
Hodge and Laplace^Beltrami Operators for
Bicovariant Differential Calculi on Quantum Groups

ISTVAè N HECKENBERGER
Mathematisches Institut, UniversitÌt Leipzig, Augustusplatz 9^11, D-04109, Leipzig,
Germany. e-mail: heckenbe@mathematik.uni-leipzig.de

(Received: 13 February 1999; accepted in ¢nal form: 9 July 1999)

Abstract. For bicovariant differential calculi on quantum matrix groups a generalisation of
classical notions such as metric tensor, Hodge operator, codifferential and Laplace^Beltrami
operator for arbitrary k-forms is given. Under some technical assumptions it is proved that
Woronowicz' external algebra of left-invariant differential forms either contains a unique form
of maximal degree or it is in¢nite-dimensional. Using Jucys^Murphy elements of the Hecke
algebra, the eigenvalues of the Laplace^Beltrami operator for the Hopf algebra O�SLq�N��
are computed.
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1. Introduction

About ten years ago, S. L. Woronowicz introduced the concept of bicovariant
differential calculus on arbitrary Hopf algebras and developed a general theory
of such calculi [11]. One of the most interesting parts of this theory is his de¢nition
of external algebras and higher-order calculi by using a braiding map instead of
the £ip operator in the corresponding classical constructions. The higher-order
differential calculus de¢ned in this manner becomes then an N0-graded differential
super Hopf algebra ([1], [2]; see [7] for a complete proof). However, applying
Woronowicz's construction of higher-order calculi to quantum matrix groups leads
to a number of dif¢culties and phenomena that do not occur in the classical
(commutative) case. Firstly, the vector space �G^�l of left-invariant differential forms
endowed with the canonical (wedge) product does not form a Grassmann algebra in
general. Secondly, it may happen that the dimensions of the spaces �G^k�l of
left-invariant k-forms do not vanish as k! �1 (see [6]). For the irreducible
N2-dimensional bicovariant ¢rst order differential calculi on the coordinate Hopf
algebra O�SLq�N�� of the quantum group SLq�N�, NX 2, a detailed description
of the higher order differential calculi G^ was given by A. SchÏler [9]. In this import-
ant case it is proved in [9] that for transcendental values of the parameter q the
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dimension of the vector space of left-invariant k-forms is N2

k

� �
just as in the classical

situation.
In `ordinary' differential geometry the Laplace^Beltrami operator D acting on

differential forms plays a central role. In its construction a metric tensor, the Hodge
star and the codifferential operators are essentially used. The aim of this paper is to
give a de¢nition of invariant Laplace^Beltrami operators D for inner bicovariant
differential calculi on arbitrary Hopf algebras. It will be a generalisation of the
classical concept and works also in the case when the higher order calculus is in¢nite
dimensional. The existence of D is shown for coquasitriangular Hopf algebras and
irreducible differential calculi de¢ned by generalised l-functionals. As tools we
use s-metrics (a generalisation of the concept of a metric tensor in the commutative
case), Hodge star operators (in a special case) and codifferentials.

In Section 2 we introduce s-metrics for a pair of bicovariant bimodules. In Section
3 we give examples for these structures. In Section 4 further basic notions like con-
tractions with forms (see also [3]) and s-metrics on higher order forms of
Woronowicz's external algebra are introduced and a number of useful properties
of these mappings are developed. Section 5 is concerned with Hodge operators
and codifferential operators. For their de¢nitions we require two assumptions.
The ¢rst one is that the Hopf algebra is `connected' (i.e. it has only one one-
dimensional corepresentation), and the second assumption is satis¢ed (for instance)
if the left-invariant part of the external algebra is ¢nite dimensional. In Theorem
5.2 it is proved that if there is a left-covariant s-metric on the external algebra then
there exists a unique (up to a complex multiple) left-invariant differential form
of maximal degree. For the proof of Theorem 5.2 (and its Corollary 5.3) we don't
need the assumption that the Hopf algebra is `connected'. Further we de¢ne Hodge
star and codifferential operators and prove some of their properties. One of the
formulas for the codifferential operator is independent of the Hodge star and will
be taken as a de¢nition in the next section. In Section 6 the invariant Lap-
lace^Beltrami operator is de¢ned and a number of results on this operator are
derived. Among others, it is shown (Theorem 6.3) that there is a duality between
the differential and codifferential as in the classical case. In Section 7 the eigenvalues
of the Laplace^Beltrami operator for the quantum group SLq�N�, NX 2 are
determined.

In this paper we shall use the convention to sum over repeated indices belonging to
different terms. Throughout, A denotes a Hopf algebra over the complex ¢eld with
comultiplication D and invertible antipode S. The symbol 
A means the algebraic
tensor product over the Hopf algebra A, while DL and DR denote left and right
coactions on a bicovariantA-bimodule, respectively. If u and v are corepresentations
of A, then we write Mor�u; v� for the set of intertwiners of u and v. We set
Mor�u� �Mor�u; u�. Throughout the paper we freely use basic facts from the theory
of bicovariant differential calculi (see [11] or [7], Chapter 14).

I want to thank Prof. SchmÏdgen for posing the problem and for motivating dis-
cussions.
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2. r-Metrics

Let A be an arbitrary Hopf algebra and let G� and Gÿ be two ¢nite dimensional
bicovariant A-bimodules. Recall that any bicovariant bimodule G is a free left
and right A-module and there are bases of G consisting of left- and right-invariant
elements respectively. In what follows we use the symbols �G�l; �G�r and �G�lr to
denote the vector spaces of left-, right- and biinvariant (i.e. both left- and
right-invariant) elements in a bicovariant bimodule G. Further, there is a canonical
braiding s : Gt 
A Gt0 ! Gt0 
A Gt (de¢ned by Woronowicz [11]) for each
t; t0 2 f�;ÿg which is an invertible homomorphism of bicovariant bimodules.
We shall write s� for s and sÿ for sÿ1.

DEFINITION 2.1. A linear mapping g : G� 
A Gÿ � Gÿ 
A G� ! A is called a
s-metric of the (not ordered) pair �G�;Gÿ� if it satis¢es the following conditions:

. g is a homomorphism of A-bimodules,

. g is nondegenerate, (i.e. for x 2 Gt both g�x
A x0� � 0 for any x0 2 Gÿt and
g�x0 
A x� � 0 for any x0 2 Gÿt imply x � 0)

. g � s � g (s-symmetry),

. the following diagrams commute (t; t0 2 f�;ÿg):

Gt 
A Gt0 
A Gÿt ÿ!
s�23

Gt 
A Gÿt 
A Gt0

s�12
??y ??yg12

Gt0 
A Gt 
A Gÿt ÿ!
g23

Gt0

�1�

The s-metric of the pair �G�;Gÿ� is said to be left-covariant resp. right-covariant if

D � g � �id
 g�DL resp: �2�

D � g � �g
 id�DR �3�

on G� 
A Gÿ � Gÿ 
A G�. We call it bicovariant if it is both left- and
right-covariant.

If no ambiguity can arise then we use the symbol `,' in order to separate the two
arguments of g. Recall that by de¢nition we still have g�xa; r� � g�x; ar� for any
a 2 A, x 2 Gt and r 2 Gÿt, t 2 f�;ÿg.

If g is a homomorphism of theA-bimodules Gt 
A Gÿt andA, t 2 f�;ÿg, (e.g. if g
is a s-metric of the pair �G�;Gÿ�) then on the tensor product

Nk
m�1 Gtm , tm 2 f�;ÿg

the equation

gi;i�1 � gj;j�1 � gjÿ2;jÿ1 � gi;i�1 for k > j > i � 1 �4�

holds. One can check that the only conditions on the above map to be well de¢ned is
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ti�1 � ÿti and tj�1 � ÿtj. The formulas

gi;i�1 � sj;j�1 � sjÿ2;jÿ1 � gi;i�1 and si;i�1 � gj;j�1 � gj;j�1 � si;i�1; j > i � 1;
�5�

should be clear as well.
Let now g be a s-metric of the pair �G�;Gÿ�. Then on the tensor product

G
t 
A G
ÿt; t 2 f�;ÿg we de¢ne a map ~g recursively by setting

~g�x; a� :� xa; ~g�a; z� :� az;
~g�x
A x1; z1 
A z� :� ~g�xg�x1; z1�; z�

�6�

for all x 2 G
t ; x1 2 Gt; z 2 G
ÿt; z1 2 Gÿt and a 2 A.
Since g is a homomorphism of A-bimodules, the map ~g is well de¢ned and it is a

homomorphism of bimodules. Note that ~g is left-, right- or bicovariant if g is.
The next lemma is crucial in what follows.

