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The finitely extensible nonlinear elastic with Peterlin closure (FENE-P) and simplified
Phan-Thien–Tanner (sPTT) viscoelastic models are used widely for modelling of complex
fluids. Although they are derived from distinct micro-structural theories, these models
can become mathematically identical in steady and homogeneous flows with a particular
choice of the values of the model parameters. However, even with this choice of parameter
values, the model responses are known to differ from each other in transient flows. In
this work, we investigate the responses of the FENE-P and sPTT constitutive models in
large-amplitude oscillatory shear (LAOS). In steady shear, the shear stress scales with
the non-dimensional group Wi/(aL) (Wi

√
ε) for the FENE-P (sPTT) model, where Wi is

the Weissenberg number, L2 is the limit of extensibility in the FENE-P model (a being
L2/(L2 − 3)), and ε is the extensibility parameter in the sPTT model. Our numerical
and analytical results show that in LAOS, the FENE-P model shows this universality
only for large values of L2, whereas the sPTT model shows it for all values of ε. In the
strongly nonlinear region, there is a drastic difference between the responses of the two
models, with the FENE-P model exhibiting strong shear stress overshoots that manifest
as self-intersecting secondary loops in the viscous Lissajous curves. We quantify the
nonlinearity exhibited by each constitutive model using the sequence of physical processes
framework. Despite the high degree of nonlinearity exhibited by the FENE-P model, we
also show using fully nonlinear one-dimensional simulations that it does not shear band in
LAOS within the range of conditions studied.
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1. Introduction

Viscoelastic fluids are ubiquitous in many industrial sectors, including fast-moving
consumer goods, food and healthcare, among others, and it is of significant importance that
we are able to model these flows correctly in a wide range of geometries. The Oldroyd-B
model (Oldroyd 1950) is given as

τp + λ�τp = 2ηpD, (1.1)

where τp is the polymeric stress, λ is the viscoelastic relaxation time, ηp is the polymeric

viscosity, D is the rate-of-strain tensor given by D ≡ 1/2(∇u + ∇uT), and
�
τp denotes

the upper-convected time derivative of the polymeric stress tensor, which is given

as
�
τp ≡ Dτp/ Dt − τp · ∇u − ∇uT · τp. For many viscoelastic models, including the

Oldroyd-B model, the total stress σ appearing in the momentum equation is related to the
polymeric stress by σ = τ − pI = τp + 2ηsD − pI , where τ is the extra-stress tensor, p is
the pressure, and I is the identity tensor. The solvent contribution to the stress is expressed
as a Newtonian fluid with viscosity ηs.

Whilst the simplicity of the Oldroyd-B model makes it particularly useful for solving
problems analytically (Rajagopal & Bhatnagar 1995; Qi & Xu 2007; Zhao, Wang &
Wei 2013; Norouzi et al. 2018; Ghosh, Mukherjee & Chakraborty 2021; Boyko &
Stone 2022) and testing and validating computational codes (Mompean & Deville 1997;
Duarte, Miranda & Oliveira 2008; Habla et al. 2014), it has a number of well-known
shortcomings. Likely the most well-known shortcoming is that the elasticity has no limit of
extensibility. During steady and homogeneous extensional flow, this causes an unphysical
singularity in the extensional viscosity as the strain rate is increased (Bird, Armstrong &
Hassager 1987). In transient and homogeneous extensional flow, however, the extensional
viscosity grows exponentially in time, and the singularity is not present. A vast number of
viscoelastic models have since been developed to overcome the problems associated with
the Oldroyd-B model. Many of these models are derived from micro-structural theories
in order to better capture the underlying physics observed during deformation. Two such
models are the finitely extensible nonlinear elastic with Peterlin closure (FENE-P; Bird,
Dotson & Johnson 1980) and the simplified Phan-Thien–Tanner (sPTT; Phan-Thien &
Tanner 1977) models.

The original FENE model (Warner 1972) is derived using kinetic theory for bead–spring
dumbbells in which each polymer molecule is assumed to take the form of two beads
connected together by a finitely extensible spring. Therefore, the FENE-P model is most
often employed for the modelling of dilute polymer solutions where there is no significant
interaction between polymer molecules. The FENE-P model uses a self-consistent
pre-averaging approximation, known as the Peterlin approximation, to close the original
FENE model (Bird et al. 1980; Keunings 1997). The springs are finitely extensible since
the elastic stress increases nonlinearly during deformation as the stretching of the spring
approaches its prescribed limit. The sPTT model is derived from a Lodge–Yamamoto
type of network theory, where the springs are interconnected via junction points. It is
therefore most applicable for concentrated polymer solutions and melts where there are
strong interactions between polymer molecules. Under large deformation, the junctions
in the sPTT model can be created and destroyed simultaneously, limiting the build-up of
elastic stresses and providing finite extensibility.

Whilst the Oldroyd-B model has a constant shear viscosity in steady and homogeneous
shear flow, both the FENE-P and sPTT models are shear-thinning. The first normal stress
difference N1 ≡ σ11 − σ22 grows quadratically with shear rate in the Oldroyd-B model
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Comparing the sPTT and FENE-P constitutive models under LAOS

for steady and homogeneous shear flow, but in the FENE-P and sPTT models, it grows
quadratically with shear rate only at low shear rates, before exhibiting shear-thinning.
In steady and homogeneous extensional flow, the FENE-P and sPTT models exhibit
strain-hardening for low strain rates; however, a plateau is reached in the extensional
viscosity for higher strain rates due to the finite extensibility. The value of the extensional
viscosity at the plateau is proportional to L2 (1/ε) for the FENE-P (sPTT) model, where L2

and ε represent the respective extensibility parameters in the FENE-P and sPTT models.
The FENE-P constitutive model is given in stress tensor form as

τp + λ
⎛
⎝ �

τp

F(τp)

⎞
⎠ = 2aηpD

(
1

F(τp)

)
− aηpI

D
Dt

(
1

F(τp)

)
, (1.2)

where τp ≡ tr(τp), or equivalently,

F(τp)

a
τp + λ1

a
�
τp = 2ηpD − F(τp)

[
λ

a
τp + ηpI

]
D
Dt

(
1

F(τp)

)
,

where F(τp) ≡ a + λ

L2ηp
tr(τp) and a ≡ L2

L2 − 3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.3)

For steady and homogeneous flows, the substantial derivative term in (1.2) and (1.3) is
equal to zero, and the FENE-P model can be rewritten as

F(τp)

a
τp + λ

a
�
τp = 2ηpD, where

F(τp)

a
= 1 + λ

aL2ηp
tr(τp). (1.4)

The sPTT model is given as follows:

F(τp) τp + λ�
τp = 2ηpD, where F(τp) ≡ 1 + ελ

ηp
tr(τp). (1.5)

The scalar function F(τp) is then defined on a per-model basis as

F(τp) ≡

⎧⎪⎪⎨
⎪⎪⎩

a + λ

L2ηp
tr(τp), FENE-P,

1 + ελ

ηp
tr(τp), sPTT.

(1.6)

The original PTT model employs the Gordon–Schowalter derivative of the polymeric

stress
�
τp ≡ �

τp + ζ(τp · D + D · τp), which allows for non-affine transformations between
the junction points and the solvent fluid through the slip parameter ζ . The sPTT model

refers to the case for the PTT model where ζ = 0 and so
�
τp = �

τp. It should also be noted
that the sPTT model (1.5) uses a linear term for the destruction of the junctions, as does the
original PTT model; however, there have since been modifications to this where the linear
term is replaced by exponential (Phan-Thien 1978), or even generalised (Ferrás et al. 2019)
terms, which are believed to help the model perform better under strong deformations. In
this study, we will use the sPTT model only with the linear function (1.5), and we will
always refer to this as the sPTT model. For clarity, we often use the subscripts FP and
sPTT to denote the FENE-P and sPTT models, respectively.
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Upon comparison of (1.4) and (1.5), it is observed that with the parameter substitutions
ε = 1/L2 and λsPTT = λFP/a, the FENE-P and sPTT models become mathematically
identical for steady and homogeneous flows. The equivalence of these two models was
first noted in the study of Cruz, Pinho & Oliveira (2005), who derived analytical solutions
for fully developed pipe and channel flows with the FENE-P and sPTT models. Latreche
et al. (2021) also established analytical solutions for steady, fully developed, flows of the
FENE-P and sPTT models in flat and circular ducts using the aforementioned substitution
of parameter values. Davoodi et al. (2022) then investigated the FENE-P and sPTT models
for a range of steady and homogeneous flows, as well as unsteady and inhomogeneous
flows. Due to the presence of the Lagrangian derivative term in the stress tensor form
of the FENE-P model, significant differences were observed between the FENE-P and
sPTT responses for the transient flows. Notably, the FENE-P model produced pronounced
shear stress overshoots in start-up shear flow, and during start-up extensional flow, the
extensional viscosity grew much more sharply in time for the FENE-P model response
than for the sPTT model response. One of the geometries studied by Davoodi et al.
(2022) was the cross-slot. For viscoelastic flows in the cross-slot, the elastic stresses
cause a symmetry-breaking instability to occur at a critical Wi, which has previously
been well studied and characterised (Poole, Alves & Oliveira 2007; Rocha et al. 2009;
Xi & Graham 2009; Afonso, Alves & Pinho 2010; Haward et al. 2012; Cruz et al. 2014;
Davoodi, Domingues & Poole 2019; Davoodi et al. 2021). Davoodi et al. (2022) observed
that the critical value of Wi for the onset of the asymmetry is lower for the FENE-P
model than for the sPTT model when relatively low (high) values of L2 (ε) are used
for the FENE-P (sPTT) model, again highlighting that the complex nature of the flow
causes a discrepancy between the model responses even though the flow is Eulerian
steady. Many industrial processes and flows involve complex geometries that might induce
Lagrangian unsteadiness, even for an Eulerian steady flow. Recently, Varchanis et al.
(2022) highlighted that even the Oldroyd-B model exhibits complex rheological behaviour
in Lagrangian transient flows, which has significant consequences for, for example, the
understanding of pressure drop measurements across a contraction. It is therefore of
significant importance to compare and understand how these nonlinear models behave
in transient flows.

