often happens that 
the decaying particle C is produced with longitudinal polarization .'?l'f. In 
this case the angular distribution of E is given by 

(8.2.44) 

For many resonance decays the values of the decay parameter rx are 
quite well known, as shown in Table 8.1. Equation (8.2.44) will be of use 
in discussing reactions like e+ e- ~ A+ X where, in the Standard Model, 
one expects the As to be highly polarized longitudinally (see subsection 
9.2.2(ii)). 
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Table 8.1. Values of the 
decay parameter a for various 
hyperon decays 

Decay Value of a 

A---+ pn- 0.642 ± 0.013 
~+ ---+ pno -0.980 ± 0.016 
~+---+ nn+ 0.068 ± 0.013 
~----+ nn- -0.068 ± 0.008 
3°---+ An° -0.411 ± 0.022 
.!::. ---+An- -0.456 ± 0.014 
At---+ An+ -0.98 ± 0.19 
At---+ ~+nO -0.45 ± 0.32 

(vii) Fermionic decay chains 
A common situation is that the produced fermion C decays sequentially, 
emitting a spin-0 meson at each step. We thus consider 

C(J)---+ Et(h) + 0 

'>. E2(h) + 0 

"' (8.2.45) 

'>. En(Jn) + 0 

"' E(l/2) + 0. 

We denote by t~(Ek) the multipole parameters of Ek in its helicity rest 
system as reached from the helicity rest frame of its parent Ek-l· 

From the discussion in (iv) above, a study of the distribution of E in 
the frame SEn' and if necessary of the distribution of one of its polarized 
components, will always yield all the t~(En) whether or not parity is 
conserved. From (iv) or (v) the distribution of En and one of its odd 
multipoles t~(En) is enough to give all the t~(En-d etc. 

In principle, therefore, one can work one's way back up the chain until 
one obtains all the t~( C). 

(viii) Bosonic decay chains 
We consider the decay of a heavy boson and suppose that it is dominated 
by a sequence of two-body decay as in (8.2.45), but with various possi
bilities for the final decay. We assume that parity is conserved in each 
decay. 

There are three cases of interest, depending on the form of the last 
decay in the chain. 
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(a) If the last decay is of the form En(Jn) -4 E(O)+O then the distribution 
of E in SEn gives the even-l t~(En), but there is no way to find the 
t~(En) with odd l. Proceeding up the chain one ends up with only the 
even-multipole parameters of the original resonance C. 

(b) If the last reaction is of the form En(Jn) -4 photon + 0 and if the 
state of polarization of the photon can be measured (see subsection 
3.1.12) then since the decay is magic all the required decay parameters 
are known (see eqn (8.2.32)) and one can obtain all the t~(En). One 
can then work back up the chain to obtain all t~( C) of the original 
resonance. 

(c) If it is possible to detect decay into a stable fermion-antifermion pair, 
e.g. p -4 tr Jl+, and if the longitudinal polarization of the fermions 
can be measured then all t~(En) can be found and, proceeding up the 
chain, eventually all t~( C). 

Suppose the final decay is En(Jn) -4 £(1/2) + E(1/2). The decay param
eters that appear in the angular distribution of E and of its longitudinal 
polarization are, from (8.2.12), 

Cz(O,O;O,O) = (-1)1"V2In + 1 [(1- c) (l,OIIn,O;Jn,O) 

- c(l, Olin, 1 ;Jn, -1)] for l even 

Cz(1,0;0,0) = c(-1)J"+lJ2In3+ 1 

X (l, Olin, 1 ;Jn, -1) for l odd, 

(8.2.46) 

where c is a measure of the relative decay probabilities into helicities ++ 
or +-. Specifically, 

(8.2.47) 

Thus a measurement of the moments of the distribution of E and of 
its longitudinal polarization will give all the t~(En) as functions of one 
parameter c. To find E requires the measurement of a correlation between 
the spins of E and E. If the spin projections for E and E are referred to 
the axes of their respective helicity rest frames, then 

(8.2.48) 

For In = 1, and where the decay is into a lepton-anti-lepton pair 
coupled purely through a minimal electromagnetic-type y~' coupling (e.g. 
p -4 Jl- Jl+) one finds that 

( 2 2 )-l 
E = 1 + 2m1 /MEn 
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222 8 Analysis of polarized states: polarimetry 

where mz and MEn are the lepton and resonance masses. Thus E"' 1 and 
the decay functions as a very efficient analyser. In this case, clearly one 
need not measure E. 

