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Abstract

The best possible constant in a classical inequality due to Bonsall is established by relating that inequality
to Young’s. Further, this extends the range of Bonsall’s inequality and yields a reverse inequality. It also
provides a better constant in an inequality of Hardy, Littlewood and Pólya.
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1. Introduction

In 1951, Bonsall [2] proved an inequality for integral transforms in which the kernel
is homogeneous, with degree in [−1, 0).

Theorem B. Suppose that p > 1, q > 1, p−1 + q−1 ≥ 1 and λ = 2 − p−1 − q−1. Suppose
that f and g are real functions on R+ = (0,∞) and that K is nonnegative and
homogeneous of degree −1 on R+ × R+ with∫ ∞

0
x−1/(λq′)K(x, 1) dx =

∫ ∞

0
x−1/(λp′)K(1, x) dx = C.

Then ∫ ∞

0

∫ ∞

0
Kλ(u, v) f (u)g(v) du dv ≤ Cλ‖ f ‖p‖g‖q (1.1)

and ∥∥∥∥∥∫ ∞

0
Kλ(u, v) f (u) du

∥∥∥∥∥
q′
≤ Cλ‖ f ‖p. (1.2)

Here and throughout, a displayed inequality expressed with the symbol ‘≤’ should
be taken as implying that if the greater side exists and is finite, then so does the
lesser, and the inequality then applies. So implicitly, in this case, x−1/(λq′)K(x, 1),
x−1/(λp′)K(1, x), f p and gq are Lebesgue measurable and integrable on R+. Later there
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will occur reverse inequalities that are expressed using ‘≥’. For these the opposite
convention applies; the finiteness of the lesser side will imply that of the greater. This
is unconventional, so in these cases the assumptions will be spelt out. Where norms
appear in this paper, they use Lebesgue integrals over the full domain of the relevant
function. Also throughout, a prime will denote the Hölder conjugate, for example
1/q + 1/q′ = 1.

Bonsall did not claim that C here is the best (least) constant; the main purpose of
this paper is to establish that best possible constant. Note that (1.2) implies (1.1) by
the Hölder inequality, and (1.1) implies (1.2) by its converse. It follows that the best
constant will be the same in both inequalities. Note also that we have shown in [8] that
inequality (1.1) is strict unless either f or g is null, so (1.2) is strict unless f is null.

Bonsall proposed his result as a generalisation of the well-known Theorem 319 of
Hardy, Littlewood and Pólya [6], sometimes called Schur’s inequality, wherein p and
q are conjugate, so that λ = 1.

Theorem HLP319. Suppose that p > 1, p−1 + q−1 = 1, and that functions f and g are
real functions on R+; suppose that K(x, y) is nonnegative and homogeneous of degree
−1 on R+ × R+. Then∫ ∞

0

∫ ∞

0
K(x, y) f (x)g(y) dx dy ≤ C ‖ f ‖p‖g‖q (1.3)

and ∥∥∥∥∥∫ ∞

0
K(x, y) f (x) dx

∥∥∥∥∥
p
≤ C ‖ f ‖p, (1.4)

where

C =

∫ ∞

0
K(x, 1)x−1/p dx =

∫ ∞

0
K(1, y)y−1/q dy.

It is known that the constant C is the least possible, although again equality in (1.3)
is only attained when either f or g is null.

Bonsall’s inequality is also a generalisation of Hardy, Littlewood and Pólya [6,
Theorem 340], where p and q are not necessarily conjugate, but K is restricted to
K(x, y) = 1/(x + y).