An ideal way of probing the transient nonlinear response of viscoelastic materials
and models, and in particular classifying complex fluids (Hyun et al. 2002), is with
large-amplitude oscillatory shear (LAOS), which has become a widely used technique
for characterising nonlinear viscoelasticity experimentally (Leblanc 2008; Hyun et al.
2011; Sun et al. 2011; Szopinski & Luinstra 2016), theoretically (Gurnon & Wagner 2012;
Khair 2016; Bae & Cho 2017; Kammer & Castañeda 2020) and numerically (Ewoldt
& McKinley 2010; D’Avino et al. 2013; Cordasco & Bagchi 2016). In small-amplitude
oscillatory shear (SAOS), the shear stress response of a material or constitutive model
is approximately linear and given by τp,12 = γ0[G′ sin(ωt) + G′′ cos(ωt)], where γ0 and
ω are the amplitude and angular frequency of the oscillation, respectively. Here, G′ and
G′′ represent the storage and loss moduli, respectively. Due to the linearity of the shear
stress response, SAOS is one of the most popular techniques for extracting information
regarding linear viscoelasticity. For example, λ is very often estimated as the inverse
of the frequency at which G′ and G′′ cross over in a frequency sweep. However, as γ0
increases, flow-induced micro-structural changes take place during the oscillation (Gilbert
& Giacomin 2016), and the periodic response of the material (or constitutive model)
deviates from linearity. This behaviour can then be interpreted in terms of higher-order
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Comparing the sPTT and FENE-P constitutive models under LAOS

harmonics in the shear-stress waveform. Therefore, in LAOS, the stress response cannot
be reconstructed accurately using a single mode of G′ and G′′. Multiple frameworks
have been developed for quantitative analysis of the nonlinear stress response obtained
from LAOS, namely Fourier transform rheology (Wilhelm, Maring & Spiess 1998), stress
decomposition (Cho et al. 2005) with Chebyshev analysis (Ewoldt, Hosoi & McKinley
2008), and a sequence of physical processes (Rogers et al. 2011). The LAOS is considered
to be especially useful for the purpose of fitting constitutive models to experimental data
(Bae & Cho 2015). Calin, Wilhelm & Balan (2010) used LAOS to fit the spectrum of
the tensorial mobility parameter of the Giesekus model (Giesekus 1982) to experimental
data using an iterative numerical solution. Gurnon & Wagner (2012) then derived an
asymptotic solution for the Giesekus model in oscillatory shear, which they use to fit easily
the tensorial mobility parameter to experimental data obtained in the medium-amplitude
oscillatory shear (MAOS) regime, where the asymptotic solution is valid. Asymptotic
solutions in oscillatory shear have also been derived for the pom-pom model (Hoyle et al.
2014), the co-rotational Maxwell model (Giacomin et al. 2015), and the White–Metzner
model (Merger et al. 2016), among others. Hyun et al. (2007) compared the responses of
the exponential PTT model, the Giesekus model, and the pom-pom model in MAOS, as
well as the experimental MAOS response of linear and branched polymers. For perspective
of LAOS tests, the reader is referred to the comprehensive reviews by Hyun et al. (2011)
and Kamkar et al. (2022).

For a purely oscillatory shear flow where the strain rate is uniform in space, the
strain γ (t) and strain rate γ̇ (t) are given by γ (t) = γ0 sin(ωt) and γ̇ (t) = γ0ω cos(ωt),
respectively. We define here the non-dimensional polymeric stress τ∗

p ≡ τp/(γ0ω[ηp +
ηs]), the non-dimensional velocity gradient (∇u)∗ ≡ ∇u/(γ0ω), and the non-dimensional
time t∗ ≡ tω. We also define the Weissenberg number as Wi ≡ λγ0ω, and the Deborah
number as De ≡ λω. As usual, we define the dimensionless parameter β as the ratio of the
solvent viscosity to the total viscosity (polymeric viscosity plus solvent viscosity), such
that β ≡ ηs/(ηs + ηp). Using these definitions to non-dimensionalise the FENE-P (1.3)
and sPTT (1.5) models, and dropping the asterisks upon non-dimensionalisation, we have,
respectively,

F(τp)

a
τp + De

a
∂

∂t
τp − Wi

a
(τp · ∇u + ∇uT · τp − u · ∇τp) = 2(1 − β)D

− F(τp)

[
Wi
a

τp + (1 − β)I

](
De
Wi

∂

∂t

(
1

F(τp)

)
+ u · ∇

(
1

F(τp)

))
(1.7)

and

F(τp) τp + De
∂

∂t
τp − Wi (τp · ∇u + ∇uT · τp − u · ∇τp) = 2(1 − β)D, (1.8)

where

F(τp) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a + Wi
L2(1 − β)

tr(τp), FENE-P,

1 + ε Wi
1 − β

tr(τp), sPTT.

(1.9)

For all of the models discussed in this study, including the Oldroyd-B model,
the extra-stress tensor is given as τ = τp + 2βD. In dimensionless form, it is upon
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substitution of ε = 1/L2 and WisPTT = WiFP/a that the FENE-P and sPTT models become
mathematically identical for steady (De = 0) and homogeneous (u · ∇τp = 0) flows.

With regard to the definitions of De and Wi for LAOS, Kamani et al. (2023) highlighted
recently that using a time-independent value of De might seem unphysical in some cases
since the true ratio of the flow time scale (the inverse of the oscillation frequency)
and the material time scale may not necessarily be constant during the oscillation in
certain conditions. This requires that De, according to its physical interpretation, be a
time-dependent value rather than constant value. Whilst the FENE-P and sPTT models
have constant relaxation times, and constant values of De and Wi appear naturally from
the non-dimensionalisation of the equations for LAOS, the White–Metzner model, on the
contrary, contains a strain-rate-dependent relaxation time. In this case, transient values of
De and Wi would appear naturally from the equations. In the FENE-P and sPTT models,
one might also think of an ‘effective’ relaxation time based on λ and F(τp). Therefore, we
note that, depending on the model or material in question, one may start to question the
correct choice of definition for De and Wi in LAOS, and whether they should be indeed
constant or not during an oscillation. However, this is outside of the scope of the current
study, and we use only the time-independent values for De and Wi defined previously.

In the limit De (De/a) → 0 and Wi (Wi/a) → 0, the sPTT (FENE-P) models,
as well as the Oldroyd-B model, reduce to that of a Newtonian fluid. Note that
limWi→0(1/F(τp)FP) = 1/a and D(1/a)/ Dt = 0. In the limit De → 0, the response of
each model reduces to its respective steady-state response. In the case that F(τp)sPTT → 1
for the sPTT model, or F(τp)FP/a → 1 for the FENE-P model, the Oldroyd-B model is
obtained. Note that for the FENE-P model, F(τp)FP/a → 1 is equivalent to F(τp)FP → a
and therefore (∂/∂t)(1/F(τp)FP) → 0 and u · ∇(1/F(τp)FP) → 0, so the last term on the
right-hand side of (1.7) vanishes in this limit.

Viscoelastic constitutive models can also be written for the conformation tensor A. For
dumbbell models such as the FENE-P model, A can be given as A ≡ 〈QQ〉/Q2

eq, where
Q is the end-to-end vector of an individual dumbbell (the angle brackets represent the
ensemble average), and Q2

eq is the square of the magnitude at equilibrium, given as Q2
eq ≡

〈Q · Q〉eq/3 (Alves, Oliveira & Pinho 2021). In general, for other viscoelastic models, Q
might represent the end-to-end vector of polymer chains or subchains (Hoyle & Fielding
2016), rather than the dumbbell vector specifically. The dimensionless FENE-P model is
given in conformation tensor form as

De
∂

∂t
A − Wi (A · ∇u + ∇uT · A − u · ∇A) = −(F(A) A − aI),

where F(A) ≡ L2

L2 − tr(A)
,

⎫⎪⎪⎬
⎪⎪⎭ (1.10)

which can also be rewritten as

De
a

∂

∂t
A − Wi

a
(A · ∇u + ∇uT · A − u · ∇A) = −

(
F(A)

a
A − I

)
,

where
F(A)

a
= L2 − 3

L2 − tr(A)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.11)
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The sPTT model is given in conformation tensor form as

De
∂

∂t
A − Wi (A · ∇u + ∇uT · A − u · ∇A) = −F(A) (A − I),

where F(A) ≡ [1 + ε(tr(A) − 3)].

⎫⎬
⎭ (1.12)

Note that A ≡ tr(A). Then τp is recovered from the solutions of (1.10)–(1.12) as

τp =

⎧⎪⎪⎨
⎪⎪⎩

a(1 − β)

Wi

(
F(A)

a
A − I

)
, FENE-P,

1 − β

Wi
(A − I), sPTT.

(1.13)

Therefore, F(A) is also defined on a per-model basis as

F(A) ≡

⎧⎪⎨
⎪⎩

L2

L2 − tr(A)
, FENE-P,

1 + ε(tr(A − 3)), sPTT.

(1.14)

As highlighted by Davoodi et al. (2022), the evolution equation for A in network theory
models follows a general form given by

De
∂

∂t
A − Wi (A · ∇u + ∇uT · A − u · ∇A) = −(D(A) A − C(A) I), (1.15)

with

τp = 1 − β

Wi
(A − I), (1.16)

where D(A) and C(A) represent, respectively, the rates of destruction and creation of
micro-structures. For the sPTT model, D(A) = C(A) = F(A)sPTT . It is therefore observed,
given (1.11), that the FENE-P model might be considered as a type of network model in
which, under large deformations, the rate of destruction of micro-structures is faster than
the rate of creation of micro-structures. Network models with faster destruction rates than
creation rates are expected, and have been observed, to exhibit large amounts of elastic
recoil (Davoodi et al. 2022).