LEMMA 2.1. For a s-metric g of the pair �G�;Gÿ� and arbitrary integers i; k; l such
that 1W i < k; l, we have

~g � �s�kÿi;kÿi�1; id
l� � ~g � �id
k; s�i;i�1� �7�

on the bimodule G
kt 
A G
lÿt.
Proof.Because of (6) it suf¢ces to show the assertion for i � 1 and k � l � 2. But in

this case we have ~g � g12 � g23 and it suf¢ces to apply the fourth condition on the
s-metric g (see (1) in De¢nition 2.1) twice. We obtain

~g�s��x1 
A x2�; z1 
A z2� � g12 � g23 � s�12�x1 
A x2 
A z1 
A z2�
� g12 � g12 � s�23�x1 
A x2 
A z1 
A z2�
� g12 � g34 � s�23�x1 
A x2 
A z1 
A z2�
� g12 � g23 � s�34�x1 
A x2 
A z1 
A z2�
� ~g�x1 
A x2; s

��z1 
A z2��;
where the third equation follows from (4). &

Let g be a homomorphism of the bicovariant bimodules G� 
A Gÿ � Gÿ 
A G� and
A. The general theory of bicovariant bimodules assures that g is nondegenerate
whenever the matrix of g with respect to one ¢xed basis of �G��l and one ¢xed basis
of �Gÿ�l is invertible. Conversely, if g is left-covariant (i. e. (2) is ful¢lled) then
the matrix G of g with respect to any basis of �G��l and �Gÿ�l has complex entries
and the nondegeneracy of g implies the invertibility of the matrix G. In this case
we easily conclude that the following assertions are equivalent:

(i) g is nondegenerate,
(ii) the restriction of g onto the subspace �G� 
A Gÿ�l � �Gÿ 
A G��l is

nondegenerate,
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(iii) the matrix G of g with respect to one (and then any) basis of �G��l and �Gÿ�l is
invertible.

Obviously, this holds for left-covariant s-metrics as well. In what follows most of the
s-metrics will be left-covariant.

3. Examples

Let A be a coquasitriangular Hopf algebra (see for example [7], Section 10.1) with
universal r-form r and let u � �uij�i;j�1;...;d be a corepresentation of A. Then
uc � ��uc�ij�i;j�1;...;d , �uc�ij � S�uji� is the contragredient corepresentation of u and u
and uc determine two bicovariant A-bimodules G� and Gÿ, respectively. They
are given by ¢xing the bases foij j i; j � 1; . . . ; dg and fyij j i; j � 1; . . . ; dg of
left-invariant forms of G� resp. Gÿ and de¢ning the right coactions DR and right
A-actions x / a � S�a�1��xa�2�, x 2 �Gt�l, t 2 f�;ÿg, a 2 A, by the formulas

DR�oij� � okl 
 �uuc�klij ; DR�yij� � ykl 
 �uccuc�klij ; �8�

oij / a � S�lÿki �l�jl �a�okl � r�uki ; a�1��r�a�2�; ujl�okl; �9�

yij / a � l�ik S�lÿlj ��a�ykl � r�a�1�;S�uki ��r�S�ujl�; a�2��ykl : �10�

Note that the 1-forms o :�Pd
i�1 oii 2 G� and y :� �f � S��uij�yij 2 Gÿ, where

f �a� � r�a�1�;S�a�2���, are biinvariant.
Assume for a moment that the corepresentations u and uc are equivalent (u � uc)

and let T � �Ti
j �i;j�1;...;d be an invertible morphism T 2Mor�u; uc�. Clearly we have

Tÿ1 2Mor�uc; u�. Then the mapping

yij 7! r�uk
r ; us

l ��Tÿ1�rj T i
sokl �11�

extends uniquely to a homomorphism of the bicovariant bimodules Gÿ and G�.
Moreover, this mapping is invertible and its inverse is given by

oij 7! r�ur
i ; S�uj

s��Tl
r �Tÿ1�skykl : �12�

We also see easily that this isomorphism maps y into o.
Let now u be an arbitrary corepresentation and let F1 2Mor�ucc; u�,

F2 2Mor�u; ucc� and G1;G2 2Mor�u� be invertible morphisms. Then we de¢ne lin-
ear maps g0 : G� 
A Gÿ ! A and g00 : Gÿ 
A G� ! A by

g0�aoij 
A ykl� � aF1
j
kF2

l
i and g00�ayij 
A okl� � aG1

j
kG2

l
i : �13�
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LEMMA 3.1. The mappings g0 : G� 
A Gÿ ! A and g00 : Gÿ 
A G� ! A are
homomorphisms of bicovariant bimodules. Moreover, as bilinear forms they are
nondegenerate.

Proof. Firstly let us show that g0�oij 
A ykla� � g0�oij 
A ykl�a. For this we com-
pute

g0�oij 
A ykla� � g0�a�1�r�uri ; a�2��r�a�3�; ujs�r�a�4�;S�upk��r�S�uln�; a�5��ors 
A ypn�
� a�1�r�uri ; a�2��r�a�3�; ujs�r�a�4�;S�upk��r�S�uln�; a�5��F1

s
pF2

n
r

� a�1�r�F2
n
r u

r
i ; a�2��r�a�3�;S�upk�ujsF1

s
p�r�S�uln�; a�4��

� a�1�r�F2
n
r u

r
i ; a�2��r�a�3�;S�upk�F1

j
sS

2�usp��r�S�uln�; a�4��
� F1

j
sa�1�r�F2

n
r u

r
i ; a�2��r�a�3�;S�S�usp�upk��r�S�uln�; a�4��

� F1
j
ka�1�r�F2

n
r u

r
i ; a�2��r�S�uln�; a�3��

� F1
j
ka�1�r�S2�unr �F2

r
i S�uln�; a�2��

� F1
j
kF2

r
i a�1�r�S�ulnS�unr ��; a�2��

� F1
j
kF2

l
ia � g0�oij 
A ykl�a:

Secondly we prove the covariance of g0, that is

�id
 g0�DL � D � g0 and �g0 
 id�DR � D � g0 �14�
as a mapping from G� 
A Gÿ to A
A. Similarly to the proof of Lemma 2.1 in [5]
one can show that the equations (14) are equivalent to g0�oij 
A ykl� 2 C and
g0�oij 
A ykl��uucuccuc�ijklmnrs � g0�omn 
A yrs�. The ¢rst one is trivial. For the second
we compute

g0�oij 
A ykl��uucuccuc�ijklmnrs � F1
j
kF2

l
iu

i
mS�unj �S2�ukr �S�usl �

� F2
l
iu

i
mS�unj �ujkF1

k
r S�usl � � F1

n
rS

2�uli�F2
i
mS�usl �

� F1
n
rF2

i
mS�usl S�uli�� � F1

n
rF2

s
m � g0�omn 
A yrs�:

Hence the assertion follows.
Thirdly we have to prove the nondegeneracy of g0. We shall carry out the proof

only for the second argument of g0. Let r be an arbitrary element of Gÿ. Then there
are elements aij 2 A such that r � yijaij. Assume that g0�r0 
A r� � 0 for all
r0 2 G�. Inserting r0 � okl , k; l � 1; . . . ; d and using that g0 is a right A-linear
mapping, we obtain F1

l
iF2

j
kaij � 0 for all k; l and the invertibility of F1 and F2 gives

aij � 0. Hence r � 0. &

Assume for a moment that the corepresentations u and uc are equivalent and let us
identify Gÿ and G� via the isomorphism (11).

LEMMA 3.2. Suppose that the corepresentations u and uc are equivalent. Then the
homomorphisms g0 and g00 : G� 
A G� ! A in Lemma 3.1 coincide if and only if there
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is a nonzero complex number c such that

F1
i
j � c�Tÿ1�irG2

s
rT

j
s and F2

i
j � cÿ1�Tÿ1�riG1

s
rT

s
j : �15�

Proof. Since g0 and g00 are homomorphisms of A-bimodules it suf¢ces to prove the
assertion on the vector space �G��l 
 �G��l. Inserting (12) into the de¢nition of g0 and
g00, it follows that g0�oij 
A okl� � g00�oij 
A okl� if and only if

Ty
r �Tÿ1�sxr�urk;S�uls��F1

j
xF2

y
i � r�uri ;S�ujs��Ty

r �Tÿ1�sxG1
y
kG2

l
x

for any i; j; k; l. For the right hand side we compute

r�Ty
r u

r
i ;S�ujs�Tÿ1�sx��G1

y
kG2

l
x � r�S�ury�Tr

i ;S��Tÿ1�jsS�uxs ���G1
y
kG2

l
x

� Tr
i �Tÿ1�jsr�uryG1

y
k;S�G2

l
xu

x
s �� � Tr

i �Tÿ1�jsr�G1
r
yu

y
k;S�ulxG2

x
s ��

and hence the lemma is valid if and only if

Ty
r �Tÿ1�sxr�urk;S�uls��F1

j
xF2

y
i � Tr

i �Tÿ1�jsr�G1
r
yu

y
k;S�ulxG2

x
s ��:

Multiplying this equation by r�ukz ; utl��Tÿ1�znTm
t we obtain the equivalent condition

F1
j
mF2

n
i �

ÿ�Tÿ1�jsG2
t
sT

m
t

�ÿ�Tÿ1�znG1
r
zT

r
i

�
for any i; j;m; n, from which the assertion follows. &

Now let u be an arbitrary corepresentation of A and let g be the homomorphism
from G� 
A Gÿ � Gÿ 
A G� to A given by g0 and g00. To prove the third and fourth
conditions of De¢nition 2.1 for g let us recall the following explicit formulas for
the braiding s (see [7], Section 13.1):

s�oij 
A okl� � r�urt;S�uyn��r�uti; umx �r�S�uly�; uzs�r�uxk; ujz�omn 
A ors;

s�oij 
A ykl� � r�urt;S�uyn��r�uti;S2�umx ��r�S�uly�; uzs�r�S2�uxk�; ujz�ymn 
A ors;

s�yij 
A okl� � r�uyn; urt�r�umx ;S�uti��r�uzs; uly�r�S�ujz�; uxk�omn 
A yrs;

s�yij 
A ykl� � r�uyn; urt�r�S�umx �; uti�r�uzs; uly�r�ujz;S�uxk��ymn 
A yrs:

The inverses sÿ1 of these braidings take the form

sÿ1�oij 
A okl� � r�urt;S�uyn��r�S�umx �; uti�r�uzs; uly�r�uxk; ujz�omn 
A ors;

sÿ1�oij 
A ykl� � r�S2�uyn�; urt�r�uti;S2�umx ��r�S�uly�; uzs�r�ujz;S�uxk��ymn 
A ors;

sÿ1�yij 
A okl� � r�S�urt�; uyn�r�umx ;S�uti��r�uzs; uly�r�uxk; ujz�omn 
A yrs;

sÿ1�yij 
A ykl� � r�uyn; urt�r�uti; umx �r�S�uly�; uzs�r�ujz;S�uxk��ymn 
A yrs:

PROPOSITION 3.3. Let F1 2Mor�ucc; u�, F2 2Mor�u; ucc� and G1;G2 2Mor�u� be
arbitrary invertible morphisms. Then the bilinear map g : G� 
A Gÿ � Gÿ 
A G�
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!A given by g0 and g00 in Lemma 3.1 satis¢es the fourth condition

g12s�23�x1 
A x2 
A x3� � g23s
�
12�x1 
A x2 
A x3�;

x1 2 Gt, x2 2 Gt0 , x3 2 Gÿt, t; t0 2 f�;ÿg, of De¢nition 2.1.
Proof. Since g is a homomorphism of A-bimodules (see Lemma 3.1) it suf¢ces to

prove the assertion on the vector spaces �Gt�l 
 �Gt0 �l 
 �Gÿt�l, t; t0 2 f�;ÿg. We
have to consider four cases which correspond to the possible values of t and t0. Since
the proofs are very similar, we only show the assertion g12sÿ123 � g23s12 for t � � and
t0 � ÿ. We will only use the formula r�S�a�;S�b�� � r�a; b� for any a; b 2 A and the
properties of Fi and Gi, i � 1; 2.

g23
ÿ
s�oij 
A ykl� 
A yab

�
� r�urt;S�uyn��r�uti;S2�umx ��r�S�uly�; uzs�r�S2�uxk�; ujz�ymnF1

s
aF2

b
r

� r�S2�ubr �;S�uyn��r�uti;S2�umx ��r�S�uly�; uzs�r�S2�uxk�; ujz�ymnF1
s
aF2

r
t

� r�S�ubr �; uyn�r�uti;S2�umx ��r�S�uly�;S2�usa��r�S2�uxk�; ujz�ymnF1
z
sF2

r
t

� r�S�ubr �; uyn�r�S2�urt�;S2�umx ��r�uly;S�usa��r�S2�uxk�;S2�uzs��ymnF1
j
zF2

t
i

� r�urt; umx �r�uxk; uzs�r�S�ubr �; uyn�r�uly;S�usa��ymnF1
j
zF2

t
i

� g12
ÿ
oij 
A sÿ1�ykl 
A yab�

�
:

&

Let us introduce the functional f : A! C (see [7], Proposition 10.3) de¢ned by
f �a� � r�a�1�;S�a�2��� and let �f denote the convolution inverse of f , i. e.
�f �a� � r�S2�a�1��; a�2��.

PROPOSITION 3.4. Let g be as in Proposition 3.3. Then the bilinear map g is
s-symmetric if and only if there are complex numbers c and z such that
f �S�uij�� � z �f �uij� and

F1
i
j � cG2

i
kf �ukj � and F2

i
j � cÿ1 �f �uik�G1

k
j

for i; j � 1; . . . ; d.
Proof. Firstly let us suppose that gs � g. From the equation g�s�oij 
A ykl�� �

g�oij 
A ykl� we conclude that there is a nonzero complex number c0 such that

F1
i
j � c0G2

i
k
�f �S�ukj �� and F2

i
j � c0ÿ1f �S�uik��G1

k
j : ���

Further, g�s�yij 
A okl�� � g�yij 
A okl� givesG1
i
j � cf �uik�F2

k
j andG2

i
j � cÿ1F1

i
k
�f �ukj �

for some nonzero complex number c. Inserting this into (�) we obtain
F2

i
j � c0ÿ1cf �S�uik��f �ukl �F2

l
j for any i; j. Multiplying by �F2

ÿ1�jm �f �umn � and summing
up over j we obtain �f �uin� � c0ÿ1cf �S�uin��. Inverting this equation we also get
f �uij� � c0cÿ1 �f �S�uij��. Let us set z � c0cÿ1. Then (�) gives the assertion. The converse
direction is an easy computation. &
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4. Contractions

Let G� and Gÿ be two bicovariant A-bimodules over the Hopf algebra A. Let
G^t �

L1
k�0 G

^k
t ; t 2 f�;ÿg denote the external algebra for Gt as constructed by

Woronowicz [11]. This means that there is an antisymmetrizer Ak : G
kt ! G
kt

for each kX 0 (A0 � A1 � id) which is a homomorphism of bicovariant bimodules
and G^kt � G
kt =ker Ak. Let us recall some properties of Ak. Because of the general
theory there are bimodule homomorphisms Ai;j;Bi;j : G
i�jt ! G
i�jt ; i; jX 0 such
that

Ai�j � Ai;j�Ai 
A Aj�;Ai�j � �Ai 
A Aj�Bi;j: �16�

In particular we have

Ai �
Yiÿ1
k�0
�Aiÿkÿ1;1 
A id
k� �

Yiÿ1
k�0
�id
k 
A A1;iÿkÿ1� �17�

Ai �
Yiÿ1
k�0
�Bk;1 
A id
iÿkÿ1� �

Yiÿ1
k�0
�id
iÿkÿ1 
A B1;k�; �18�

where A0;0 � A1;0 � A0;1 � id, B0;0 � B1;0 � B0;1 � id and

A1;i � idÿ s12 � s23s12 ÿ . . .� �ÿ1�isi;i�1 � � � s12; �19�

Ai;1 � idÿ si;i�1 � siÿ1;isi;i�1 ÿ . . .� �ÿ1�is12 � � � si;i�1; �20�

B1;i � idÿ s12 � s12s23 ÿ . . .� �ÿ1�is12 � � � si;i�1; �21�

Bi;1 � idÿ si;i�1 � si;i�1siÿ1;i ÿ . . .� �ÿ1�isi;i�1 � � � s12: �22�

It is easy to see that

A1;i � idÿ �id
A A1;iÿ1�s12; Ai;1 � idÿ �Aiÿ1;1 
A id�si;i�1; �23�

B1;i � idÿ s12�id
A B1;iÿ1�; Bi;1 � idÿ si;i�1�Biÿ1;1 
A id� �24�

for i > 0. One could also take (19) and (17) for the de¢nition of Ak.
The preceding properties hold for any A-bimodule isomorphism s which satis¢es

the braid relation. Therefore, replacing everywhere s by sÿ1 the above works as
well. In what follows we will use both kinds of operators and write At

k, A
t
i;j and

Bt
i;j whenever we are dealing with st (t 2 f�;ÿg).
Let us introduce some operators in End�Nm

i�1 Gti �, mX 1 and 1W j; kWm (they
can be associated to the permutations �j; j � 1; . . . ; k�, �k; kÿ 1; . . . ; j�,
�1;m��2;mÿ 1��3;mÿ 2� � � � and �1; 2; . . . ; j � 1��2; 3; . . . ; j � 2� � � � �k; k� 1; . . .
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j � k�):

s��j!k� :� s�j;j�1s
�
j�1;j�2 � � � s�kÿ1;k for j < k; s��j!k� � id for jX k; �25�

s��j k� :� s�kÿ1;ks
�
kÿ2;kÿ1 � � � s�j;j�1 for j < k; s��j k� � id for jX k; �26�

s��m� :� s��1 1�s
�
�1 2� � � � s��1 m� for mX 1; s��0� � id; �27�

s��j;k� :� s��k!j�k�s
�
�kÿ1!j�kÿ1� � � �s��1!j�1� for m � j � k: �28�

The veri¢cation of the following equations needs only braid group techniques and is
left to the reader. We have

s��k� � s�1!k��s��kÿ1� 
A id� � s��1 k��id
A s��kÿ1��; �29�

s��1!k�s
�
�1 kÿ1� � s��1 k�s

�
�2!k� �30�

for kX 2 and

s��1!k��bkÿ1 
A id� � �id
A bkÿ1�s��1!k�; �31�

s��1 k��id
A bkÿ1� � �bkÿ1 
A id�s��1 k�; �32�

s��j;k� � s��1 k�1�s
�
�2 k�2� � � � s��j k�j� �33�

for kX 1, where bk is an arbitrary expression of the complex algebra generated by
s12; . . . ; skÿ1;k and their inverses. Observe thatA�k s

�
�k� � s��k�A

�
k � �ÿ1�k�kÿ1�=2A�k (see

[11], p. 157). Hence, in particular we have kerA�k � kerAÿk .
Now let g be a s-metric of the pair �G�;Gÿ�. The next formulas follow from the

fourth condition on the s-metric by induction over k:

g12s��2!k�s
�
�1!kÿ1� � gkÿ1;k; gkÿ1;ks��1 kÿ1�s

�
�2 k� � g12 for kX 2: �34�

Next we de¢ne contractions h�; �i� : G
kt 
A G
lÿt ! G
jkÿljt0 ; t 2 f�;ÿg, t0 � t for
kX l, otherwise t0 � ÿt, by

hx; x0i� :� ~g�B�kÿl;lx;A�l x0� for kX l;

hx; x0i� :� ~g�A�k x;B�k;lÿkx0� for k < l:
�35�

This maps are homomorphisms ofA-bimodules and inherit all covariance properties
of g. If both k and l are less than two, then the contraction doesn't depend on the sign
� and we sometimes omit it: hx; x0i� � hx; x0i--- �: hx; x0i.