Theorem HLP340. Suppose that p > 1, q > 1, p−1 + q−1 ≥ 1 and λ = 2 − p−1 − q−1,
and that functions f and g are real functions on (0,∞). Then∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ

dx dy ≤ A‖ f ‖p‖g‖q (1.5)

and ∥∥∥∥∥∫ ∞

0

f (x)
(x + y)λ

dx
∥∥∥∥∥

q′
≤ A‖ f ‖p, (1.6)

where A depends only on p and q.
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In contrast with the previous theorem, the best constant in these inequalities is
unknown. Hardy, Littlewood and Pólya [6], in discussing the series analogue, write
‘the best value has not been found in the general case, and the problem of determining
it appears to be difficult’. They did not give a specific value for A. Theorem B implies
A = [π cosec π/(λp′)]λ, a value earlier proved by Levin (see [7] or [5, Section 3.4]).
See also [9] for an experimental approach that suggested that Levin’s constant may
not be the best possible.

Both Theorems HLP319 and HLP340 are generalisations of Hilbert’s inequality in
integral form. Hilbert’s result may be viewed as the intersection of those two theorems,
and Bonsall’s theorem as their join.

This paper will extend the range of parameters in Bonsall’s theorem and
demonstrate the best possible constant for the inequalities therein. This is done by
converting the result to Young’s convolution inequality.

2. Young’s inequality

For real functions f and g defined on R, we write the standard convolution as

f ∗ g(v) =

∫ ∞

−∞

f (u)g(v − u) du. (2.1)

Then Young’s convolution inequality in [10], as shown by Hardy, Littlewood and
Pólya [6, Theorem 280], is equivalent to the following result.

Theorem Y. If 1 < α, β, γ <∞ and α−1 + β−1 − γ−1 = 1, and f and g are real functions
on R, then

‖ f ∗ g‖γ ≤ ‖ f ‖α‖g‖β. (2.2)

Their proof (or rather the proof of the series analogue which is the only one given)
will extend without difficulty to α = 1 and to β = 1.

In 1975, Beckner [1] proved a sharper inequality. Brascamp and Lieb [3] gave an
alternative proof and showed that the reverse inequality applies if 0 < α, β, γ < 1. To
describe these we require the following definition.

Definition. For p , 0, let Cp = |p|1/(2p)/|p′|1/(2p′). This includes the limiting cases
C1 = C∞ = 1.

The modern form of Young’s inequality, as extended by Beckner, Brascamp and
Lieb, is as follows.

Theorem BBL1. Suppose that α and β are positive and γ−1 = α−1 + β−1 − 1. Suppose
that f and g are real functions on R.

(i) If 1 ≤ α, β, γ ≤ ∞, then

‖ f ∗ g‖γ ≤ CαCβCγ′‖ f ‖α‖g‖β. (2.3)
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Figure 1. Space of parameters for Theorem BBL1.

(ii) If 0 < α, β, γ ≤ 1 and f and g are nonnegative in Lα and Lβ respectively, then

‖ f ∗ g‖γ ≥ CαCβCγ′‖ f ‖α‖g‖β. (2.4)

Equality is attained for the Gaussian functions, f (x) = e−α
′x2

, g(x) = e−β
′x2

.

The space of parameters used in the theorem is shown in Figure 1 with a, b, c
replacing α−1, β−1, γ−1 respectively. Part (i) of the theorem assumes that a ≤ 1, b ≤ 1
and c ≥ 0; the closed triangular region shown. Note that the three boundaries all have
CαCβCγ′ = 1 so the inequality there reduces to the original form due to Young. Fix
b in the interior of this region and consider the variation of κ = CαCβCγ′ with a. Set
µ = 2 log κ. Then

∂2µ

∂a2 =
1
c
−

1
a

+
1

1 − a
−

1
1 − c

which is greater than 0 since c < a. So µ is convex for 1 − b < a < 1. Since µ is 0
at the end points, it must be negative within and hence κ < 1 at interior points in
this region. For part (ii), the parameters allowed are those in the shaded semi-infinite
region, a,b ≥ 1. Again µ = 0 on the boundary but this time ∂µ/∂a > 0 internally, giving
κ > 1.