(ix) Decay of W-boson 
As discussed in Chapter 9 one of the most remarkable developments in 
particle physics has been the prediction and discovery of the massive 
vector bosons w±, Z 0 associated with the unification of the weak and 
electromagnetic forces. Polarization phenomena in the decay of the Z 0 are 
treated in detail in subsection 9.2.1. Here we describe a fundamental test 
to show that the W is really a spin-1 boson. 

Suppose that the W had spin J, and consider its decay 

W-E+F 

where E, F have spins SE, SF respectively. 
Using the properties of the vector addition coefficients (Rose, 1957), one 

can show that 

~C1(0,0;0,0) = JSE(SE + 1)Co(1,0;0,0) 

- JSF(SF + 1)Co(O,O; 1,0). (8.2.49) 

To turn this into a relation amongst measured quantities we note that 
from (8.2.29) 

Also, from (8.2.28), 

(t6(E)) = Co(1, 0; 0, 0) ( tb{F)) = C0(0, 0; 1, 0). 

Thus, substituting in (8.2.49) and using (3.1.35) and (1.1.27) 

(cos(]e) = J(J ~ 1) [(.1E)- (.1F)] (sz)w 

(8.2.50) 

(8.2.51) 

(8.2.52) 

where (.1i) is the mean helicity of particle i. This result, clearly, is quite 
general and does not depend specifically on the initial particle's being a 
W. Indeed (8.2.52) was first derived by Jacob (1958) in the context of 
strange particle decay, but its most dramatic success was in connection 

https://doi.org/10.1017/9781009402040.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.008


8.2 Unstable particles 223 

with the original discovery of w+ ~ e+ve, where the value (cos Be+) = 0.5 
was found. This 'killed three birds with one stone'! It required lw = 1, 
(Ae+) = - (.AvJ = 1/2 and (sz) w = 1, all in perfect agreement with the 
predictions of the standard model of electroweak interactions. 

8.2.2 Three-particle decay of a spin-] resonance 

We consider the decay of a particle C of arbitrary spin J and mass me, 

C ~ E1 +E2 +E3, 

where the particles Ei have arbitrary spin. The most common decays, in 
practice, are those in which all Ei have spin zero, e.g. 3n, or in which one 
particle, say E1, has spin 1/2 and the others are pions. We shall thus not 
discuss the most general case but limit ourselves to the situation where 
the polarization, or the multi pole parameters of, at most one of the decay 
products is observed. We shall always refer to this particle as E1. 

(i) Decay amplitudes 
There are many ways to specify the configuration of a three-particle state. 
Werle (1963) used the polar angles 81,¢1 of E1 and one further angle to 
specify the orientation of the decay triangle, i.e. the triangle formed by 
the momenta Pi of the final particles in the rest system of C. Berman and 
Jacob (1965) characterized the state by the polar angles of the normal to 
the decay triangle and an angle specifying the orientation of the triangle 
once the normal is fixed. We will utilize the latter only, since we have 
found that it leads to simpler results. 

Let Se with axes X, Y, Z be the helicity rest frame of C as reached 
from the CM of the production reaction.1 Let Wi, Pi be the energies and 
momenta of the particles Eil with 

WJ + W2 + W3 =me. 

An arbitrary state in which the Ei have helicities Ai is written as 

IWJAJ, W2A2, W3A3; c/Jn, en, y ), 

(8.2.53) 

where e = en, ¢ = c/Jn are the polar angles of the normal n to the decay 
triangle, the direction of n being along PI x P2· 

The significance of y is best seen by noting that the above state can 
be obtained from a 'standard' one by a rotation through Euler angles 
c/Jn, en, y: 

(8.2.54) 

1 Any other rest frame of e is equally good provided the correct density matrix for e is used in 
the formulae that follow. 
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224 8 Analysis of polarized states: polarimetry 

where, in lwiAi; 0, 0, 0), Pt lies along OX and P2 lies in the XY -plane with 
P2 > 0, so that n lies along OZ. 