Next we prove a generalisation of Lemma 2.1.
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LEMMA 4.1. Let g be a s-metric of the pair �G�;Gÿ� and let ~g be the map de¢ned by
(6). Then we have for all nonnegative integers i; j; k; l; 1W i � jW k; l,

~g � ÿ�id
kÿiÿj 
A A�i 
A id
j�; id
l� � ~g � ÿid
k; �id
j 
A A�i 
A id
lÿiÿj��:
Proof. Using Lemma 2.1 one checks that

~g � �s��k�1ÿt0 ! k�1ÿt�; id

l� � ~g � �id
k; s��t! t0 �� �36�

for 1W tW t0W k; l. From this and Equations (22) and (19) we obtain

~g � ÿ�id
kÿrÿs 
A A�1;sÿ1 
A id
r�; id
l�
� ~g � id
kÿrÿs 
A

Xs
t�1
�ÿ1�t�1s��1 t�

 !

A id
r; id
l

 !

� ~g �
Xs
t�1
�ÿ1�t�1s��k�1ÿrÿs kÿrÿs�t�

 !
; id
l

 !

� ~g � id
k;
Xs
t�1
�ÿ1�t�1s��r�sÿt�1 r�s�

 ! !

� ~g � id
k; id
r 
A
Xs
t�1
�ÿ1�t�1s��sÿt�1 s�

 !

A id
lÿrÿs

 !
� ~g � ÿid
k; �id
r 
A B�sÿ1;1 
A id
lÿrÿs��

for all r; s with 0W r, 1W s, r� sW k, r� sW l. Using this result together with (17)
and (18) similar computations give the assertion of the lemma. &

LEMMA 4.2. Let ~g be as in Lemma 4.1 and xk 2 G
kt ; x0l 2 G
eÿt; t 2 f�;ÿg, k; lX 0.
Then s��k;l��s��k��xk�; s��l��x0l�� is an element of G
lÿt 
A G
kt and the equation

~g
ÿ
s��k;l��s��k��xk�; s��l��x0l��

� � s��jkÿlj��~g�xk; x0l�� �37�

holds.
Proof. We prove the case kX l by induction on l. Then the assertion follows also

for k < l because of the formulas s��i�s
�
�i� � id; s��i;j��A�i ; id
j� � �id
j;A�i �s��i;j� (see

also (28) and (29)) and s��i;j�s
�
�j;i� � id for all i; jX 0.

If l � 0 then s��l� � s��k;l� � id, hence the left-hand side of (37) is equal to
~g�s��k��xk�; x0l� � s��k��xk�x0l . For the right hand side we obtain s��kÿl� ~g�xk; x0l� �
s��kÿl��xkx0l�. Since x0l 2 A and s��kÿl� is a homomorphism ofA-bimodules, the assertion
of the lemma is valid.

Suppose that (37) holds for an l 2N0, lW k. Consider the map

~gs��k�1;l�1��s��k�1�; s��l�1�� : G
k�1t 
A G
l�1ÿt ! G
kÿet :
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We compute

~gs��k�1;l�1��s��k�1� 
A s��l�1��
� ~ggl�1;l�2s��l�1!k�l�2��s��k�1;l� 
A id��s��1!k�1��s��k� 
A id� 
A s��l�1��
� ~ggl�1;l�2s��l�2!k�l�2�s

�
�k�1!k�l�1��s��k�1;l� 
A id��s��k� 
A id
A s��l�1��

� ~ggk�l�1;k�l�2�s��k�1;l� 
A id��s��k� 
A id
A s��l�1��
� ~ggk�l�1;k�l�2�s��k;l� 
A id
2�s��k�1 k�l�1�s

�
�k�2 k�l�2��s��k� 
A id
2 
A s��l��

� ~gs��k;l�gk�l�1;k�l�2s
�
�k�1 k�l�1�s

�
�k�2 k�l�2��s��k� 
A id
2 
A s��l��

� ~gs��k;l�gk�1;k�2�s��k� 
A id
2 
A s��l��
� ~gs��k;l��s��k� 
A g12 
A s��l�� � ~ggk�1;k�2 � ~g

where we used the following formulas: (28) and (29) in the ¢rst equation, the
s-symmetry of the s-metric, (28) and (31) in the second, (34) in the third, (33)
and (29) in the fourth, (34) in the sixth, the induction assumption in the eighth
and the recursive de¢nition of ~g in the last equation. &

An important consequence of Lemma 4.1 is the possibility to extend the de¢nition
of our contractions h�; �i� to a map h�; �i� : G^kt 
A G^lÿt! G^jkÿljt0 , t 2 f�;ÿg, t0 � t
for kX l, otherwise t0 � ÿt. To see this, we treat the case kX l. Let x0k 2 G
kt
and xl 2 G
lÿt, t 2 f�;ÿg. Firstly, let xl be a symmetric l-form, i.e. A�l �xl� � 0. Then,
by de¢nition,

hx0k; xli� � ~g�B�kÿl;lx0k;A�l xl� � 0:

On the other hand, if x0k is a symmetric k-form, i.e. A�k �x0k� � 0, then we conclude

A�kÿlhx0k; xli� � A�kÿl ~g�B�kÿl;lx0k;A�l xl�:
Applying Lemma 4.1 this is equal to

A�kÿl ~g��id
kÿl 
A A�l �B�kÿl;lx0k; xl� � ~g��A�kÿl 
A A�l �B�kÿl;lx0k; xl�:
Now formula (16) insures that the latter expression is zero. Hence hx0k; xei� is
symmetric. In the case k < l similar reasoning gives the desired result.

Remark. In view of Lemma 4.5 and Proposition 4.6 we should also consider the
contractions for k � l (composed with the Haar functional, see in Section 6) as
a kind of higher rank s-metric. &

LEMMA 4.3. For xi 2 G^kiti , i � 0; 1; 2, t1 � t2 � ÿt0, k1 � k2 W k0 the contractions
satisfy the following relations:

(i) hx1; hx2; x0i�i� � hx1 ^ x2; x0i� and hhx0; x1i�; x2i� � hx0; x1 ^ x2i�,
(ii) hx1; hx0; x2i�i� � hhx1; x0i�; x2i�.
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Proof. From Lemma 4.1 and formula (16) we conclude that A�kÿlhz0l; z00ki� �
~g�z0l;A�k z00k� for kX l, z00k 2 G^kt , z0l 2 G^lÿt, t 2 f�;ÿg. Then for the ¢rst equation of
(i) and representants zi 2 G
kiti of xi, i � 0; 1; 2 we compute

A�k0ÿk1ÿk2�hz1; hz2; z0i�i�� � ~g�z1;A�k0ÿk2 �hz2; z0i���
� ~g�z1; ~g�z2;A�k0z0�� � ~g�z1 
A z2;A

�
k0z0�

� A�k0ÿk1ÿk2 �hz1 
A z2; z0i��:

The second equation can be proved similarly.
To prove (ii) we use the same arguments. For the left hand side we obtain

A�k0ÿk1ÿk2hz1; hz0; z2i�i� � ~g�z1;A�k0ÿk2hz0; z2i��
� ~g�z1; ~g�A�k0z0; z2��

and for the right-hand side

A�k0ÿk1ÿk2hhz1; z0i�; z2i� � ~g�A�k0ÿk1hz1; z0i�; z2�
� ~g�~g�z1;A�k0z0�; z2�:

But both last expressions are equal because of the de¢nition of ~g and since
k1 � k2 W k0. &

The following lemma contains some recursion formulas which are useful in order
to compute contractions.

LEMMA 4.4. For any xk 2 G^kt , x0k 2 G^kÿt, r1 2 Gt, r2 2 Gÿt, kX 1, t 2 f�;ÿg the
equations

hxk ^ r1; r2i� � xkhr1; r2i� ÿ hxk; r��1�i� ^ r��2� �38�

and

hr1; r2 ^ x0ki� � hr1; r2i�x0k ÿ r��1� ^ hr��2�; x0ki� �39�

hold, where s��r1 
A r2� � r��1� 
A r��2� 2 Gÿt 
A Gt .
Proof. For k � 1 the left hand side of the ¢rst equation reads as

hx1 ^ r1; r2i� � ~g
ÿ�x1 
A r1 ÿ s��x1 
A r1��; r2

�
� g23�x1 
A r1 
A r2� ÿ g12s

�
23�x1 
A r1 
A r2�

because of the fourth condition of De¢nition 2.1 on the s-metric g. Further, if k > 1
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we then use (24) to conclude in a similar manner that

hxk ^ r1; r2i� � ~g�Bk;1�xk 
A r1�; r2�
� gk�1;k�2�xk 
A r1 
A r2 ÿ s�k;k�1�Bkÿ1;1 
A id
2��xk 
A r1 
A r2��
� xk 
A g�r1 
A r2� ÿ gk;k�1s

�
k�1;k�2�Bkÿ1;1 
A id
2��xk 
A r1 
A r2�

� xk 
A g�r1 
A r2� ÿ gk;k�1�Bkÿ1;1 
A s���xk 
A r1 
A r2�
� xkhr1; r2i� ÿ hxk; r��1�i� ^ r��2�:

The proof of the second equation of the lemma is analogous. &

LEMMA 4.5. For ¢xed t 2 f�;ÿg; kX 1 let rk 2 G^kt ; r
0
k 2 G^kÿt and

s��k;k��rk 
A r0k� � r0k�1� 
A rk�2�. Then the contractions h�; �i� satisfy the equations

hr0k�1�; rk�2�i� � hrk; �s��k��2�r0k�i� � h�s��k��2�rk�; r0ki�: �40�

Proof. The de¢nition (35) of h�; �i� gives hr0k�1�; rk�2�i� � ~g�r0k�1�;A�k rk�2��. Since
�id
k 
A A�k �s��k;k� � s��k;k��A�k 
A id
k� (see (33) and (32)) and A�k �
�ÿ1�k�kÿ1�=2A�k s��k�, we conclude

hr0k�1�; rk�2�i� � ~g�id
k 
A A�k �s��k;k��rk 
A r0k�
� ~gs��k;k��A�k 
A id
k��rk 
A r0k�
� �ÿ1�k�kÿ1�=2 ~gs��k;k��A�k s��k�rk 
A r0k�
� �ÿ1�k�kÿ1�=2 ~gs��k;k��s��k�rk 
A A��k�r

0
k�

by Lemma 4.1. Inserting �ÿ1�k�kÿ1�=2A�k � s��k�A
�
k �s��k��2 and applying Lemma 4.2 we

obtain

hr0k�1�rk�2�i� � ~gs��k;k�
ÿ
s��k�rk; s

�
�k�A

�
k �s��k��2r0k

�
� ~g�rk;A�k �s��k��2r0k� � hrk; �s��k��2r0ki�:

The second equation follows similarly. &

Finally, we should say something about the nondegeneracy of h�; �i� as a s-metric.

PROPOSITION 4.6. The maps h�; �i� : G^kt 
A G^kÿt !A; t 2 f�;ÿg, kX 1 and their
restrictions to �G^kt �l 
 �G^kÿt�l are nondegenerate.

Proof. Firstly we show that ~g : G
kt 
A G
kÿt !A and its restriction to
�G
kt �l 
 �G
kÿt �l are nondegenerate.

For k � 1 this assertion is true, since g is nondegenerate by De¢nition 2.1 and
~g � g. Suppose that it is valid for some kX 1 and let xk�1 2 G
k�1t . Then there
are ¢nitely many k-forms xi 2 G
kt and linearly independent 1-forms ri 2 �Gt�l such
that xk�1 �

P
i ri 
A xi. Suppose that ~g�xk�1; �x0k 
A r0�� � 0 for any x0k 2 �G
kÿt �l

and r0 2 �Gÿt�l. Hence by de¢nition of ~g; ~g��ri 
A xi�; �x0k 
A r0�� �
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g�ri ~g�xi; x0k�; r0� � 0 for any r0 2 �Gÿt�l. Since g is a homomorphism of right
A-modules, the latter is also true for any r0 2 Gÿt. Applying the nondegeneracy
of g we conclude that ri ~g�xi; x0k� � 0 and since the 1-forms ri 2 �Gt�l are linearly
independent we obtain ~g�xi; x0k� � 0 for any x0k 2 �G
kÿt �l. Now we use that ~g is a
homomorphism of right A-modules and get ~g�xi; x0k� � 0 for any x0k 2 G
kÿt . Then
the induction assumption gives xi � 0 and hence xk�1 � ri 
A xi � 0.

Now we prove the assertion of the proposition. Let x 2 G^kt , x0 2 G
kt be a
representant of x, and let us assume that hx; x0ki� � 0 for any x0k 2 �G^kÿt�l. This means
~g�A�k x0; x0k� � 0 for any x0k 2 �G^kÿt�l. Since ~g is a homomorphism of right A-modules,
the latter is true for any x0k 2 G^kÿt. In the ¢rst part of the proof we have shown that
A�k x0 � 0. Hence x0 is a symmetric k-form, so that x � 0.

Nondegeneracy in the second component of h�; �i� can be proved similarly. &

COROLLARY 4.7. Let g be a left-covariant s-metric of the pair �G�;Gÿ�. Then for
any kX 0 we have dim�G^k� �l � dim�G^kÿ �l.

5. Hodge Operators

In this section we assume that

(I) the only one-dimensional corepresentation of the Hopf algebra A is 1 and
(II) there exists a nonzero di¡erential formot

0 2 �G^nt �l for some n 2 Z and t 2 f�;ÿg
such that ot

0 ^ r � 0 for all r 2 Gt.

The latter is in particular ful¢lled if one of the vector spaces �G^��l; �G^ÿ�l is ¢nite
dimensional. Let us ¢x a triple �n0; t0;ot0

0 � as in (II) such that for any other triple
�n1; t1;ot1

1 � having the same property we have n1 X n0.
After proving some statements we will show that both � and ÿ can occur as the

value of t0 and for a given left-covariant s-metric g of the pair �G�;Gÿ�, o�0
can be taken biinvariant and in such a manner that

ho�0 ;oÿ0 i� � hoÿ0 ;o�0 i� � 1: �41�
Then we also will assume this on o�0 and oÿ0 .

Let g be a (not necessarily left-covariant) s-metric of the pair �G�;Gÿ�.

PROPOSITION 5.1. For any xk 2 G^kÿt0 , x
0
l 2 G^lt0 , 0W lW kW n0, we have

hot0
0 ; xki� ^ x0l � hot0

0 ; hxk; x0li�i�: �42�

Proof. For l � 0 the assertion follows from the right A-linearity of ~g. Let us exam-
ine ¢rst the case k � l � 1. Inserting t � ÿt0 and xk � ot0

0 into (38) and using the
condition on ot0

0 we obtain 0 � ot0
0 hr1; r2i� ÿ hot0

0 ; r
�
�1�i� ^ r��2� for any r1 2 Gt0

and r2 2 Gÿt0 , where r��1� 
A r��2� � s��r1 
A r2�. Now we insert s��x1 
A x01� for
r1 
A r2 and obtain the desired result by the s-symmetry of the s-metric g.
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Secondly we prove the proposition for 1 � lW kW n0 by induction on k. The ¢rst
step for this is already done. Suppose now that the assertion is true for a k < n0
and let xk 2 G^kÿt0 , r1 2 Gt0 and r2 2 Gÿt0 . By (38) we obtain

hhot0
0 ; xki� ^ r1; r2i� � hot0

0 ; xki�hr1; r2i� ÿ hhot0
0 ; xki�; r��1�i� ^ r��2� ���

where r��1� 
A r��2� � s��r1 
A r2�. The induction assumption and the second
equation of Lemma 4.3(i) assure that the left-hand side of the latter equation is equal
to

hhot0
0 ; hxk; r1i�i�; r2i� � hot0

0 ; hxk; r1i� ^ r2i�:
Moving this to the right hand side and the second term of the right-hand side of (�) to
the left we get

hhot0
0 ; xki�; r��1�i� ^ r��2� � hot0

0 ; xkhr1; r2i�i� ÿ hot0
0 ; hxk; r1i� ^ r2i�;

where we used the right A-linearity of the contraction and the relation
hr1; r2i� � hr1; r2iÿ. Now we take arbitrary elements x01 2 Gt0 , x

00
1 2 Gÿt0 . We insert

s��x001 
A x01� for r1 
A r2 in the above formula and use Lemma 4.3(i) (on the left
hand side), the s-symmetry of g (in the ¢rst term of the right-hand side) and (38)
(on the right hand side of the latter equation). In this manner we obtain

hot0
0 ; xk ^ x001i� ^ x01 � hot0

0 ; hxk ^ x001; x
0
1i�i�:

Hence the assertion of the proposition is true for k� 1.
Suppose now that the assertion of the proposition is valid for a ¢xed l < n0 and for

all k > l. For l � 1 this is true. Then for arbitrary x00 2 Gt0 we apply (42) twice and
conclude

hot0
0 ; xki� ^ x0l ^ x00l � hot0

0 ; hxk; x0li�i� ^ x00l � hot0
0 ; hhxk; x0li�; x00l i�i�:

Applying now Lemma 4.3(i), we get (42) for l � 1. &

From now on let g be a left-covariant s-metric of the pair �G�;Gÿ�. A very import-
ant consequence of Proposition 5.1 is the following.

THEOREM 5.2. If there is a left-covariant s-metric g of the pair �G�;Gÿ� then there
exists a natural number n0 such that dim�G^n0t �l � 1 for t 2 f�;ÿg and all k-forms
xk 2 G^kt , k > n0 vanish.

Proof. Since the s-metric h�; �i� is nondegenerate by Proposition 4.6 and
left-covariant there is a left-invariant n0-form xn0 2 G^n0ÿt0 such that
hot0

0 ; xn0i� � 1. Inserting an arbitrary x0l , l � n0 into (42) we obtain x0n0 �
hot0

0 ; xn0i�x0n0 � ot0
0 hxn0 ; x0n0iÿ. Hence we get G^n0t0 � ot0

0 � A. Since G^kt0 �
G^n0t0 ^ G^kÿn0t0 � ot0

0 ^ G^kÿn0t0 for any k > n0, we obtain G^kt0 � 0. The same assertion
for ÿt0 follows from Corollary 4.7. &
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Remark. In the proofs of Proposition 5.1 and Theorem 5.2 the assumption that
there is only one one-dimensional corepresentation of A was not used. &

COROLLARY 5.3. Let A be an arbitrary Hopf algebra over the complex ¢eld with
invertible antipode. Let G� and Gÿ be bicovariantA-bimodules and g a left-covariant
s-metric of the pair �G�;Gÿ�. Then there are precisely two possibilities:

(i) Both G� and Gÿ contain a unique (up to a constant factor) nonzero left-invariant
form of (the same) maximal degree.