Generally, the LAOS response of a viscoelastic material or model can be classified as
one of four archetypes: I, strain thinning; II, strain hardening (or strain thickening); III,
weak strain overshoot; and IV, strong strain overshoot (Hyun et al. 2002). Physically, each
classification is believed to correspond to a particular type of underlying micro-structural
interaction. Sim, Ahn & Lee (2003) investigated numerically the LAOS response of a
general network model, and found that the classification of the LAOS response varied
depending on the choice of the parameters defining the rates of creation and destruction
of junctions. Townsend & Wilson (2018) simulated the LAOS response of a Newtonian
solvent with suspended dumbbells, where the dumbbells are implemented in Stokesian
dynamics, thus forming a viscoelastic medium. They compare the simulation results for
FENE dumbbells with the LAOS response of the FENE-P constitutive model, which
they obtain numerically. For De = 0.56, they observe that the FENE-P constitutive
model shows purely strain thinning behaviour, whereas the FENE dumbbell simulations
show some weak strain overshoot for the elastic or storage modulus G′. With increased
oscillation frequency, the FENE-P response changed to a type III response where G′′
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exhibited a strain overshoot, whereas the FENE dumbbell simulations showed a type I
response. Recently, some authors have also used a micro–macro approach for modelling
standard FENE dumbbells and FENE-type networks in LAOS using a technique known
as the Brownian configuration field method (Gómez-López et al. 2019; Vargas et al.
2023). In the FENE-type network model response, self-intersecting secondary loops were
observed in the viscous Lissajous curves when the rate of destruction of micro-structures
was faster than the rate of creation of micro-structures. As already mentioned, in the
context of the PTT model framework (1.15), this causes the model to appear more similar
in form to the FENE-P model and likely leads to more elastic recoil in the transient
model response. Self-intersecting secondary loops, which will be discussed in more detail
later, are known to be related specifically to large amounts of elastic recoil (Ewoldt &
McKinley 2010). Ng, McKinley & Ewoldt (2011) performed LAOS experiments with a
gluten dough, which they then modelled with a transient network model. The rate of
destruction of the junctions was modelled by a term that is essentially a blend between
F(A)sPTT at low stretching and F(A)FP at high stretching. They also include F(A)FP in the
τp–A relationship, so the constitutive model represents a FENE-type network model. The
model was able to predict at least qualitatively the experimental Lissajous curves; however,
the authors note that the stress overshoots were grossly over-predicted. They attribute this
to the functional form of the spring function (essentially F(A)FP), and they introduce
a modified function, which diverges to infinity before the FENE limit is approached to
temper empirically the magnitude of the stress overshoots. Keunings (1997) shows that
these transient stress overshoots in the FENE-P model arise from the pre-averaging Peterlin
approximation used to close the original FENE model. The response of the sPTT model in
LAOS was obtained and studied recently by Ofei (2020), who showed that with increasing
De and Wi, clearly the sPTT response deviates away from the linear upper-convected
Maxwell (UCM)/Oldroyd-B response. However, in this study, no quantitative analysis of
the generated waveforms was conducted.

Despite the facts that there has been significant recent interest in the similarities and
differences between the FENE-P and sPTT model responses in steady and unsteady
(or complex) flows, and that the LAOS responses of these models have been studied
independently, there has yet to be an explicit comparison made between the responses of
the models in LAOS when the parameters are chosen such that models provide the same
steady and homogeneous response. The aim of this study is to compare the responses of
the FENE-P and sPTT constitutive models specifically in LAOS, and to understand and
highlight any differences observed in the responses.

2. Numerical methodology

2.1. Zero-dimensional modelling
The majority of the results in this study are obtained by solving constitutive equations
assuming that A, τp, and γ̇ are uniform in space. We denote this approach to solving the
equations as the zero-dimensional (0-D) method. This methodology will now be detailed.

For an ideal oscillatory shear flow, the dimensionless constitutive model can be solved
using

∇u(t) =
⎡
⎣ 0 0 0

γ̇ (t) 0 0
0 0 0

⎤
⎦ =

⎡
⎣ 0 0 0

cos(t) 0 0
0 0 0

⎤
⎦. (2.1)
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Comparing the sPTT and FENE-P constitutive models under LAOS

Since the FENE-P model in stress tensor form (1.3) cannot be expressed easily as a
set of ordinary differential equations (ODEs) for an oscillatory shear flow, we solve the
models in conformation tensor form. From this point on, we work only with dimensionless
variables, and we re-confirm that the asterisks denoting the dimensionless variables have
been dropped for brevity. The following system of ODEs is obtained for the time evolution
of A according to the FENE-P model,

dA11

dt
= 2

(
Wi
De

)
A12 cos(t) − 1

De

([
L2

L2 − (A11 + A22 + A33)

]
A11 − a

)
, (2.2a)

dA12

dt
=
(

Wi
De

)
A22 cos(t) − 1

De

([
L2

L2 − (A11 + A22 + A33)

]
A12

)
, (2.2b)

dA22

dt
= − 1

De

([
L2

L2 − (A11 + A22 + A33)

]
A22 − a

)
, (2.2c)

dA33

dt
= − 1

De

([
L2

L2 − (A11 + A22 + A33)

]
A33 − a

)
, (2.2d)

and according to the sPTT model,

dA11

dt
= 2

(
Wi
De

)
A12 cos(t) − 1

De
(1 + ε(A11 + A22 + A33 − 3))(A11 − 1), (2.3a)

dA12

dt
=
(

Wi
De

)
A22 cos(t) − 1

De
(1 + ε(A11 + A22 + A33 − 3))A12, (2.3b)

dA22

dt
= − 1

De
(1 + ε(A11 + A22 + A33 − 3))(A22 − 1), (2.3c)

dA33

dt
= − 1

De
(1 + ε(A11 + A22 + A33 − 3))(A33 − 1), (2.3d)

where τp is recovered from A with (1.13). With an initial condition A = I (i.e. τp = 0),
dA22/dt = dA33/dt = 0 at all times for the sPTT model, so A22 and A33 remain fixed
at unity. However, for the FENE-P model, under large oscillatory deformations, A22
and A33 will become time-dependent and lower than unity, although it is still the case
that A22 = A33. We note here that for the FENE-P model, A22 = A33 = a/F(A)FP in
steady-state conditions, so τp,22 = τp,33 = 0 according to (1.13). Therefore, A22 and A33
deviate from unity in the FENE-P response in steady shear, even though the corresponding
stresses are still zero. In LAOS, however, the unsteadiness of the flow implies that τp,22
and τp,33 are also non-zero.

For all 0-D simulations, we omit the solvent contribution to the stress by setting β = 0
so that we study only the response of the viscoelastic constitutive model itself. Therefore,
from here on, the Oldroyd-B model is denoted as the UCM model. For the FENE-P and
sPTT models, we performed simulations for five values L2 = 1/ε = 3.1, 5, 10, 100, 1000.
Equations (2.2) and (2.3) were solved in MATLAB using the ode15s solver, which uses
built-in adaptive time stepping. The simulations were run until a steady periodic state was
reached. For the results in § 3, data are plotted only for the final oscillation when the system
is steady periodic (i.e. the limit cycle).
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2.2. One-dimensional modelling
We also use a one-dimensional (1-D) modelling approach by solving both the momentum
equation and the constitutive model in a 1-D gap of fluid. This is more representative of an
actual shear rheometry experiment in which the velocity gradient can become non-uniform
in the gap due to phenomena such as shear banding. To solve the equations in the 1-D
approach, we use the method of lines (MOL) technique, in which spatial derivatives of
flow variables are discretised (in this case using finite difference approximations).

The top and bottom walls of the gap are parallel to the x-direction. The first- and
second-order spatial derivatives of a scalar variable φ are discretised using a fourth-order
finite difference scheme, respectively, as

(
∂φ

∂y

)
i
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−3φi−1 − 10φi + 18φi+1 − 6φi+2 + φi+3

12Δ
, i = 2,

φi−2 − 8φi−1 + 8φi+1 − φi+2

12Δ
, 2 < i < (Ny − 1),

−φi−3 + 6φi−2 − 18φi−1 + 10φi + 3φi+1

12Δ
, i = Ny − 1,

(2.4)

and

(
∂2φ

∂y2

)
i
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

11φi−1 − 20φi + 6φi+1 + 4φi+2 − φi+3

12Δ2 , i = 2,

−φi−2 + 16φi−1 − 30φi + 16φi+1 − φi+2

12Δ2 , 2 < i < (Ny − 1)

−φi−3 + 4φi−2 + 6φi−1 − 20φi + 11φi+1

12Δ2 , i = Ny − 1,

(2.5)

where the index i denotes the node number in a uniformly discretised domain with
Ny elements. Here, Δ is the distance between neighbouring cells, given as Δ ≡ yi −
yi−1. The (dimensional) velocity at the top boundary, uNy(t), is varied according to
uNy = γ0ωH cos(ωt), where H is the gap height, and γ0ω represents the strain-rate
amplitude. For non-dimensionalisation, H is used for the length scale, γ0ωH is used for
the velocity scale, and the time is still non-dimensionalised with ω. Then De and Wi are
defined as they are for the 0-D approach.

Assuming that the only non-zero velocity component is in the x-direction, and the flow
is uniform in the x-direction, the resulting system of partial differential equations (PDEs)
to be solved can be expressed in dimensionless form as

Re
(

∂u
∂t

)
i
=
(

∂τp,12

∂y

)
i
+ β

(
∂2u
∂y2

)
i
, (2.6a)

(
∂

∂t
A11

)
i
= (F11)i, (2.6b)

(
∂

∂t
A12

)
i
= (F12)i, (2.6c)
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Comparing the sPTT and FENE-P constitutive models under LAOS(
∂

∂t
A22

)
i
= (F22)i, (2.6d)

(
∂

∂t
A33

)
i
= (F33)i, (2.6e)

where the Reynolds number Re is defined as Re ≡ ρH2γ0ω/(ηs + ηp), and the tensor F
is the right-hand side of the constitutive model when expressed for the time derivative
in conformation tensor form. First- and second-order derivatives are replaced with the
discretised forms in (2.4) and (2.5), which turns the system of PDEs into a system of ODEs.
For the momentum equation, τp,12 is computed from A using (1.13), then its gradient is
discretised with (2.4). For the 1-D MOL modelling, we could not omit totally the solvent
contribution to the stress due to stability issues. We therefore used β = 1/1001, which was
found to be large enough to stabilise the simulations, but small enough so that the results
were essentially insensitive to the value of β in the ranges of De and Wi investigated. This
is shown in the supplementary material available at https://doi.org/10.1017/jfm.2023.977.
We also enforce true creeping flow so that inertia is neglected (i.e. the left-hand side of
(2.6a) is zero).

For the spatial resolution, we used Ny = 128 , which proved sufficiently accurate to
ensure that the results were independent of Ny. This is also shown in the supplementary
material. At the bottom wall, the velocity was fixed at zero. The components A were
extrapolated linearly at the top and bottom boundaries. Simulations were initiated with
u = 0 and A = I . We integrated the resulting system of equations in MATLAB using
the adaptive-step ODE solver ode15s, which can solve systems of differential-algebraic
equations (DAEs) using the mass matrix approach. We simulated the flow until the limit
cycle was reached. Again, only data for the limit cycle are presented in § 3.