For a given event, once the polar angles Bn, c/Jn of the normal are 
determined, the angle y can be found from the polar angles e,, ¢1 of E, 
as follows: 

cosy = cos Btl sin Bn 

sin y = sine, (sin ¢1 cos c/Jn -cos ¢1 sin c/Jn). 

The decay amplitude is of the form 

HAtA2A3;Ac(w,, W2, W3; c/Jn, en, y) 
J 

(J)* 
oc L FJt(WtAt,W2A2,W3A3)f0).cJt(¢n,8n,Y) 

Ji=-J 

(8.2.55) 

where, because Ac = Jz, F Jt is independent of A-c by rotational invariance. 
The physical significance of u# is that it is the projection of J along 
the normal to the decay plane; the dependence on u# is a new feature 
compared with the two-body decay situation. 

We normalize F Jt in such a way that 

(8.2.56) 

where the integration over w1, w2 corresponds to summing over the Dalitz 
plot. 

The most detailed distribution we consider involves measurement of 
the helicity multipole moments of particle E1 and of their dependence on 
¢n, Bn, y. (These are the multipole moments in the helicity rest frame SEt 

of E1 reached from Sc. SEt has its Z -axis along Pt and OX opposite to 
the normal to the decay plane.) It is assumed that a summation over the 
Dalitz plot is performed.1 Then 

l 1 ~ L W(c/Jn, 8n, y)tm(Et) = f2 ~(2L + l)tM(C)[LMilm]¢nBny 
n L,M 

(8.2.57) 

where tfJ(C) are the helicity multipole parameters of C, W(c/Jn, Bn, y) is the 
normalized decay distribution and 

(8.2.58) 

t When particles E2 and E3 are identical we relax this assumption, as discussed later. 
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in which the decay parameters are 

R.A.~t'(l, m) = j j dw2dw3 L (s1, A1ls1, Al - m; l, m) 
A.i 

225 

x F:0(w2, w3; A.1, A.2, A.3)F .A'(w2, w3; A.1- m, A.2, A.3). 

(8.2.59) 

Note that 

R:U.~t'(l,m) = (-l)mR.A'.A(l, -m). (8.2.60) 

For simplicity we shall write R.A' .A for R.A' .A(O, 0). 

(ii) The angular distribution of the normal to the decay plane 
If we take l = m = 0 in (8.2.57) and integrate over y we are left with the 
normalized angular distribution for the normal to the decay triangle: 

where the real constants RL are given by 

RL = LR.A.A (J,A;L,OiJ,.A). 
,(( 

The normalization condition (8.2.56) implies that 

Ro = L R,(( .1{ = 1. 
.1{ 

(8.2.61) 

(8.2.62) 

Note that (8.2.61) is exactly analogous to the two-particle decay distri
bution (8.2.20), with the RL, which depend on the dynamics of the process, 
playing the role of the decay parameters CL(O, 0; 0, 0). 

(a) Consequences of parity conservation 
If parity is conserved in the decay process, one finds that 

F .A( W2, 0J3; Al, A2, A3) = ein.A IJC'11'12'13( -1 fl-At +s2-A.2+s3-A3 

X F .K(W2, 0J3; -Al, -A2, -A3) (8.2.63) 

where the 11 are intrinsic parities. If the Ei are spinless particles then 
(8.2.63) will cause the vanishing of either the even-A or the odd-A 
amplitudes, depending on the intrinsic parities. In the general spin case 
one has, from (8.2.59), 

R.A.K'(l, -m) = ( -1)1+.A-.A' R.A.~t'(l, m). (8.2.64) 
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Thus 

if l + A - A' is odd. (8.2.65) 

In contrast to the two-body case, (8.2.18), parity invariance here does 
not make RL vanish for odd L in general, and W ( c/Jn, en) serves as an 
analyser of both the even and odd parts of the polarization of C .1 

We see from (8.2.61) that the ratios tXt( C)/tXt,( C) for any Land arbitrary 
M, M' can be obtained directly from W(c/Jn, en) without requiring any 
knowledge of the RL. To obtain the dependence on L does require a 
knowledge of the RL. 