(ii) Both G� and Gÿ are in¢nite dimensional and for any form o 2 �G^kt �l there is a
one-form r 2 Gt such that o ^ r 6� 0.

Let us ¢x x0n0 � ot0
0 and xn0 2 G^n0ÿt0 such that hot0

0 ; xn0i� � 1. From Proposition 5.1
we obtain hot0

0 ; xn0i�ot0
0 � ot0

0 hxn0 ;ot0
0 i�. Hence the numbers hot0

0 ; xn0i� and
hxn0 ;ot0

0 i� coincide. Since dim�G^n0ÿt0�l � 1 by Theorem 5.2, xn0 is an eigenvector
of s�n0�. Let s�n0�xn0 � lxn0 . Then we conclude from the de¢nition of the contractions
and the considerations above that

1 � hot0
0 ; xn0i� � hot0

0 ; �ÿ1�n0�n0ÿ1�=2s�n0�xn0iÿ
� �ÿ1�n0�n0ÿ1�=2lhot0

0 ; xn0iÿ � �ÿ1�n0�n0ÿ1�=2lhxn0 ;ot0
0 i�

� �ÿ1�n0�n0ÿ1�=2lh�ÿ1�n0�n0ÿ1�=2s�n0�xn0 ;ot0
0 iÿ � l2hxn0 ;ot0

0 iÿ
� l2hot0

0 ; xn0i� � l2:

Therefore, s2�n0��xn0� � xn0 .
A consequence of Theorem 5.2 is that DR�ot0

0 � � ot0
0 
 v0, where v0 is a

one-dimensional corepresentation of A. By assumption (I) stated at the beginning
of this section, it follows that v0 � 1. Hence ot0

0 is biinvariant. Similarly, xn0 is
biinvariant. This implies that sÿ�n0;n0��ot0

0 
A xn0 � � xn0 
A ot0
0 . Applying Lemma

4.5 we get

hxn0 ;ot0
0 i� � h�; �i�

ÿ
sÿ�n0;n0��ot0

0 ; xn0 �
�

� hot0
0 ; s

2
�n0��xn0 �i� � hot0

0 ; xn0i� � 1:

This means that hxn0 ;ot0
0 i� � 1 and hence hot0

0 ; xn0iÿ � hxn0 ;ot0
0 i� � 1 and

hxn0 ;ot0
0 iÿ � hot0

0 ; xn0i� � 1.
Further, we have xn0 ^ r � 0 for all r 2 Gÿt0 . Therefore, the triple �n0;ÿt0; xn0 �

satis¢es assumption (II) at the beginning of the section as well. Now we can set
oÿt00 :� xn0 and so (41) is valid. In particular, we have obtained that

s�n0�o
�
0 � �ÿ1�n0�n0ÿ1�=2o�0 : �43�

Since the triple �n0;ÿt0;oÿt00 � satis¢es assumption (II), we can replace t0 by ÿt0 and
Proposition 5.1 remains true. Moreover, it follows from Theorem 5.2 that
r ^ o�0 � 0 for all r 2 G^n0� . Using this ansatz a similar reasoning as used in the proof
of Proposition 5.1 shows the following.
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PROPOSITION 5.4. For any xk 2 G^kÿt and x0l 2 G^lt , 0W lW kW n0, t 2 f�;ÿg the
equations

x0l ^ hxk;ot
0i� � hhx0l; xki�;ot

0i� �44�

hold.

Let ��L ; ��R : G^kt ! G^n0ÿkÿt denote the maps given by

��L �x� :� hx;oÿt0 i�; ��R�x� :� hoÿt0 ; xi� �45�
for any x 2 G^kt , 0W kW n0, t 2 f�;ÿg.

LEMMA 5.5. (i) For any a 2 A and x 2 G^t ; t 2 f�;ÿg we have ��L �ax� � a ��L �x� and
��R�xa� � ��R�x�a.

(ii) ��L�ÿL � �ÿL��L � id and ��R�ÿR � �ÿR��R � id. In particular, the mappings ��L and
��R are isomorphisms of G^t and G^ÿt as left and right A-modules, respectively.

(iii) For any ri 2 G^kit , i � 1; 2, k1 � k2 W n0, t 2 f�;ÿg, we have

��L �r1 ^ r2� � hr1; ��L �r2�i�; ��R�r1 ^ r2� � h��R�r1�; r2i�; �46�

hr1; ��R�r2�i� � h��L �r1�; r2i�: �47�

Proof. Since h�; �i� is a homomorphism ofA-bimodules, (i) follows from (45). (ii) is
obtained from Proposition 5.1 by inserting xk � oÿt0 and applying (41). Setting
x0 � oÿt0 in Lemma 4.3, (46) and (47) are equivalent to the equations of Lemma
4.3(i) and 4.3(ii), respectively. &

DEFINITION 5.1. We call the mapping ��L : G^t ! G^ÿt left Hodge operator and
��R : G^t ! G^ÿt right Hodge operator on G^t ; t 2 f�;ÿg.

Remark. The equations in Proposition 5.1 and 5.4 with k � l can also be written in
the familiar form

��R�xk� ^ x0k � ot
0hxk; x0ki�; �48�

x0k ^ ��L �xk� � hx0k; xki�ot
0: �49�

&

Up to now G^� and G^ÿ have been only the exterior algebras over bicovariant
A-bimodules G� and Gÿ, respectively. In the remainder of this paper we assume
in addition that G^t is an inner bicovariant differential calculus with differentiation
dt, t 2 f�;ÿg. That the differential calculus G^t is inner means that there exists a
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biinvariant 1-form Zt 2 Gt such that

dtr � Zt ^ rÿ �ÿ1�kr ^ Zt r 2 G^kt ; t 2 f�;ÿg: �50�

Further, we assume that the corresponding s-metrics (and hence contractions) are
left-covariant.

DEFINITION 5.2. The mappings @�L : G^kt ! G^kÿ1t de¢ned by

@�Lr :� �ÿ1�k ��L �dÿt ��L �r��; r 2 G^kt ; 0W kW n0; t 2 f�;ÿg

are called (positive and negative) left codifferential operators onG^t .Analogously we
de¢ne the right codifferential operators @�R : G^kt ! G^kÿ1t , 0W kW n0, t 2 f�;ÿg on
G^t by @�Rr :� �ÿ1�n0ÿ1�k ��R �dÿt ��R �r��.

LEMMA 5.6. ��L �r� � �ÿL �r� and ��R�r� � �ÿR�r� for any r 2 G^kt , t 2 f�;ÿg,
k 2 f0; 1; n0 ÿ 1; n0g.

Proof. For k � 0 we have ��L �r� � �ÿL �r� � roÿt0 and ��R�r� � �ÿR�r� � oÿt0 r by
de¢nition. For k � n0 we obtain from Theorem 5.2 that there are a; b 2 A such that
r � aot

0 � ot
0b. Then Lemma 5.5(i) and Equation (41) imply that

��L �aot
0� � a ��L �ot0� � ahot

0;o
ÿt
0 i� � a and ��R�ot

0b� � ��R�ot
0�b � hoÿt0 ;o

t
0i�b � b.

Let now k � n0 ÿ 1. We compute

��L �r� � hr;oÿt0 i� � ~g�A�n0ÿ1r;B�n0ÿ1;1oÿt0 �
� ~g

ÿ
r; �A�n0ÿ1 
A id�B�n0ÿ1;1oÿt0

� � ~g�r;A�n0oÿt0 �
���

by using Lemma 4.1 and the second equation of (16). We also have
A�k � �ÿ1�k�kÿ1�=2Aÿk s��k� for any kX 1. Hence (43) gives

A�n0o
ÿt
0 � �ÿ1�n0�n0ÿ1�=2Aÿn0s��n0�oÿt0

� �ÿ1�n0�n0ÿ1�=2Aÿn0 �ÿ1�n0�n0ÿ1�=2oÿt0 � Aÿn0o
ÿt
0 :

From this and equation (�) we conclude that ��L �r� � �ÿL �r�.
In the case k � 1 we use that the mappings ��L are isomorphisms of leftA-modules.