3. Results and discussion

For all of the results except those presented in § 3.5, the 0-D method is used (with
β = 0) to obtain the solutions. In §§ 3.1 and 3.2, we investigate the model responses
in LAOS with the parameter substitutions ε = 1/L2, WiUCM = WisPTT = WiFP/a and
DeUCM = DesPTT = DeFP/a. We present the results for various values of De/a (De) and
Wi/a (Wi) for the FENE-P (sPTT or UCM) model. In § 3.3, we investigate the responses of
‘toy’ models to help to explain the observations from §§ 3.1 and 3.2. In § 3.4, we analyse
the model responses using the sequence of physical processes methodology. Finally, in
§ 3.5, we use 1-D MOL modelling to assess whether the constitutive models are prone to
shear banding in LAOS. Throughout much of this study, we present the results by showing
the Lissajous–Bowditch curves. For the shear stress, these are displayed as plots of τp,12
versus γ , and plots of τp,12 versus γ̇ . The former is referred to as the elastic projection, and
the latter is referred to as the viscous projection. The resulting patterns are often presented
in Pipkin (or De and Wi) space. For a more detailed overview of Lissajous–Bowditch plots,
the reader is referred to the review by Hyun et al. (2011).

3.1. Scaling of the Lissajous curves
Figures 1 and 2 show, respectively, the viscous and elastic projections of the
Lissajous–Bowditch plots in the De/a (De)–Wi/a (Wi) space for the UCM (black solid
lines), FENE-P (yellow to red solid lines) and sPTT (cyan to blue dashed lines) models
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Figure 1. Viscous Lissajous–Bowditch plots in De/a (De)–Wi/a (Wi) space for the FENE-P (sPTT) model.
Black curves represent the UCM response. Black numbers in each plot represent the maximum value of τp,12
in the UCM response, since the y-axis is scaled differently in each plot.

with varying values of L2 = 1/ε for the FENE-P and sPTT models. The FENE-P and
sPTT models deviate from the UCM model at high Wi/a (Wi) and particularly at low
(high) values of L2 (ε). For the majority of the plots (except the four in the upper right
quadrant), the responses of the FENE-P and sPTT models to uniform oscillation are
practically identical. However, for the upper right quadrant, the responses of the FENE-P
and sPTT models differ from each other, particularly for the lower (higher) values of L2

(ε), which matches the observations of Davoodi et al. (2022) for start-up shear flow.
In order to investigate how the responses of the models in LAOS scale with the model

parameters, we look first at the way in which the model responses scale under steady
simple shear flow (SSSF). For SSSF, the non-dimensional FENE-P model (1.7) yields the
following solution for the (polymeric) shear stress:

2
(1 − β)2

(
Wi
aL

)2

τ 3
p,12 + τp,12 = (1 − β)γ̇ . (3.1)

For constant β, the solution for τp,12 in SSSF then evidently depends on the parameter
Wi/(aL). Oliveira & Pinho (1999) discussed this scaling, but for the sPTT model response
instead, when they derived analytical solutions for fully developed channel flow and
showed that the solution scaled with the parameter Wi

√
ε. With the aforementioned

substitution of model parameters, the scaling parameters of both the FENE-P and sPTT
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Figure 2. Elastic Lissajous–Bowditch plots in De/a (De)–Wi/a (Wi) space for the FENE-P (sPTT) model.
Black curves represent the UCM response. Black numbers in each plot represent the maximum value of τp,12
in the UCM response, since the y-axis is scaled differently in each plot.

models are the same for SSSF. The existence of the scaling parameter Wi/(aL) (Wi
√

ε)
for the FENE-P (sPTT) models in SSSF was also shown by Oliveira, Coelho & Pinho
(2004) and Latreche et al. (2021). A recent study by Yamani & McKinley (2022) showed,
analytically, that the SSSF response of the FENE-P model scales with the dimensionless
parameter Wi/L, which differs from the parameter used in this study, Wi/(aL). However,
in the version of the FENE-P model used in Yamani & McKinley (2022), the value of
a was assumed to be unity. The different versions of the FENE-P model that appear in
the literature have been presented and discussed by Alves et al. (2021) and Davoodi et al.
(2022).

Figures 3 and 4 show the viscous and elastic Lissajous–Bowditch plots, respectively,
in the Wi/(aL) (Wi

√
ε)–De/a (De) space for the FENE-P (sPTT) model. For the sPTT

model, scaling the curves with Wi
√

ε causes the responses for the various values of ε

to become universal (for β = 0). Whilst this is expected in SSSF due to the form of the
analytical solution (3.1), it may not be immediately obvious why this is also the case in
LAOS. However, this can be shown by considering the following system of equations for
the sPTT model (acknowledging that A22 = A33 = 1 due to the fact that F(A) is on the
outside of the (A − I) term in the constitutive model),

dA11

dt
= 2

(
Wi
De

)
A12 cos(t) − 1

De
(1 + ε(A11 − 1))(A11 − 1), (3.2a)
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Figure 3. Viscous Lissajous–Bowditch plots in Wi/(aL) (Wi
√

ε)–De/a (De) space for the FENE-P (sPTT)
model. Blue numbers in each plot represent the maximum value of τp,12 in the sPTT response, since the y-axis
is scaled differently in each plot. Plots in the black dashed box are shown at a larger scale in figure 5.

dA12

dt
=
(

Wi
De

)
cos(t) − 1

De
(1 + ε(A11 − 1))(A12), (3.2b)

τp,12 = 1 − β

Wi
A12, (3.2c)

and introducing new variables x = ε(A11 − 1) and y = A12/Wi, which gives

De
dx
dt

= 2(Wi
√

ε)2y cos(t) − (1 + x)x, (3.3a)

De
dy
dt

= cos(t) − (1 + x)y, (3.3b)

τp,12 = (1 − β)y. (3.3c)

Thus for constant values of β (in our case β = 0), the system depends only on the
parameters De and Wi

√
ε.

The FENE-P LAOS response does not scale universally with Wi/(aL) under uniform
oscillation, as its SSSF response does. For De/a < 0.1, there is practically no difference
in the curves for the various values of L2 since the flow is approaching SSSF. For De/a ≥
0.1 and Wi/(aL) ≥ 1, the difference in the FENE-P response with varying L2 becomes
significant. However, the FENE-P response does seem to become universal at constant
values of De/a and Wi/(aL) for large enough values of L2. This is highlighted in figure 5
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Figure 4. Elastic Lissajous–Bowditch plots in Wi/(aL) (Wi
√

ε)–De/a (De) space for the FENE-P (sPTT)
model. Black curves represent the UCM response. Blue numbers in each plot represent the maximum value of
τp,12 in the sPTT response, since the y-axis is scaled differently in each plot.

0.339 0.275

–0.275–0.339
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Figure 5. Zoomed Lissajous–Bowditch plots (viscous projection) for (a) De/a (De) = 1 and
Wi/(aL) (Wi

√
ε) = 10, and (b) De/a (De) = 10 and Wi/(aL) (Wi

√
ε) = 10. See figure 3 for the legend.

by the fact that the responses for L2 = 100 and L2 = 1000 are practically identical. There
are at least two potential reasons why the FENE-P response is not universal for constant
values of De/a and Wi/(aL) at low values of L2. One is that the functional form of F(A) in
the FENE-P model is different to that in the sPTT model (see (1.14)). Another is that the
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position of F(A) in the conformation tensor form of the FENE-P model is different to that
in the sPTT model (i.e. on the inside of the brackets in the recoil term rather than on the
outside of the brackets). If the latter is the cause of the difference in the scaling behaviour
between the sPTT and FENE-P models, then it should likely be the case that a universal
solution exists for the FENE-CR model, which is given under LAOS as

De
∂

∂t
A − Wi (A · ∇u + ∇uT · A − u · ∇A) = −F(A)FP (A − I), (3.4a)

τp = 1 − β

Wi
F(A)FP (A − I). (3.4b)

Noting that A22 = A33 = 1 in the FENE-CR model due to the difference in the position of
F(A) compared to the FENE-P model, the system of equations for the FENE-CR model
under LAOS is given as

dA11

dt
= 2

(
Wi
De

)
A12 cos(t) − 1

De

(
L2

L2 − A11 − 2

)
(A11 − 1), (3.5a)

dA12

dt
=
(

Wi
De

)
cos(t) − 1

De

(
L2

L2 − A11 − 2

)
A12, (3.5b)

τp,12 = 1 − β

Wi

(
L2

L2 − A11 − 2

)
A12. (3.5c)

Introducing the new variable x = (A11 − 1)/L2, the extensibility function can be rewritten
as (1 − x − 3/L2)−1, which, for L2 
 3 becomes (1 − x)−1. The system of equations for
the FENE-CR model for L2 
 3 can then be rewritten, using also y = A12/Wi, as

De
dx
dt

= 2
(

Wi
L

)2

y cos(t) −
(

1
1 − x

)
x, (3.6a)

De
dy
dt

= cos(t) −
(

1
1 − x

)
y, (3.6b)

τp,12 = (1 − β)

(
1

1 − x

)
y. (3.6c)

Therefore, the FENE-CR model has universal solutions for constant values of De and
Wi/L only in the case that L2 
 3, and the breakdown of the universality can be caused
solely by a change in the functional form of the extensibility function F(A) without a
change in its position in the constitutive model. This result alone cannot explain the scaling
of the FENE-P response due to the fact that both the form of F(A) and its position in the
model (i.e. F(A) (A − I) versus F(A) A − I) are different to those in the sPTT model. We
will explore the effect of the position of F(A) in the constitutive model on the scaling of
the response further in § 3.3. We also note here that (1 − x)−1 can be expanded as 1 +
x + O(x2). Therefore, for ε = 1/L2, the evolution of A for the FENE-CR model becomes
mathematically identical to that for the sPTT model in the MAOS regime in the case
L2 
 3. In the MAOS regime, where the response is weakly nonlinear, terms of O(x2)
can be neglected in the expansion of F(A). There is, however, a difference in the stress
response due to the presence of the extensibility function in the τp–A relationship in the
FENE-CR model. We highlight this further in Appendix A.
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3.2. Comparing the LAOS response of the FENE-P and sPTT models
One of the primary aims of this study is to assess the difference between the sPTT and
FENE-P models in oscillatory shear flow. As mentioned, in SSSF, both models exhibit
identical responses in terms of τp with ε = 1/L2 and WisPTT = WiFP/a, and differences
in the model responses arise only due to transients in the flow.