(b) Identical particles 
If particles E2 and E3 are identical, or if they are in an eigenstate of 
isotopic spin, the decay amplitude must be made either symmetric or 
antisymmetric under the exchange of the space and spin labels of E2 and 
E3. The correctly symmetrized amplitude p!l' is then found to satisfy 

F:j;( W1 A 1' W2A2, W3A3) = ± ( -1 )J +A! +"-2+).3 

X F~.41'(w1A1, W3A3, w2A2). (8.2.66) 

Introducing the quantity R.41'.4t'(l, m; w2, w3) as the unintegrated analogue 
of R.41'.4t'(l, m) (see eqn (8.2.59)), one obtains, for the symmetrized form, 

R:j;.4t,(l, m; w2, W3) = e-inm R~.41'-.4t'(l, m; W3, w2). 

If we also introduce the unintegrated version of RL, i.e. 

RL(w2,w3) = LR.4t.4t(O,O;w2,w3) (J,A;L,OIJ,A) 
.41' 

then we obtain 

R[(w2,w3) =! L (J,A;L,OIJ,A) 
.41' 

(8.2.67) 

(8.2.68) 

X [R:j;.41'(0, 0; w2, W3) + (-1)LR:j;.41'(0, 0; W3,w2)} 

(8.2.69) 

and we see that after integration over the whole Dalitz plot we will find 

R[ = 0 for L odd. 

To avoid this loss of analysing efficiency when E2 = E3 or when E2 and 
E3 are in eigenstates of isotopic spin, one should restrict the Dalitz-plot 
integration region to, say, w2 > w3. 

1 The one exception to the above occurs when C has spin 1, all the decay particles have spin zero 
and '1c = '11'12'13· In this case .41' = ±1, 0 only and, by (8.2.63), F+l = 0. Then RL = 0 for odd L 
by (8.2.62) and only the even polarization of C is analysed. -
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Several examples for J ~ 2 are worked out in detail in Berman and 
Jacob (1965) and in the following section. 

(c) Moments of the experimental distributions 
Let G( c/Jn, en, y) be any function of the angles c/Jn, en, y that specify the 
configuration of the three-particle final state in the rest frame Sc. We 
denote by (G) the angle average ( c/Jn, en, y) of G weighted by the normalized 
decay distribution: 

r2n r r2n 
(G) = Jo dc/Jn Jo sin en den Jo dy W ( c/Jn, en, y )G( c/Jn, en, y ). (8.2.70) 

The most general case we consider involves the taking of moments of the 
angular distribution, or of the distribution of helicity multi pole parameters 
of E1. From (8.2.57) and (8.2.58) one has immediately: 

(t~(E1)!0~~) = tXt(C) L (J,Jt -11;L,I11J,Jt) 
vi{ 

x Rv~t,v~t-11(l,m). (8.2.71) 

Note that moments with 11 = 0 just correspond to integrating over the 
angle y. 

We see that information about a specific tft( C) can be obtained from 
many different moments, by choosing different values of 11, or from study
ing the distribution of the different t~(El). 

In general one may need to know some of the decay parameters in 
order to extract the tkt. Just as in the two-body decay case, some reactions 
are magic and yield a complete analysis of the tXt( C). Other reactions may 
yield only ratios of tft at fixed M as L varies, and these reactions require 
the knowledge of certain of the dynamic-dependent decay parameters in 
order to get actual values of the tft( C). These parameters can be obtained 
in a model-independent fashion only if the resonance C can be prepared 
in a definite state of polarization, and that seems to be impossible if J ~ 1. 

We shall look at several cases of interest. 

( c.l) Decay into spin less particles. We are here limited to moments of the 
angular distribution only, i.e. to l = m = 0 in (8.2.71). From (8.2.63), if 
parity is conserved in the decay then F vH = 0 for Jt odd or even according 
to whether f/Cf/11'/2'73 = ±1. In both cases Rv~t,v~t-11 will vanish for 11 odd. 
Thus only moments with 11 even are non-zero. There are then several 
possibilities. 

• J = 1 and f/Cf/lf/2'73 = +1. In this case only Fo =/= 0 and we are 
left with just Roo, which is equal to unity by the normalization condition 
(8.2.56). Then from (8.2.71) 

(!0~~) = 0 (!0~~) = (1,0;2,011,0) t~(C) = -v1t~(C) (8.2.72) 
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so no information is obtained about the tit( C) but the t~( C) are fully 
determined. 