Therefore there is a r0 2 G^n0ÿ1t such that r � ��L �r0�. By the preceding we also have
r � �ÿL �r0�. Hence, ��L �r� � ��L �ÿL �r0� � r0 and �ÿL �r� � �ÿL ��L �r0� � r0. Similarly,
��R�r� � �ÿR�r� for any r 2 G^kt , k � 1; n0 ÿ 1. &

LEMMA 5.7. For any r 2 �Gt�r, t 2 f�;ÿg we have ��L �r� � �ÿ1�n0ÿ1 ��R �r�.
Proof. The n0-form oÿt0 is left-invariant. Hence there are left-invariant 1-forms

r1; . . . ; rn0 2 �Gÿt�l such that oÿt0 � r1 ^ . . . ^ rn0 . Then (39) and the s-symmetry
of the s-metric yield

��L �r� �
Xn0
i�1
�ÿ1�iÿ1r1 ^ . . . ^ riÿ1hr; rii ^ ri�1 ^ . . . ^ rn0 : �51�
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The s-symmetry of the s-metric implies that hri; ri � hr; riifor any i � 1; . . . ; n0.
Using this fact and Equation (38) we obtain the same formula for
�ÿ1�n0ÿ1 �ÿR �r�. Applying Lemma 5.6 the assertion follows. &

PROPOSITION 5.8. The codifferentials @t
0

L and @t
0

R, t
0 2 f�;ÿg, coincide. On a 2 A

they act trivially: @�La � @�Ra � 0. For any r 2 G^kt , k > 0, t 2 f�;ÿg we have

@�Lr � hr; Zÿti� � �ÿ1�khZÿt; ri�: �52�

Proof. Let k > 0 and r 2 G^kt . The de¢nition of @�L and (50) give

@�Lr � �ÿ1�k ��L �dÿt ��L �r�� � �ÿ1�k ��L �Zÿt ^ ��L �r� ÿ �ÿ1�n0ÿk ��L �r� ^ Zÿt�:
From the ¢rst equation of (46) and Lemma 5.5(ii) we obtain that the ¢rst summand is
equal to �ÿ1�khZÿt; ��L ���L �r��i� � �ÿ1�khZÿt; ri�. For the second summand we use
(46) and Lemma 5.7 and obtain �ÿ1�n0�1h��L �r�; ��L �Zÿt�i� � h��L �r�; ��R�Zÿt�i�.
We apply now (47) and Lemma 5.5(ii) to the latter and get h��L ���L �r��; Zÿti� �
hr; Zÿti�. This proves (52) for the left codifferentials. Similar computations lead
to the same expression for @�Rr. &

PROPOSITION 5.9. For any r 2 �G^n0ÿ1t �l, t 2 f�;ÿg we have dtr � 0.
Proof. Let r 2 �G^n0ÿ1t �l. Because of Lemma 5.5(ii) and the left-covariance of ��L

there are r�1 2 �Gÿt�l such that r � ��L �r�1 �. Then dtr � 0 is equivalent to

0 � ��L �dtr� � ��L �dt ��L �r�1 �� � ÿ@�Lr�1 :
Since Zt is biinvariant, r�1 is left-invariant and the s-metric is s-symmetric, we con-
clude from Proposition 5.8 that

@�Lr
�
1 � hr�1 ; Zti� ÿ hZt; r�1 i� � hr�1 ; Zti� ÿ hr�1 ; Zti� � 0:

&

6. Laplace^Beltrami Operators

Let A be again an arbitrary Hopf algebra and let G�;Gÿ be two bicovariant
A-bimodules which admit a left-covariant s-metric in the sense of De¢nition 2.1.
Moreover, (as in the last part of Section 5,) we assume that the bicovariant
A-bimodules G^t ; t 2 f�;ÿg admit a differential operator dt such that they become
inner bicovariant differential calculi on A. Further we suppose that the s-metrics
(and hence contractions) are left-covariant.

In addition we now assume that the Hopf algebra A is cosemisimple ([7], Sect.
11.2), that is, there exists a linear functional h on A, called the Haar functional,
such that h�1� � 1 and

�h
 id�D�a� � �id
 h�D�a� � h�a�1 �53�
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for all a 2 A. Further, we suppose that the Haar functional is regular, that is, both
h�ab� � 0 for all b 2 A and h�ba� � 0 for all b 2 A imply that a � 0. Recall that
any CQG-algebra is cosemisimple and its Haar functional is regular ([7], Proposition
11.29). By Proposition 4.6 the restriction of h�; �i� to G^kt 
A G^kÿt is nondegenerate.
Hence for each r 2 G^kt there is a r0 2 G^kÿt such that A 3 a :� hr; r0i� 6� 0. By
the regularity of the Haar functional there is a b 2 A such that h�ab� 6� 0. Then
we have hhr; r0bi� � h�hr; r0i�b� � h�ab� 6� 0. Therefore, the mapping h � h�; �i� :

G^kt 
A G^kÿt ! C is nondegenerate for all kX 0 and t 2 f�;ÿg. We shall consider
it as a generalisation of the classical notion of the metric on k-forms.

Motivated by De¢nition 5.2 and Proposition 5.8, we introduce the following
notion.

DEFINITION 6.1. The mappings @�t : G^kt ! G^kÿ1t , kX 0, t 2 f�;ÿg, de¢ned by
@�t �a� � 0 for a 2 A and

@�t r � hr; Zÿti� � �ÿ1�khZÿt; ri� �54�

for r 2 G^kt , k > 0, are called (positive and negative) codifferential operators on G^kt .

LEMMA 6.1. (i) �@�t �2 � 0.
(ii) @�t �ar� � a@�t r� �ÿ1�khdÿta; ri� for any a 2 A, r 2 G^kt , t 2 f�;ÿg; kX 1.
Proof. (i) Since �@�t �2�r� 2 G^kÿ2t for any r 2 G^kt , kX 0, t 2 f�;ÿg, we obtain
�@�t �2�r� � 0 for r 2 G^kt , kW 1. For kX 2 we get

�@�t �2�r� � @�t
ÿhr; Zÿti� � �ÿ1�khZÿt; ri��

�hÿhr; Zÿti� � �ÿ1�khZÿt; ri��; Zÿti�
� �ÿ1�kÿ1hZÿt; ÿhr; Zÿti� � �ÿ1�khZÿt; ri��i�:

Applying Lemma 4.3(i) on the ¢rst and fourth summand we obtain

�hr; Zÿt ^ Zÿti� � �ÿ1�khhZÿt; ri�; Zÿti�
� �ÿ1�kÿ1hZÿt; hr; Zÿti�i� ÿ hZÿt ^ Zÿt; ri�:

Since Zÿt is biinvariant, Zÿt ^ Zÿt � 0. Using Lemma 4.3(ii) the second and third
summand in the last expression also vanish.

(ii) From (50) it follows that

hdÿta; ri� � hZÿta; ri� ÿ haZÿt; ri� � hZÿt; ari� ÿ ahZÿt; ri�:
Then (54) gives the assertion. &

LEMMA 6.2. For any a 2 A and r 2 �Gt�l; r0 2 �Gÿt�l, t 2 f�;ÿg we have

(i) h�har; r0i�� � h�hra; r0i�� � h�a�hr; r0i�,
(ii) h

ÿ
@�ÿt�ar0�

� � 0.
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Proof. (i) Let fyiji � 1; . . . ;mg be a basis of the vector space �Gt�l. It suf¢ces to
prove the assertion for r � yi. The left-invariance of the s-metric ensures that
hr; r0i� 2 C and we conclude that h�har; r0i�� � h�ahr; r0i�� � h�a�hr; r0i�.

By the general theory [11] there are functionals f ij , i; j � 1; . . . ;m, such that
yia � a�1�f ij �a�2��yj and f ij �1� � dij. We have again hyj; r0i� 2 C and therefore

h�hyia; r0i�� � h�a�1��f ij �a�2��hyj; r0i� � f ij �h�a�1��a�2��hyj; r0i�
� f ij �h�a� � 1�hyj; r0i� � h�a�hyi; r0i�

by (53). Hence we get (i).
(ii) Firstly we see from (54) that @�ÿt�r0� � hr0; Zti� ÿ hZt; r0i� � 0 since the

s-metric is s-symmetric, Zt is bi-invariant and r0 is left-invariant. Secondly, Lemma
6.1(ii) gives h�@�ÿt�ar0�� � h�a@�ÿtr0 ÿ hdta; r0i�� � h

ÿhaZt; r0i� ÿ hZta; r0i��. Then
the assertion follows from (i). &

THEOREM 6.3. Suppose that g is a left-invariant s-metric of the pair �G�;Gÿ�. Let
h�; �i� be the corresponding contractions. Then for any r 2 G^kt , r0 2 G^k�1ÿt ,
t 2 f�;ÿg the equations

h�hr; @�ÿtr0i�� � h�hdtr; r0i�� and �55�

h�h@�ÿtr0; ri�� � h�hr0; dtri�� �56�

hold.
Proof. Inserting the de¢nitions (54) and (50) we obtain

h
ÿhr; @�ÿtr0i� ÿ hdtr; r0i�

� � h
ÿ

r;
ÿhr0; Zti� � �ÿ1�k�1hZt; r0i����

ÿ h�Zt ^ r� �ÿ1�k�1r ^ Zt�; r0i�
�
:

Applying Lemma 4.3 we now substitute hr; hr0; Zti�i� by hhr; r0i�; Zti�;
hr; hZt; r0i�i� by hr ^ Zt; r0i� and hZt ^ r; r0i� by hZt; hr; r0i�i�. Then we have

h�hr; @�ÿtr0i�� ÿ h�hdtr; r0i�� � h
ÿhhr; r0i�; Zti� ÿ hZt; hr; r0i�i��

� h
ÿ
@�ÿthr; r0i�

�
:

Since hr; r0i� is an element of Gÿt � A�Gÿt�l, we obtain (55) by Lemma 6.2(ii). The
proof of (56) is similar. &

DEFINITION 6.2. We call the operators D�t : G^kt ! G^kt , D�t :� dt@
�
t � @�t dt Lap-

lace^Beltrami operators.
The following properties of D�t are simple consequences of the facts that d2 � 0,
�@�t �2 � 0 and (54).
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LEMMA 6.4. The Laplace^Beltrami operators satisfy the equations

D�t � �dt � @�t �2; �57�

D�t dt � dtD
�
t � dt@

�
t dt; �58�

D�t @
�
t � @�t D�t � @�t dt@

�
t ; �59�

Dt0
�a � Dt0

ÿa � hZ�a; Zÿi � hZÿa; Z�i ÿ 2ahZ�; Zÿi �60�

for any a 2 A and t; t0 2 f�;ÿg.