In figures 3 and 4, it is observed that the sPTT and FENE-P models (with
the aforementioned substitution of parameters) have, naturally, identical responses in
oscillatory shear flow for De/a (De) → 0, which corresponds to the system approaching
SSSF. Both models also exhibit identical responses for Wi/(aL) (Wi

√
ε) → 0; however,

in this case, both models reduce to the UCM model. For large values of both De/a (De)
and Wi/(aL) (Wi

√
ε), there is a significant difference between the responses of the two

models. One such difference is that the FENE-P response exhibits sharp overshoots in the
shear stress, which are often observed in the responses of strongly nonlinear viscoelastic
models, such as those derived specifically for worm-like micelles. These can be observed
in particular in the plots for De/a = 1 and Wi/(aL) = 10, which are shown at a larger
scale in figure 5(a). Similar stress overshoots were also observed in the FENE-P model
response during start-up shear flow (Davoodi et al. 2022). In LAOS, the pronounced shear
stress overshoots manifest as self-intersecting secondary loops in the viscous Lissajous
curves. The criterion for the presence of the self-intersecting secondary loops is that the
gradient of the decomposed elastic stress with respect to the strain is negative at γ = 0
(or γ̇ = 1), indicating that elasticity is being relieved through recoil faster than it is being
accumulated through increased rates of deformation (Ewoldt & McKinley 2010). These
secondary loops are associated with strongly nonlinear viscoelastic responses and have
been observed both in experimental LAOS data and in the responses of several viscoelastic
constitutive models, as well as, as already mentioned, from simulations of network models.

In order to quantify the deviation of the FENE-P and sPTT models from the UCM
response, we define a function G(A) given by

G(A) ≡

⎧⎪⎨
⎪⎩

F(A)FP

a
− 1, FENE-P,

F(A)sPTT − 1, sPTT.

(3.7)

Note that with the relevant expression relating τp to A for each model (see (1.13)), it
is the case that F(A)FP = F(τp)FP and F(A)sPTT = F(τp)sPTT . We point this out just to
clarify that as G(A) → 0, both the conformation tensor and stress tensor forms of the
models asymptote towards the UCM model.

Figure 6 shows G(A) against the dimensionless strain rate for the corresponding
Lissajous curves presented in figure 3. For both models, G(A) is approximately 0 for values
of Wi/(aL) (Wi

√
ε) ≤ 0.1 at any value of De/a (De). Consequently, the dimensionless

shear stress response shown in the corresponding Lissajous curves is essentially that of the
UCM model. For De/a (De) = 0.01, even when G(A) increases and the model responses
become increasingly nonlinear, for each model, the solution is universal for various values
of L2 and ε at constant Wi/(aL) (Wi

√
ε), which has been explained already by the fact that

the steady-shear response of the dimensionless model contains only the scaling parameter
Wi/(aL) (Wi

√
ε). Note here that the response of G(A) is also the same for both the sPTT

and FENE-P models, despite the fact that the functions F(A)FP/a and F(A)sPTT are not
explicitly equivalent for ε = 1/L2, WisPTT = WiFP/a and DesPTT = DeFP/a. Therefore,
in SSSF, i.e. De → 0, it is the case that tr(A)sPTT = (F(A)FP/a) × tr(A)FP, which is also
implied from (1.13) if (τp)FP = (τp)sPTT . Thus in steady and homogeneous flows, tr(A) for
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Figure 6. Plots of G(A) versus γ̇ in Wi/(aL) (Wi
√

ε)–De/a (De) space for the FENE-P (sPTT) model. In each
plot, the y-axis runs from −1 to 6.31. The x-axis runs from −1.04 to 1.04. The black solid line shows y = 0 on
each plot.

each model differs by a factor of F(A)FP/a, highlighting the difference in the physical
interpretation of the polymeric stress from A in each model. For the higher values of
De/a (De) and Wi/(aL) (Wi

√
ε), it is observed again that the sPTT solution for G(A)

is universal for constant De and Wi
√

ε with varying ε, but the FENE-P solution for G(A)

is universal only for constant De/a and Wi/(aL) at large values of L2. It is also observed
that there is significant correspondence between the results in figures 6 and 3. Notably, the
overshoots in G(A) appear to correspond at least qualitatively with the overshoots in τp.
This will be discussed in more detail next.

For De/a and Wi/(aL) = 10, we present in figure 7 three-dimensional (3-D) plots of
G(A), A12, A22 and τp,12 against γ and γ̇ for the FENE-P model response in LAOS (with
L2 = 100). We present this to highlight more clearly the mechanisms responsible for the
distinct behaviour exhibited by the FENE-P model in transient flows. We split the curve
into four regions (note that only one half of the curve is shown in terms of the range of γ̇ ).
It is important here to refer back to (2.3) and (1.13) to explain the evolution of the shear
stress. The regions are specified in chronological order (i.e. the system moves in time from
Region I to Region IV).

In Region I, A12 is negative and the rate of deformation is increasing, meaning that both
the growth of A12 due to deformation and the elastic recoil are acting in the same direction,
causing a positive rate of change in time of A12. The rate of change of A12 is governed by a
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Figure 7. Three-dimensional plots showing (a) G(A), (b) A12, (c) A22, (d) τp,12, in γ –γ̇ space for the FENE-P
response (L2 = 100) for De/a = 1 and Wi/(aL) = 10. Only positive γ̇ are displayed for convenience. Regions
denoted with roman numerals are discussed in the text.

balance between growth due to deformation and reduction due to elastic recoil. In the sPTT
model, A22 = 1, so the growth of A12 due to increasing rates of deformation is proportional
to the strain rate. In the FENE-P model, however, A22 is time-dependent for large values
of Wi/(aL), so the growth of A12 due to increasing deformation rates is nonlinear (this
will be discussed in more detail in § 3.3). Whilst G(A) is decreasing in Region I, which
reduces the degree of the elastic recoil, the growth of A22 is relatively large, so ultimately
A12 grows nonlinearly in Region I. Despite the fact that A12 grows in Region I, τp,12 grows
only slightly (and seemingly linearly) due to the presence of F(A) in the τp–A relationship
and the fact that F(A) is decreasing.

Region II is characterised by a sharp increase in G(A) as tr(A) → L2, which causes
τp,12 to increase rapidly but also limits somewhat the growth of A12 since the elastic recoil
increases. In Region II, A22 also goes through a maximum and begins to decrease, which
causes a reduction in the growth of A12 with increasing rates of deformation, exacerbating
the recoil effect. In Region III, G(A) is large enough that the elastic recoil now exceeds
the growth of A12 due to the increasing rate of deformation, which drives a negative rate
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Figure 8. Three-dimensional plots showing (a) G(A), (b) A12, (c) A22, (d) τp,12 in γ –γ̇ space for the FENE-P
response (L2 = 100) and the sPTT response for De/a (De) = 1 and Wi/(aL) (Wi

√
ε) = 10.

of change of A12 for increasing strain rates. In this region, G(A) also decreases as tr(A)

decreases, so τp,12 decreases rapidly due to A12 and G(A) both decreasing (and the fact
that F(A) is present in the τp–A relationship).

At the start of Region IV, A12 remains fairly constant, which is a consequence of the
balance of the elastic recoil with the building of elasticity due to the rate of deformation.
This might be thought of as being representative of the system approaching steady state.
Further into Region IV, there is a decrease in G(A), which drives a reduction in the shear
stress. However, as the deformation rate decreases, there is no significant decrease in A12
due to the fact that A22 is increasing and G(A) is decreasing, which acts ultimately to slow
the recoil of A12 when the rate of deformation is decreased.

Considering the previous analysis, we then present 3-D plots of G(A), A12, A22 and τp,12

against γ and γ̇ for the FENE-P (L2 = 100) and sPTT model responses for De/a (De) = 1
and Wi/(aL) (Wi

√
ε) = 10 in figure 8. Note that the sharp overshoots in G(A) are not

observed for the sPTT model response, and also note the significant differences in the A22
responses of each model. Here, A12 is generally much larger for the sPTT model than for
the FENE-P model, but the values of τp,12 are fairly similar for large parts of the oscillation
due to (1.13). This analysis unravels exactly where the differences arise between the sPTT
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and FENE-P models in unsteady shear flows. It should be noted also that the unsteadiness
here can be Eulerian or Lagrangian in nature, since the only difference between the two
models written in stress tensor form (1.7) and (1.8) is a Lagrangian derivative term on the
right-hand side of the FENE-P model. This is not so easily observed when the models
are expressed for the conformation tensor. This has significant consequences when these
constitutive models are used to model flows in complex geometries that at first might
seem steady-state due to the Eulerian steadiness, but might be Lagrangian unsteady (or
inhomogeneous).

3.3. Toy sPTT/FENE-P models
In this subsection, we focus on identifying and investigating more closely the differences
in the LAOS responses of the sPTT and FENE-P models, and particularly the origins of the
pronounced stress overshoots in the FENE-P response. To do this, we define ‘toy’ models
by manipulating slightly the standard sPTT and FENE-P models. In this subsection, we
do not focus on the aforementioned substitution of parameters to equate the FENE-P and
sPTT responses for steady and homogeneous flows, as we just compare qualitatively the
responses of each toy model. We employ only the 0-D modelling approach to obtain the
solutions, and we also use again β = 0 for all results.

For the toy sPTT model, we start with the generic network model given in (1.15) and
adjust the rates of micro-structural destruction D(A) and creation C(A) as

D(A) = 1 + αε[tr(A) − 3], (3.8a)

C(A) = 1 + (1 − α)ε[tr(A) − 3]. (3.8b)

Thus for α = 0.5, we recover the sPTT model (with the value for ε halved), and for
α = 1, we recover a model with a similar form to the FENE-P model but without F(A)

in the τp–A relationship. Therefore, in a way, α controls the position of F(A) in the
recoil term of the constitutive model. The LAOS response for the toy sPTT model with
ε = 1/100 at De = 0.5 and Wi = 200 is presented for various values of α in figure 9.
As α is increased, the stress overshoots, and self-intersecting secondary loops become
significantly more pronounced, as is expected for systems that exhibit large rates of
micro-structural destruction (Davoodi et al. 2022; Vargas et al. 2023), and the response
begins to appear qualitatively similar to the FENE-P response. This suggests that the
primary reason for the FENE-P response exhibiting large stress overshoots in transient
flows is that the extensibility function is multiplied by A instead of (A − I), and it is not
due to the fact that the extensibility function appears in the τp–A relationship, or due to the
difference in the natures of F(A)FP and F(A)sPTT . We also show this more explicitly using
a toy FENE-P model where the evolution equation for A is unchanged (given by (1.11)),
but τp is given by

τp = a(1 − β)

Wi

((
F(A)FP

a

)b

A − I

)
, (3.9)

where 0 ≤ b ≤ 1. When b = 1, the original FENE-P model is obtained, and when b = 0,
the τp–A relationship reverts to the original form given by the Kramers relation (Kramers
1944), and that used for the sPTT model. The viscous Lissajous curves for the toy FENE-P
model with L2 = 100 at De = 1 and Wi = 100 with varying values of b are shown in
figure 10. The stress overshoots, and self-intersecting loops are observed for all values of
b, indicating that the presence of F(A) in the τp–A relationship does not explicitly cause
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Figure 9. Viscous Lissajous curves for the toy sPTT model (ε = 1/100) with various values of α between 0.5
(for which C(A) = D(A)) and 1 (for which C(A) = 0). Here, De = 0.5 and Wi = 200, y-axis limits are shown
by the numbers adjacent to the ends of the axes, and x-axes run from −1.04 to 1.04.
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Figure 10. Viscous Lissajous curves for the toy FENE-P model (L2 = 100) with various values of b between
1 and 0. Here, De = 1 and Wi = 100, y-axis limits are shown by the numbers adjacent to the ends of the axes,
and x-axes run from −1.04 to 1.04.
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Figure 11. Plots of A22 cos(t) versus time for the toy sPTT model (ε = 1/100) for De = 0.5 and Wi = 200
during one oscillation with varying α. The inset highlights the point of the overshoot in A22 when α → 1.

pronounced shear stress overshoots in the transient response. As b → 0, the region directly
after the stress overshoot becomes significantly flatter, and the Lissajous curves resemble
more those of constitutive models derived for worm-like micellar systems. We also note for
both figures 10 and 9 that the scale of the y-axis in each plot is not fixed. The parameters α

and b do affect significantly the maximum stresses reached in the oscillation. In this sense,
the stress overshoots that we are discussing here are relative.