• J = 2 and 1JC1J11J21J3 = + 1. Now we have R22, Roo, R_2-2 = 1- R22-
Roo, R2o = RQ2, R-20 = RQ_2, R2-2 and from (8.2.71) 

\~~b') = tif(C){(2,2;L,OI2,2) +Roo [(2,0;L,OI2,0) 

- (2,2;L,OI2,2)]} for L = 0,2,4 (8.2.73) 

\ ~~b·) = tXt( C) (2, 2; L, 012, 2) 

x (Roo+ 2R22- 1) for L = 1, 3 (8.2.74) 

\ ~~~·) = tXt( C) (2, 0; L, 212, 2) 

x [ R2o + ( -1)L Ro-2 J for L = 2, 3, 4 (8.2.75) 

\~~~)=tif(C)(2,-2;L,412,2)R2-2 forL=4. (8.2.76) 

From (8.2.75) we can obtain the ratio t~(C)/t~(C). The same ratio is 
also obtained from (8.2.73), as a function of Roo, which can thus be 
determined. Hence we obtain explicitly the even-rank multipoles. From 
(8.2.74) we can obtain the ratio tit( C)/t~( C) but not the explicit values 
of the odd multipoles. 

• Arbitrary integer J and 1JC1J11J21J3 = + 1. The previous method can 
be generalized, and one obtains the even multipoles explicitly and the 
ratios only of the odd multipoles. Briefly, choosing ll = 2J - 2 yields 
ti:-2(C)fti:(C). Using this in the moment with ll = 2J- 4 allows the 
elimination of RJ,-J+4 + RJ-4,-J, after which ti:-4(C)fti:-2(C) can be 
evaluated. Proceeding thus, one ends up with explicit values for all the even 
multipoles. For the odd multipoles, ll = 2J- 4 yields ti:-3(C)/ti:-1(C), 
which, used in the moment with ll = 2J- 6, yields ti:-5(C)fti:-3(C). 
Proceeding thus, one ends up with the ratios of all the odd multipoles but 
not their explicit value. 

• J = 1 and 1JC1J11J21J3 = -1. The non-zero parameters are Ru (real); 
R-1-1 = 1- Ru and R1-1 = R.::_ 11 . Then from (8.2.71) 

(~![j~) = ~ [2Ru -1] tit(C) 

I rM(2J') _ 1 2 (C) I rM(2J') _ !3 2 (C) \;;z;MO - yTIJtM \;;z;M2 - V 3R1-1tM · 
(8.2.77) 

Again the t~( C) are fully determined, and now the tit( C) are also deter
mined, up to one overall factor. 
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• J = 2 and 1JC1Jt112113 = -1. We have Ru, R-1-1 = 1-Ru, R1-1 = R*._ 11 

and from (8.2.71) 

(~){;6') = tfJ(C) (2, 1;L,OI2, 1) for L = 0,2,4 

(~Jt;b) = tfJ(C) (2, 1;L,OI2, 1) (2Ru -1) for L = 1,3 

( ~){;1') = tXt( C) (2, -1; L, 212, 1) R1-1 
(8.2.78) 

\ ~Jt;r ) = \ ~Jt;r ) = o. 

Thus the even-L multipoles are fully determined but for the odd-L ones 
only their ratio is determined. 

• Arbitrary integer J and 1JCIJ11J21J3 = -1. The method described above 
for the case arbitrary J and 1Jc1] 11]21]3 = + 1 is applicable and yields the 
explicit value of the even multipoles and the ratios of the odd multipoles. 

In summary, for arbitrary J and 1Jc1] 11]21]3 = ±1 all even multipoles are 
determined but only the ratios of the odd multipoles. It should be noted 
that moments of the y distribution are essential for this to be possible, 
once J;:::: 2. 

( c.2) Decay into one spin-1 /2 and two spinless particles. Here, in principle, 
we can utilize moments of the angular distribution and of the distribution 
of the spin components of E1. The decay then functions as a magic 
analyser and the complete density matrix of the decaying particle can be 
determined. 