Remark. By (60) the Laplace^Beltrami operator onA � G^� neither depends on the
sign t0 of the antisymmetrizer nor on the A-bimodule G^� containing A. &

PROPOSITION 6.5. For any r 2 G^kt , r0 2 G^kÿt, t 2 f�;ÿg, kX 0 we have

h�hD�t r; r0i�� � h�hr;D�ÿtr0i��: �61�

Proof. Using Theorem 6.3 we compute

h�hD�t r; r0i�� � h�hdt@
�
t r; r

0i� � h@�t dtr; r0i��
� h�h@�t r; @�ÿtr0i� � hdtr; dÿtr0i��
� h�hr; dÿt@�ÿtr0i� � hr; @�ÿtdÿtr0i�� � h�hr;D�ÿtr0i��:

&

7. Eigenvalues of the Laplace^Beltrami operator for SLq�N�
Throughout this section we assume that q is a transcendental complex number andA
is the Hopf algebraO�SLq�N��,NX 2. ThenA is cosemisimple, i. e. any element ofA
is a ¢nite linear combination of matrix elements of irreducible matrix cor-
epresentations ofA ([7], Theorem 11.22). Further,A is coquasitriangular and admits
a universal r-form r : A
A! C de¢ned by r�uij 
 ukl � � zÿ1R̂ki

jl , where z is a ¢xed
complex number with zN � q, and

R̂ij
kl � qd

i
jdild

j
k � �i < j��qÿ qÿ1�dikdjl : �62�

Here the number �i < j� is 1 if i < j and zero otherwise. We shall write R̂� for R̂�1.
Let G� and Gÿ be the N2-dimensional bicovariant differential calculi on A deter-

mined by the fundamental corepresentation u and the contragredient
corepresentation uc (see Section 3). Further, let denote F1;F2;G1;G2 the
N �N-matrices with entries F1

i
j � zÿ1qNÿ2idij, F2

i
j � q2idij , G1

i
j � zÿ1qNdij , G2

i
j � dij.
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Then F1 2Mor�ucc; u�, F2 2Mor�u; ucc� and G1;G2 2Mor�u� and they determine a
bicovariant s-metric of the pair �G�;Gÿ� (see Section 3).

The Laplace^Beltrami operator D on A is given by (60). For n 2 Z and a complex
number p 6� 0;�1 let �n�p denote the number �pn ÿ pÿn�=�pÿ pÿ1�.

PROPOSITION 7.1.The Laplace^Beltrami operatorD onA is diagonalizable. Let vl

be a ¢xed irreducible corepresentation ofA corresponding to aYoung diagram l. Then
the matrix elements of vl are eigenvectors of D to the eigenvalue

El :� �zÿ zÿ1�2 �m�2z �N�q � �N�z
X
�i;j�2l
�N2 ÿ 2m� 2N�j ÿ i��z

 !
; �63�

where �i; j� 2 lmeans that there is a box in the ith row and jth column of l and m is the
number of boxes in l.

Proof. Using the relations r�uij;S�ukl �� � zq2kÿ2l R̂ÿ1iklj and r�S�uij�; ukl � � zR̂ÿ1iklj ,
some properties of the r-form r and the R̂-matrix, Equation (60), for any mX 0
we get

D�ui1j1ui2j2 . . . uimjm � � qÿNÿ1ui1l1u
i2
l2

. . . uimlm
ÿ
zÿ2mD�m�1 � z2mDÿm�1 ÿ 2id

�l1...lmk
j1...jmn

q2kdnk;

where

D�m�1 � R̂�m;m�1R̂
�
mÿ1;m . . . R̂�23R̂

�
12

2R̂�23 . . . R̂�m;m�1; mX 2 �64�

are the so-called Jucys^Murphy operators of the Hecke algebra, D�1 � id. Since
q2dÿ2aR̂bd

ac R̂
ec
fd � dead

b
f � q2N�1�qÿ qÿ1�qÿ2adbadef and q2dÿ2aR̂ÿ1bdac R̂

ÿ1ec
fd � dead

b
f ÿ q�qÿ

qÿ1�qÿ2adbadef we obtain

X
k

q2k�D�m�1�l1l2...lmk
j1j2...jmk

� ÿqN�1�N�qid� qN�1q�N�qÿ qÿ1�
Xm
n�1

D�n
�l1...lm
j1...jm

and hence

D�ui1j1 � � � uimjm � � ui1l1 � � � u
im
lm

ÿ�zm ÿ zÿm�2�N�qid�

� �qÿ qÿ1�
Xm
n�1
�qNzÿ2mD�n ÿ qÿNz2mDÿn �

�l1...lm
j1...jm

:

Since q is transcendental,A is cosemisimple. Moreover,A is generated by the matrix
elements of the fundamental corepresentation u of A. Let Pl be a projection of u
m

onto the irreducible corepresentation of A corresponding to the Young diagram
l. Then Proposition 4.7 and the preceding considerations in [8] imply thatPm

n�1 D
�
n Pl �

P
�i;j�2l q

��2jÿ2i�Pl and therefore D�ui1k1 � � � u
im
km
Pl

k1...km
j1...jm � � Elu

i1
k1
� � � uimkm
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Pl
k1...km
j1...jm , where

El � �zm ÿ zÿm�2�N�q � �qÿ qÿ1�
X
�i;j�2l
�zÿ2mqN�2jÿ2i ÿ z2mqÿNÿ2j�2i�:

Since q � zN , (63) follows. &

Remarks. 1. The corepresentation vl of A with Young diagram l corresponds to
the representation of Uq�g� with highest weight l �PNÿ1

i�1 mioi where oi are the
fundamental weights andmi the number of columns in l of length i. Let B��; �� denote
the Killing metric on the Lie algebra slNÿ1 and let r0 be the half sum of positive roots.
Then the eigenvalue of the classical Laplace^Beltrami operator (with respect to the
biinvariant metric) corresponding to the highest weight l is given by the formula

~El � B�l� r0; l� r0� ÿ B�r0; r0�

�
XNÿ1
i�1

�N ÿ i�mi

N
i�mi �N� � 2

Xiÿ1
j�1

jmj

 !
�65�

(see [10]). For the quantum case one can check that limq!1�qÿ 1=q�ÿ2El � ~El.
2. For N � 2 we have q � z2 and Equation (63) reduces to the formula

E�m� :� 2�zÿ zÿ1�2�m�z�m� 2�z: �66�
&

PROPOSITION 7.2. Let z be a transcendental real number and q � zN.

(i) All the eigenvalues of the Laplace^Beltrami operator D : A! A are
nonnegative.

(ii) For any a 2 A we have D�a� � 0 if and only if a 2 C1.
(iii) The smallest positive eigenvalue of D : A! A is

minfEl j l � �1k; 0Nÿk�; k � 1; . . . ;Nÿ 1g: �67�

Proof.We prove the assertions of the Proposition in the case z > 0. The other cases
are an easy consequence of this one.

Firstly one shows that if l � �l1; l2; . . . ; lN �, l1 X l2 X . . . X lN X 1, then El � El0 ,
where l0 � �l1 ÿ 1; l2 ÿ 1; . . . ; lN ÿ 1�. Secondly, if l � �l1; l2; . . . ; lk; 0Nÿk�, lk > 0,
1W k < N, and li > li�1, li X 2 for some i � 1; 2; . . . ; k, then let l0 be the diagram
�l1; l2; . . . ; liÿ1; li ÿ 1; li�1; . . . ; lk; 1; 0Nÿkÿ1�. One can prove that El > El0 since
�n�z > �nÿ 2n0�z for all n0 2N, n 2 Z. Therefore, for any l 6� �0N � there exists a
l0 � �1k; 0Nÿk� such that El XEl0 . Obviously, E�0N � � 0 and because of �m�p > 0
for any m 2N, p > 0, we also have

El0 � �zÿ zÿ1�2ÿ�k�2z �N�q � �N�z�k�q��N � 2��N ÿ kÿ 1� � 2�z
�
> 0

for any l0 � �1k; 0Nÿk�, 1W k < N. Hence the assertions follow. &
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Remark. Let q be a transcendental complex number. LetA be one of the quantum
groups O�Spq�N�� or O�Oq�N��, NX 3, and G�, Gÿ as in Section 3, where u is the
fundamental corepresentation of A. Then the settings G1

i
j :� er=2dij, G2

i
j :� dij,

F1
i
j :� rq2ri=2dij , F2

i
j :� eqÿ2ridij, where r � eqNÿe (we use the notation of [4]), deter-

mine a left-covariant s-metric of the pair �G�;Gÿ�. Similarly to the proof of Prop-
osition 7.1, using (6.14) in [8] one can show that the eigenvalues of the
Laplace^Beltrami operator D on A corresponding to the Young diagram l are

El � �qÿ qÿ1�2
X
�i;j�2l
�N ÿ e� 2j ÿ 2i�q:

During the computations the operators r
Pm

k�1 D
�
k ÿ rÿ1

Pm
k�1 D

ÿ
k of the

Birman^Wenzl^Murakami algebra appear ^ one can take (64) for the de¢nition
of D�k , where R̂� denote the matrices

R̂�ijkl � q��d
i
jÿdij0 �dild

j
k � ��i < �l��qÿ qÿ1��dikdjl ÿ eielqrlÿridij; d

k
l0 �; �68�

which are central in the algebra Mor�u
m�1�. &
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