In the standard form of the sPTT model (α = 0.5), the growth term for A12 due to the rate
of deformation is equal to (Wi/De) cos(t) since A22 = 1. As α → 1, there is significant
deviation of A22 from unity during the oscillation, hence deviation of the growth term from
a pure cosine wave. Since the time rate of change of A12 is governed by a balance between
the growth and the elastic recoil, the deviation of A22 from unity contributes significantly
to the occurrence of pronounced stress overshoots and self-intersecting secondary loops in
LAOS. Ultimately, the origin of this behaviour lies in the use of the upper-convected time
derivative combined with the specific positioning of F(A) within the constitutive model
(i.e. F(A) (A − I) versus F(A) A − I). Figure 11 shows A22 cos(t) during one oscillation for
the toy sPTT model, with ε = 1/100 at Wi = 200 and De = 0.5 for various values of α.
Clear overshoots of A22 cos(t) are observed at approximately t/tp = 0.3 and 0.8 as α → 1.

To highlight more clearly the role of A22 in the generation of the pronounced stress
overshoots and self-intersecting secondary loops, we define the growth and recoil terms
for the evolution of A12 as

Qg =
(

Wi
De

A22

)
cos(t), (3.10)

Qr =
(

1
De

)
F(A) A12. (3.11)

Note that these are just, respectively, the first and second terms on the right-hand sides of
(2.2a) and (2.3b). Figure 12 shows Qg, Qr and A12 for the toy sPTT model with ε = 1/100
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Figure 12. Plots of Qg, Qr, and A12 versus γ̇ in one quarter of an oscillation for the toy sPTT model
(ε = 1/100) for De = 0.5 and Wi = 200, with (a) α = 0.5 and (b) α = 1. The dashed vertical line shows
the crossover point of Qg and Qr, and hence also the maxima of A12.
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Figure 13. Qg, Qr, and A12 versus γ̇ in one quarter of an oscillation for the FENE-P model (L2 = 100) for
De = 1 and Wi = 100. Dashed vertical line shows the cross-over point of Qg and Qr, and hence also the
maxima of A12.

when α = 0.5 and 1, during a quarter of the oscillation period. During this quarter of the
period, γ̇ is increasing from 0 to 1. Naturally, stress overshoots are observed in this region
for the case when Qr > Qg, which is seemingly the case for the toy sPTT model when
α → 1 and thus C(A) = 1. Whilst it is difficult to assess explicitly the role that A22 plays
in the evolution of Qg and Qr due to the strong coupling in the equations, it is clearly the
case that the sharp decrease in Qg, which can be caused only by a change in A22 for fixed
values of De and Wi, occurs before any observed decrease in Qr, which allows for a region
where Qr is significantly larger than Qg. In figure 12(b), the point of intersection of Qg(γ̇ )

and Qr(γ̇ ) of course defines the exact position for the maximum of A12 (and hence τp,12)
associated with the stress overshoot. As γ̇ → 1, there is a large region where Qg ≈ Qr,
which as mentioned might represent the system approaching steady shear.

Figure 13 shows Qg, Qr and A12 for the FENE-P model (or toy FENE-P model with
b = 1) with L2 = 100 at De = 1 and Wi = 100. Again, the decrease in Qg, caused by the
time-dependence of A22, is significant and is primarily responsible for the generation of
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Toy sPTT (α = 1)

1/3.1

ε

1/5

1/10

1/100

1/1000

τp,12 versus γ·

De = 0.5

Wi ε0.5 = 20

Figure 14. Viscous Lissajous curves for the toy sPTT model for α = 1, De = 0.5 and Wi
√

ε = 20, with
varying ε.

the pronounced stress overshoots. Also, Qr grows much more sharply for the FENE-P
model than for the toy sPTT model due to the difference between F(A)FP and F(A)sPTT .
The overshoots in the FENE-P response are likely exacerbated somewhat by this. We
should note that if F(A)sPTT is replaced by F(A)FP in the original sPTT model, then stress
overshoots can still occur even when A22 = 1 solely due to the increased nonlinearity
of Qr. However, these overshoots are significantly smaller than those observed when Qg
is nonlinear. This replacement of F(A)sPTT by F(A)FP in the sPTT model essentially
corresponds to a toy FENE-CR model, which we explore in Appendix A.

As discussed in § 3.1, the standard sPTT model has universal solutions both in steady
shear and in LAOS (for constant values of De) for constant values of Wi

√
ε. However, the

FENE-P model LAOS response has universal solutions only for constant values of Wi/(aL)

for large enough values of L2. In § 3.1, we show that replacing F(A)sPTT with F(A)FP in
the sPTT model causes a breakdown of this universality, and therefore that the existence
of universal solutions is dependent on the specific form of F(A) used. Here, we use the toy
models to also investigate the effect of the positioning of F(A) on the scaling of the LAOS
response (i.e. F(A) (A − I) versus F(A) A − I). In figure 14, we show the LAOS response
of the toy sPTT model with α = 1 (such that C(A) = 1) for De = 0.5 and Wi

√
ε = 20 for

various values of ε. The solution seems to be universal only for small enough values of ε,
which is strongly reminiscent of the FENE-P model response presented in § 3.1. Note that
α = 1 makes the toy sPTT model appear in a similar form to the FENE-P model in the
network model framework. As highlighted by Tanner (2006) and Davoodi et al. (2022), the
generic network model (1.15) can be written for steady and homogeneous flows in stress
tensor form as

D(τp) τp + Wi
�
τp = 2(1 − β)D − D(τp) (1 − β)

Wi

(
1 − C(τp)

D(τp)

)
I. (3.12)

Note here that both the time and the velocity gradient are made dimensionless by γ̇ , so
the entire upper-convected time derivative is multiplied by Wi. For D(A) /= C(A), the last
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term on the right-hand side of (3.12) is non-zero. For the toy sPTT model with α = 1,
D(τp) = F(τp)sPTT and C(τp) = 1. In this case, the solution of (3.12) in SSSF is given by
the system

[
1 + Wi ε

1 − β
(τp,11 + τp,22 + τp,33)

]
τp,11 − 2 Wi γ̇ τp,12 = −ε(τp,11 + τp,22 + τp,33),

(3.13a)[
1 + Wi ε

1 − β
(τp,11 + τp,22 + τp,33)

]
τp,12 − Wi γ̇ τp,22 = (1 − β)γ̇ , (3.13b)

[
1 + Wi ε

1 − β
(τp,11 + τp,22 + τp,33)

]
τp,22 = −ε(τp,11 + τp,22 + τp,33), (3.13c)

[
1 + Wi ε

1 − β
(τp,11 + τp,22 + τp,33)

]
τp,33 = −ε(τp,11 + τp,22 + τp,33). (3.13d)

For finite values of Wi ε (or Wi
√

ε), but in the limit that ε → 0, the term −ε(τp,11 +
τp,22 + τp,33) on the right-hand side of the diagonal components approaches zero, in which
case τp,22 = τp,33 → 0 and (3.13) reduces to

[
1 + Wi ε

(1 − β)
τp,11

]
τp,11 − 2 Wi γ̇ τp,12 = 0, (3.14a)

[
1 + Wi ε

(1 − β)
τp,11

]
τp,12 = (1 − β)γ̇ , (3.14b)

which is the solution for the original sPTT model. As discussed in § 3.1, the solution to
(3.14) depends only on the parameter Wi

√
ε (something which is also seen by introducing

the new variable x = Wi ετp,11/(1 − β) into (3.14)). It highlights that the breakdown of the
universal scaling with Wi

√
ε can be caused, at least in SSSF, by setting D /= C even when

F(A)sPTT is used for the extensibility function. Therefore, considering also the scaling
analysis for the FENE-CR model presented in § 3.1, the breakdown of the universal scaling
for low values of L2 in the FENE-P LAOS response is likely a combined effect of the
functional form of F(A) and its position in the conformation tensor form of the constitutive
model (i.e. F(A) (A − I) versus F(A) A − I). We note briefly that for the FENE-P model,
the extra term on the right-hand side of (3.12) is multiplied by the Lagrangian derivative
of 1/F(τp) due to the presence of F(A) in the τp–A relationship, which is why this term
does not affect the SSSF solution for the FENE-P model.

For clarity, we will summarise this subsection briefly. When D(A) /= C(A) in the
network model framework, temporal changes in A22 cause both nonlinear growth and
nonlinear recoil of A12 simultaneously. This causes a region where Qr is significantly
larger than Qg, which manifests as pronounced stress overshoots in the Lissajous curves.
The presence of F(A) in the τp–A relationship does not seem to have much effect on the
relative stress overshoots. The sPTT model response scales universally due to both the
specific functional form of F(A) used in the model and the fact that F(A) is on the outside
of the brackets in the recoil term (or D(A) = C(A) in the network model framework). The
FENE-P response does not scale universally in LAOS due to the specific form of F(A) used
and the fact that F(A) is on the inside of the brackets in the recoil term (or D(A) /= C(A)

in the network model framework).
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3.4. Sequence of physical processes
Previously, we have discussed the responses of the FENE-P and sPTT models
predominantly in terms of the nature of the underlying ODEs being solved. Here, we
analyse the responses of the models in terms of the physical phenomena being represented
by the models. To do this, we employ the sequence of physical processes (SPP) analysis
(Rogers et al. 2011), which will now be outlined briefly.