We consider the decay of a spin-3 /2 resonance in detail and outline the 
approach for the case of arbitrary half-integer spin. 

• C(3/2) ~ £1(1/2) + E2(0) + E3(0). Because of parity invariance and 
because E1 can have only two values for its helicity, it turns out that 
all RJtu~t'(l, m) can be written in terms of one combination of the decay 
amplitudes, namely 

QJ!Jt' = j dw2dw3F~(w2, w3; 1/2)F Jt'(w2, w3; 1/2). (8.2.79) 

One has then from (8.2.59) 

(8.2.80) 

https://doi.org/10.1017/9781009402040.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.008


230 8 Analysis of polarized states: polarimetry 

Finally, it will turn out convenient to define the combinations 

+ Q]t .A' = Q.A .A' ± Q-.A' -.A. (8.2.81) 

For the p, = 0 moments of the angular distribution one then finds 

\ £Z1Kfb) = tfi(cH (3/2, 3/2; L, 013/2, 3/2) 

+ 2Qi12 112 [(3/2, 1/2;L,OI3/2, 1/2) 

- (3/2, 3/2; L, 013/2, 3/2) J} for L = 0, 2 

\ £0Kfb) = 2tf1( C) { (3/2, 3/2; L, 013/2, 3/2) Q3;2 3; 2 

(8.2.82) 

+ (3/2, 1/2;L,OI3/2, 1/2) Q1;2 1;2} 

for L = 1,3. 

For the p, = 0 moments of the distribution of the longitudinal compo
nent of the spin of E1 one finds 

I (L)') fi I 1 (L)*) \qJz(El)fZiMo = -v3 \t0(El)f21Mo = 0 (8.2.83) 

where the subscript refers to the axis OZ of the helicity rest frame S£1 . 

In particular the mean longitudinal polarization is zero after integration 
over y. 

For the p, = 0 moments of the transverse polarization, along 0 Y of SEp 

one finds similarly 

\q;y(El)£0Kfb') =if{\ [d(El) + t~1(El)] £0Kfb') = 0. (8.2.84) 

Again the mean transverse polarization, in the decay plane, is zero. 
For the component of spin q;n along the normal to the decay plane, 

since OX in the helicity rest frame SE1 is opposite to n we have (with 
1J = 1JC1J11J21J3) 

\q;n(El)£0Kfb') = {{ \[d(El)- t~1(El)] £0Kfb) 
= -2i1JtXt( C) { (3/2, 3/2; L, 013/2, 3/2) Q~12,312 

- (3/2, 1/2;L,OI3/2, 1/2) Q"f12 112 } 

for L even/ odd (8.2.85) 

We note in particular that from the moment with L = M = 0 we get 

(qJn(El)) = -2i1J ( Q3;2 3/2- Ql/2 1/2) · (8.2.86) 

We now show how all the multi pole moments tfi( C) can be obtained 
explicitly from just the p, = 0 moments of the angular distribution and 
those of the polarization along the normal to the decay plane. 
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Use of (8.2.86) allows us to eliminate Q-:;12 312 m eqns (8.2.85) and 
(8.2.82). Then for L = 1 and 2 in (8.2.82) and (8.2.85) we have, schemati
cally, 

\~fJ~) = t~(C) (a+bQt/21/2) 

\ ~~~) = t~(C) (c + dQ1;2 112) 

\&>n(EI)~fj~) = t~(C) (e + fQl/2 1/2) 

\&>n(EI)~~~) = t~(C) (g + hQt/2 1/2) 

(8.2.87) 

where a, b, c, d, e, f, g, h are known constants, combination of vector addi
tion coefficients and the measured value of (&>n(EI)). 

If the four quantities (for fixed M) on the left-hand side of (8.2.87) are 
measured then we have four equations for the four unknowns, t~, t~, 
Qt12 112 and Q1;2 112. Thus we can get the explicit values of t~( C) and 

t~( C). With Q1;2 112 now known, a measurement of \ ~Z}~) will yield the 

value of tii( C) via (8.2.82). 
If particles E2 and E3 are identical, care should be taken to integrate 

over the region w2 > W3 only in the Dalitz plot, as discussed in subsection 
(b) above. 

The moments described above have p, = 0, so that y is simply integrated 
over, and they suffice to determine all the tfJ( C). Moments with p, =I= 0 
are also interesting if one wishes to study the dynamics of the decay 
mechanisms. The following general rule holds for moments with arbitrary 
p,: 

(8.2.88) 

It follows that \ tb(EI)~~~) = 0 if l + p, is odd. The result (8.2.88) can 
be used as a check on experimental biases. The vanishing of the p, = 0 
moments of fl>z and fl>y mentioned above is a special case of (8.2.88). 

• C (arbitrary half-integer J) ~ E1(1/2) + E2(0) + E3(0). We outline 
briefly how the tfJ( C) can be obtained from the moments of the various 
distributions. For J 2 5/2 it is necessary to utilize moments with p, > 0 as 
well. 

For fixed L, the dependence of the tfJ( C) upon M is trivially obtained 
from the ratio of moments with the same L and various M. As can be 
seen from (8.2.71) all the decay-dependent parameters will cancel out. 

We thus concentrate on moments with one value of M, namely M = 0. 
For simplicity let us denote by Mf; a moment of the type \ ~~~)') and 

by Nf; the type \&>n(EI)~~~l'), and let us put tL for t~(C). 
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For f1 = 2J- 1, Mif-1 and Nif=l will be proportional to t21 QJ,-1+1 

and t21- 1QJ,_1+1 respectively. Their ratio gives t21- 1 jt21 . 

For f1 = 2J - 3 there are four unknown decay constants, Qt,_J+3 and 
Q+ B k. . f M 21 M 21- 1 N 21 d N21- 1 d . Y-l,-1+2. y ta mg ratios o 21_3, 21_3, 21_3 an 21_3 an usmg 

the known value of t21- 1 jt21 one is able to obtain, say, QJ_1,_1+2 and 

QJ,_1+3 in the form (known constant) x Q),_J+3. Making these substi
tutions everywhere, Q),_1+3 becomes a common factor in the equations 
relating moments to tL. Thus we can obtain t21- 2 jt21- 1 and t21- 3 jt21- 2. 

Proceeding in this way one finds for each choice of f1 information from 
the measured moments and from the previously determined multipole 
ratios that is more than enough, to express all Q:«,At-p in the form 
(known constant) xQJ,1_w Substitution of this into the equations yields 
the new ratios tPjtP+1, tP+1 jtP+2. 

At the last stage, f1 = 0, we know the ratios t2 jt3, t3 jt4, ... , t21- 1 jt21 and 
we can obtain all Q:«,"'fi' in the form (known constant) x Q),1 , whereafter 
the ratio t 1 jt2 can be found. Now, however, we have also the normalization 
condition l:At>O Q~ At = 1/2, which follows from (8.2.56), (8.2.79) and 
(8.2.81 ), and this det~rmines the actual value of Qj 1 . Then the value oft1, 

say, can be found explicitly, from which follow th~ values of all the other 
tL. 

Note that we end up with not just the desired tf:t but also the whole set 
of decay parameters Q:«,uft'-p (fl even). 

(c.3) Two-body resonance domination of three-body state. If the three
body final state is dominated by resonance formation between two of the 
particles then we regard the decay as a two-step process 

and this is discussed fully in subsections 8.2.1(vii), (viii) above. 

(c.4) Decay into photon and two spinless particles, C(J integer)~ Photon+ 
E2(0) + E3(0). Because A = 0 is forbidden to a photon, this case is very 
similar to that where E1 has spin 1/2. Parity conservation allows all decay 
parameters to be related to the combination 

(8.2.89) 
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We have 

Ru~tu~t'(O, 0) = 1 + ( -1) - Q.4tu~t' [ At At'] 
Ru~tu~t'(2, 0) = JoRu~tu~t'(OO) 

Ru~tu~t'(2, 2) = 1JC1]21J3( -1)At'+l vlQu~tu~t' 
(8.2.90) 

1 [ At-At'] Ru~tu~t'(1,0) = J2 1- (-1) Qu~tu~t'· 

If the state of polarization of the photon can be determined then the 
measured moments will yield the tkt(C) via (8.2.71) and (8.2.90) in similar 
manner to case (c.2) above. 

https://doi.org/10.1017/9781009402040.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.008