Whilst the moduli G′ and G′′ are time-independent during SAOS, and their values
can be found from simple Fourier analysis, these moduli are transient during LAOS for
a nonlinear viscoelastic material or constitutive model. The SPP framework identifies,
at each instant, these transient moduli, denoted as G′

t(t) and G′′
t (t), by utilising the

Frenet–Serret theorem. In this approach, each point in the oscillation is given by a position
vector in the strain-rate–stress space P(t) = 〈γ (t), γ̇ (t), τp,12(t)〉, noting that β = 0 in
this study so τp,12 = τ12. Three additional vectors are then defined at each position on
the Lissajous curve, which are used to identify the transient moduli. The tangent vector
T (t) = Ṗ(t)/|Ṗ(t)| points in the direction of the instantaneous trajectory (the overdot here
denoting total differentiation with respect to time). The normal vector N(t) = Ṫ (t)/|Ṫ (t)|
points to the centre of the curvature of the instantaneous trajectory. Finally, the binormal
vector B(t) = T (t) × N(t) points in the direction normal to the plane in which the
instantaneous trajectory sits (the osculating plane). The transient moduli are then defined
(noting that ω = 1 in our case due to the equations being solved in non-dimensional form)
using the components of B as

G′
t(t) = dτp,12

dγ
= − Bγ (t)

Bτp,12(t)
, (3.15a)

G′′
t (t) = dτp,12

dγ̇
= − Bγ̇ (t)

Bτp,12(t)
. (3.15b)

The stress response, for β = 0, is then reconstructed as

τp,12(t) = G′
tγ + G′′

t γ̇ + τ d
p,12, (3.16)

where τ d
p,12 is the displacement stress. For a more detailed explanation of the SPP

framework, the reader is referred to Rogers et al. (2011), Rogers (2012, 2017) and Lee
& Rogers (2017).

The time-dependent behaviour of G′
t and G′′

t during the (half) oscillation informs us
of underlying physical phenomena occurring in the stress response. Increasing values
of G′

t represent intra-cycle strain-hardening, whilst decreasing values of G′
t represent

intra-cycle strain-softening. Similarly, for the viscous modulus, increasing values of
G′′

t represent intra-cycle shear-thickening, whereas decreasing values of G′′
t represent

intra-cycle shear-thinning. Negative instantaneous values of G′
t can be thought of as

representing elastic recoil, and negative instantaneous values of G′′
t can be thought

of as representing viscous backflow (Rogers 2017; Choi, Nettesheim & Rogers 2019;
Donley, Bantawa & Gado 2022). In this subsection, we perform the SPP analysis for the
sPTT (FENE-P) responses for a fixed De (De/a) = 0.5 with L2 = 1/ε = 100. We also
investigate the responses of the toy models outlines in § 3.4. The SPP freeware (https://
publish.illinois.edu/rogerssoftmatter/freeware/) for MATLAB was used for the analysis,
which was kindly provided to us by the developers. Central differencing was used for
differentiation of the stress response, and a single limit cycle period with 401 time points
was used for the analysis.
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Figure 15. The SPP analysis for the sPTT and FENE-P model responses at De (De/a) = 0.5 and L2 = 1/ε =
100. (a,c) The 3-D Lissajous curves for the sPTT and FENE-P models, respectively. (b,d) The respective
Cole–Cole plots.

Figure 15 shows the 3-D Lissajous curves for the sPTT and FENE-P models as well
as the Cole–Cole plots (G′′

t versus G′
t). For the sPTT model, the response manifests

as deltoids in the Cole–Cole plots, which are commonly observed experimentally for a
range of viscoelastic materials, including doughs (Park & Rogers 2020; Erturk, Rogers &
Kokini 2022). As Wi

√
ε is increased, the deltoids increase in size, which physically might

represent an increase in the degree of micro-structural change during the oscillation (Park
& Rogers 2020). For the FENE-P response, as Wi is increased (note that L2 is fixed at 100,
and we do not assume that the solution truly scales with Wi/(aL)), the Cole–Cole plots
resemble instead arrowhead shapes that are significantly larger in size than the deltoids
observed in the sPTT response (see the scales of the axes).

Figure 16 highlights more clearly the temporal evolution of G′
t and G′′

t during the
(half) oscillation for the sPTT and FENE-P models for the largest value of Wi shown in
figure 15. Figures 16(a,c) show the 3-D Lissajous curves for the sPTT and FENE-P models,
respectively, whilst figures 16(b,d) show the respective Cole–Cole plots. The colour bar
indicates the normalised time between the start point t0 (chosen arbitrarily as γ = −1
and γ̇ = 0) and the end point t0 + π (i.e. half a period after t0). For both the sPTT and
FENE-P model responses, the majority of the temporal change in G′

t and G′′
t takes place

between t0 and (t − t0)/π ≈ 0.4, which corresponds to the region directly before and after
the stress overshoot in the FENE-P model. In the sPTT model response, initially (i.e. at
t0) both G′

t and G′′
t are positive, with G′

t being slightly larger than G′′
t . Then in the period
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Figure 16. The SPP analysis for the (a,b) sPTT and (c,d) FENE-P models for De (De/a) = 0.5 and
Wi

√
ε (Wi/(aL)) = 2, with ε = 1/L2 = 1/100. The colour bar indicates the normalised time in one half of

the oscillation from the point indicated by t0. (a,c) The 3-D Lissajous curves. (b,d) The Cole–Cole plots.

between t0 and (t − t0)/π ≈ 0.4, there is first a decrease in G′
t with an increase in G′′

t
(which corresponds to strain-softening and shear-thickening), followed by an increase in
G′

t with a decrease in G′′
t (which corresponds to strain-stiffening and shear-thinning). For a

significant portion of the region between between t0 and (t − t0)/π ≈ 0.4, G′
t is negative,

indicating the presence of elastic recoil despite there being practically no self-intersecting
loops in the viscous Lissajous curve. In the FENE-P response, both G′

t and G′′
t are smaller

at t0 than for the sPTT model, and G′′
t is slightly larger than G′

t. In the period between t0
and (t − t0)/π ≈ 0.4, the FENE-P response is drastically different to the sPTT response.
Initially, there is a sharp increase in G′

t with a decrease in G′′
t . This decrease in G′′

t is sharp
enough that it becomes negative in this region before the stress overshoot. Then, similarly
to the sPTT response, a decrease in G′

t with an increase in G′′
t is observed. This behaviour

is, however, more extreme for the FENE-P response than for the sPTT response. Then an
increase in G′

t with a decrease in G′′
t is observed as the trajectory passes through the sharp

stress overshoot. The decrease in G′′
t in this region for the FENE-P response is so large

that G′′
t is negative after the stress overshoot. In supplementary movies 1 and 2, we show

the evolution of the Frenet–Serret frame along the Lissajous curves displayed in figure 16,
along with the projections of B in the γ̇ –τp,12 plane (highlighting the sign of G′′

t ) and the
current position in the Cole–Cole plots.

We now use the toy models outlined in § 3.3 to further highlight the link between
the nature of the constitutive model and its behaviour in terms of the SPP analysis.
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Figure 17. Cole–Cole plots for (a) the toy FENE-P model at De = 1, Wi = 100, L2 = 100, and (b) the toy
sPTT model at De = 0.5, Wi = 200, ε = 1/100. The corresponding Lissajous curves can be seen in figures 10
and 9.

Figures 17(a,b) show the Cole–Cole plots obtained from the SPP framework for the toy
FENE-P and toy sPTT models, respectively. Note that De = 0.5 and Wi = 200 for the toy
sPTT model, whilst De = 1 and Wi = 100 for the toy FENE-P model. This corresponds
to the conditions for the Lissajous curves shown in figures 9 and 10. For the toy sPTT
model, increasing the value of α has a seemingly minor effect on the Cole–Cole plots.
The general shape remains fairly constant; however, a region of negative G′′

t develops that
corresponds to the developing stress overshoots (seen in figure 9). The link between this
negative region of G′′

t and the stress overshoot is seen clearly in supplementary movie 1
for the FENE-P model response. Essentially, after the stress overshoot, the normal vector
N points in the positive stress direction as the recoil fades, which points the binormal
vector B towards the negative strain rate direction. For the toy FENE-P model, the value
of b has a significant effect on the Cole–Cole plot. For b → 1, the extremities of G′

t and
G′′

t become significantly large in magnitude. This indicates that the SPP analysis is highly
sensitive to the presence of F(A) in the τp–A relationship (which relates physically to
explicit finite extensibility of the polymer chains) despite the fact that the primary features
of the Lissajous curves do not, at least qualitatively, appear to change significantly (see
figure 10). More quantitatively, the presence of F(A) in the τp–A relationship appears to
give rise to a region of backflow (i.e. negative G′′

t ) before the onset of the stress overshoot.
This behaviour cannot be explained easily in terms of the evolution of A, as the region of
backflow after the stress overshoot can (i.e. Qr < Qg). The region of backflow before the
stress overshoot is observed only in the toy FENE-P and toy FENE-CR (see Appendix A)
models when b > 0. In supplementary movie 1 for the FENE-P response, it is evident
that this region of backflow in the FENE-P response arises due to the exceptionally sharp
increase in the stress before the overshoot, which is explained by the fact that the stress
grows nonlinearly with A according to (1.13). Figure 18 shows the Cole–Cole plots for the
toy sPTT model with α = 1 and the toy FENE-P model with b = 0, such that the only
difference between the models is the functional form of F(A). The qualitative features of
the Cole–Cole plots are very similar. The sizes of the deltoids are similar, both responses
exhibit backflow after the stress overshoot (owing to the position of F(A) in the model
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Figure 18. Cole–Cole plots comparing the toy sPTT model response with α = 1 and the toy FENE-P model
response with b = 0.

and the transient nature of A22), and neither of the responses exhibits backflow before the
stress overshoot (owing to the absence of F(A) in the τp–A relationship). In this sense,
the SPP framework can be used to identify quickly the presence of finite extensibility
effects in LAOS responses, and differentiate them from other nonlinear effects such as
micro-structural destruction.

3.5. One-dimensional modelling of LAOS
In the previous subsections, it is assumed that the shear rate is uniform in space. For
constitutive models that have non-monotonic stress–shear-rate relationships – such as the
Giesekus model (Giesekus 1982) or the Rolie-Poly model (Likhtman & Graham 2003) –
the material in a shear flow can shear band such that two distinct regions of shear rate
exist in the flow. Neither the FENE-P nor sPTT model will shear band in SSSF since their
underlying stress–shear-rate curves are both monotonic. However, as we have highlighted
already, during LAOS, the FENE-P model behaves in a much more nonlinear manner than
during steady shear, and aspects of the response of the model, such as the presence of
strong stress overshoots and self-intersecting secondary loops, resemble those of models
that do exhibit shear banding. Moreover, recent studies have highlighted that shear banding
can occur due to stress overshoots in transient flows, even in models that have monotonic
underlying stress–shear-rate constitutive curves (Adams & Olmsted 2009; Moorcroft,
Cates & Fielding 2011; Moorcroft & Fielding 2013; Carter, Girkin & Fielding 2016). It
is therefore sensible to check whether the FENE-P model is capable of shear banding
in LAOS.

Using the 1-D modelling approach, and enforcing true creeping flow, the stress response
at the top boundary will match the results obtained in the previous subsections if there
is no shear banding. However, if shear banding occurs, then we will be able to observe
the heterogeneous velocity gradient in the gap, and the stress response at the top wall
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Figure 19. Lissajous–Bowditch plots (viscous projection) for the sPTT model. Blue solid lines show the 0-D
approximation solution from § 3.1; black dashed lines show the results from the 1-D simulations, where the
stress is computed at the top (moving) boundary.
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Figure 20. Lissajous–Bowditch plots (viscous projection) for the FENE-P model (L2 = 100). Red solid lines
show the 0-D approximation solution from § 3.1; black dashed lines show the results from the 1-D MOL
simulations, where the stress is computed at the top (moving) boundary.
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will not match with the previous results. In order to avoid the known problems of stress
selection (Lu, Olmsted & Ball 2000; Olmsted 2008) and discontinuous strain rates in shear
banding, we add a small diffusive term (κ ∇2A) to the right-hand side of the constitutive
models during the simulations. The value of κ was fixed at 10−9. Note that κ here is
dimensionless and is given by κ = λD/H2, where D is the diffusion coefficient in m2 s−1.
In the supplementary material, we show that this methodology is capable of capturing
shear banding in LAOS using the Rolie-Poly (ROuse LInear Entangled POLYmers) model.

Figures 19 and 20 show the viscous Lissajous–Bowditch plots for the sPTT and FENE-P
with L21/ε = 100 models, respectively, where the stress response has been computed with
the 0-D approximation (black dashed lines) and 1-D simulation (solid lines). For both
models, both the 0-D and 1-D methods give practically identical responses, indicating that
the 0-D approximation is adequate for describing the model responses properly, and that
no shear banding is occurring in the 1-D simulations. Since the methodology used for the
1-D simulations is capable of predicting shear banding, it is reasonable to assume that the
FENE-P model does not shear band in LAOS, despite the fact that the model response is
significantly more nonlinear in LAOS than it is in SSSF, at least in the ranges of De/a and
Wi/(aL) investigated.

4. Conclusions

We have compared the response of the sPTT and FENE-P constitutive models in LAOS
when the parameters in the models are chosen such that the models are mathematically
identical for steady and homogeneous flows. The results show that the FENE-P model
behaves in a significantly more nonlinear manner than the sPTT model in LAOS, as it does
in other transient flows such as start-up flow. The FENE-P model exhibits strong stress
overshoots and large self-intersecting secondary loops in the viscous Lissajous curves,
whereas the sPTT model does not. The stress overshoots and self-intersecting secondary
loops arise from the FENE-P model due primarily to the extensibility function being
multiplied with A instead of (A − I) in the conformation tensor form of the constitutive
model, which can be thought of in terms of network theory as the system exhibiting faster
rates of micro-structural destruction than creation. This drives a change in A22 and A33
during the oscillation that, due to the use of the upper-convected derivative, causes the
elastic recoil of A12 to exceed the growth of A12 for increasing rates of deformation,
which ultimately leads to the pronounced stress overshoots. It is important to note that
the differences between these two models arise for both Eulerian unsteady flows (such as
LAOS) and Lagrangian unsteady (or inhomogeneous) flows, so the differences between
the model responses such as the stress overshoots will also occur in Eulerian steady flows
that are Lagrangian unsteady due to, perhaps, expansions and contractions in a complex
geometrical domain. Such complex geometries are often encountered in many industrial
flows and processes. In fluid regions with strong accelerations, one can expect much
sharper changes in the polymeric stress with the FENE-P model than the sPTT model.

Although it has been shown previously analytically for the FENE-P and sPTT models
that the stress–strain-rate curves scale with Wi/(aL) and Wi

√
ε, respectively, for simple

steady shear, we have been able to show with our numerical results that the sPTT LAOS
response also scales with Wi

√
ε, but the FENE-P response in LAOS scales only with

Wi/(aL) at large enough values of L2. We have also been able to explain this analytically.
This is shown to be caused by the specific functional form of the extensibility function
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as well as its position in the FENE-P constitutive model (inside the brackets in the recoil
term rather than on the outside).

Using the sequence of physical processes framework, we highlight the differences in the
model responses in terms of the transient moduli G′

t and G′′
t . The Cole–Cole plots show

that the FENE-P model exhibits significantly more complex rheological behaviour during
the oscillation. A key result obtained from the SPP analysis is that the FENE models (both
FENE-P and FENE-CR) exhibit backflow (i.e. negative G′′

t ) both before and after the stress
overshoot. The region of backflow before the stress overshoot is shown to be linked to the
presence of the extensibility function in the stress–conformation-tensor relationship. This
highlights that the SPP framework can be particularly useful for identifying the correct
form of constitutive models for viscoelastic materials from LAOS data.

Although the FENE-P model in LAOS behaves more like models that exhibit shear
banding, such as Giesekus and Rolie-Poly, than it does in steady shear, the FENE-P model
does not appear to be capable of shear banding in LAOS. This was investigated by solving
both the momentum equation and the constitutive model in a 1-D gap of fluid using the
method of lines technique. For all cases with the sPTT and FENE-P models, the velocity
gradient remained constant across the gap, and the Lissajous–Bowditch plots were almost
identical when the 1-D and 0-D solutions were compared.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.977.
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Appendix A. Comparing the FENE-CR and sPTT models

In § 3.1, we highlight that the FENE-CR model scales universally with Wi/L only for
L2 
 3. We also point out that the evolutions of A for the sPTT and FENE-CR models
become identical for L2 
 3 and in the case that terms of O(x2) can be neglected in the
expansion of F(A)FP, where x = (A11 − 1)/L2, which corresponds to the MAOS regime.
This is also highlighted in figure 21. We introduce here a toy FENE-CR model that, under
LAOS flow, is defined as

De
∂

∂t
A − Wi (A · ∇u + ∇uT · A − u · ∇A) = −F(A)FP (A − I), (A1a)

τp = 1 − β

Wi
(F(A)FP)b(A − I), (A1b)

where 0 ≤ b ≤ 1. We remind the reader that F(A)FP = L2/(L2 − tr(A)). When b = 0, the
only difference between the toy FENE-CR and sPTT models is the specific form of F(A)
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F(A)FP, L2 = 500
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F(A)FP, L2 = 10 000
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F(A)sPTT
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Figure 21. Extensibility function F(A) versus x, where x = ε(A11 − 1) for the sPTT model, and x = (A11 −
1)/L2 for the FENE-CR model. The black dashed line shows the expression for F(A)FP in the case that L2 
 3.
Yellow to red lines show F(A) for the FENE-CR model, where A22 = A33 = 1, so F(A) = (1 − x − 3/L2)−1.

used (i.e. 1 + ε(tr(A) − 3) versus L2/(L2 − tr(A))). In this case, the stress response of
the toy FENE-CR model will now also become equivalent to that of the sPTT model in
the MAOS regime. We show this in figure 22. For Wi

√
ε (Wi/L) = 0.2, the responses

of both models are nonlinear, due to the fact that F(A) becomes transient and larger
than unity during the oscillation. However, since x is small during the oscillation and
L2 
 3, F(A)FP is essentially linear and equivalent to F(A)sPTT , so the stress responses of
both models are practically identical. For larger values of Wi

√
ε (Wi/L), F(A)FP starts to

deviate from F(A)sPTT at points in the oscillation due to the increased values of A11, so the
stress responses begin to differ. As is likely expected, the toy FENE-CR model response
appears more nonlinear than the sPTT response, owing to the increased nonlinearity in
F(A). The responses are, however, at least qualitatively similar even for moderate values
of Wi

√
ε (Wi/L).

Figure 23 shows the viscous Lissajous curves for the toy FENE-CR model with varying
values of b at De = 1, Wi = 100 and L2 = 100. For all values of b in the toy FENE-CR
model, despite the fact that Qg is linear, a small stress overshoot is observed due to
the nonlinearity of F(A)FP, and hence nonlinearity of Qr. This highlights again that the
pronounced stress overshoots, which are observed in the FENE-P, toy FENE-P and toy
sPTT model responses, are closely linked with the nonlinearity of Qg and thus the transient
nature of A22. This becomes particularly clear when figures 23(c) and 10( f ) are compared.
Note when comparing these two figures that F(A) is moving from the inside to the outside
of the brackets in the recoil term, and F(A) does not appear in the τp–A relationship in
either case.

Figure 24 shows the Cole–Cole plots for the toy FENE-CR model responses displayed
in figure 23. For b > 0, a region of backflow is observed before the small stress overshoot,
which is also observed in the toy FENE-P model response for b > 0. This further
highlights that the SPP framework can identify clearly the presence of F(A) in the τ p–A
relationship, and thus help to identify a suitable form of constitutive model from LAOS
data.
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Toy FENE-CR Wi ε0.5 (Wi/L) = 0.20 Wi ε0.5 (Wi/L) = 0.50

Wi ε0.5 (Wi/L) = 1.00

sPTT

F(
A)

F(
A)

2 2
sPTT
Toy FENE-CR
1 + x
1/(1–x)

1 1

F(
A)

2

1

0 0

0

0.7 0.7
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x x

x
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Figure 22. Viscous Lissajous curves (τp,12 versus γ̇ ) for the sPTT model (toy FENE-CR model) for De = 0.2
and varying Wi

√
ε (Wi/L). Insets show the ranges of F(A) for each model during the oscillation. Here, b = 0

and L2 = 105 for the toy FENE-CR model.
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Figure 23. Viscous Lissajous curves (τp,12 versus γ̇ ) for the toy FENE-CR model with (a) b = 1,
(b) b = 0.5, and (c) b = 0. Note that small stress overshoots are observed in all cases.
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Figure 24. Cole–Cole plots (G′′
t versus G′

t) for the toy FENE-CR model with (a) b = 1, (b) b = 0.5, and
(c) b = 0. Note that for b = 0, only one region of viscous backflow (i.e. G′′

t < 0) is observed, whereas two
regions of backflow are observed for b = 0.5 and b = 1.
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