In group-theoretic terms, (2.1) is a convolution for functions on the group of real
numbers under addition. We will use

f V g(x) =

∫ ∞

0
f
( x

t

)
g(t)

dt
t
, (2.5)

the convolution of functions on the positive numbers under multiplication, with dt/t
the Haar measure. Results will be simplified if we also include the Haar measure in
the norms; we define a norm

||| f |||p =

[∫ ∞

0
f (x)p dx

x

]1/p
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so that
||| f |||p = ‖x−1/p f (x)‖p.

Of course, these convolutions are related by a logarithmic transformation. In h(v) =∫ ∞
−∞

f (v − u)g(u) du, substitute v = log x, u = log y, then k(·) = f (log(·)), φ(·) = g(log(·))
and ψ(·) = h(log(·)), giving

ψ(x) = h(log x) =

∫ ∞

0
f
(
log

x
y

)
g(log y)

dy
y

=

∫ ∞

0
k
( x

y

)
φ(y)

dy
y
.

Note also that
|||ψ|||p = ‖h‖p

with similar relations for k and φ. Applying these to Theorem BBL1 gives the
following result.

Theorem BBL2. Suppose that α and β are positive and γ−1 = α−1 + β−1 − 1. Suppose
that k : R+ → R, φ : R+ → R.

(i) If 1 ≤ α, β, γ ≤ ∞, then

|||k V φ|||γ ≤ CαCβCγ′ |||k|||α|||φ|||β. (2.6)

(ii) If 0 < α, β, γ < 1 and k and φ are nonnegative in Lα and Lβ respectively, then

|||k V φ|||γ ≥ CαCβCγ′ |||k|||α|||φ|||β. (2.7)

Equality is attained for certain nonnull functions, except when α = 1, or β = 1.

3. Bonsall’s inequality revisited
In [4], Erdélyi noted that Theorem HLP319 may be reworded in terms of the

convolution inequality

|||k V f |||p ≤ |||k|||1||| f |||p. (3.1)

Bonsall’s inequality may be converted in a similar manner. Then application of
Theorem BBL2 shows that the range of parameters p and q may be extended and
provides a reverse inequality.

Theorem B2. Suppose that p, q are in the extended reals and set λ = 2 − p−1 − q−1.
Suppose that K : R+ × R+ → R is nonnegative and homogeneous of degree −1, that
f : R+ → R, g : R+ → R and that∫ ∞

0
x−1/(λq′)K(x, 1) dx =

∫ ∞

0
x−1/(λp′)K(1, x) dx = C.

(i) If 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and p−1 + q−1 ≥ 1 (so 0 ≤ λ ≤ 1) then∫ ∞

0

∫ ∞

0
Kλ(x, y) f (x)g(y) dx dy ≤ C1/λCpCqCλ‖ f ‖p‖g‖q (3.2)

and ∥∥∥∥∥∫ ∞

0
Kλ(u, v) f (u) du

∥∥∥∥∥
q′
≤ C1/λCpCqCλ‖ f ‖p. (3.3)
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(ii) If 0 < p < 1, −∞ < q < 0 and p−1 + q−1 < 1 (so 1 < λ < ∞), f and g are
nonnegative in Lp and Lq respectively and C <∞, then∫ ∞

0

∫ ∞

0
Kλ(x, y) f (x)g(y) dx dy ≥ C1/λCpCqCλ‖ f ‖p‖g‖q (3.4)

and ∥∥∥∥∥∫ ∞

0
Kλ(u, v) f (u) du

∥∥∥∥∥
q′
≥ C1/λCpCqCλ‖ f ‖p. (3.5)

In both parts, equality is attained for certain nonnull functions, unless p or λ is 1.

Proof. We identify α, β and γ of Theorem BBL2 with 1/λ, p and q′ given here, so that
the definition of λ ensures that γ−1 = α−1 + β−1 − 1. Define k(z) = zλ−(1/p′)Kλ(1, z) and
φ(z) = z1/p f (z). This gives

|||k|||α =

{∫ ∞

0
x−1/(λp′)K(1, x) dx

}λ
= Cλ,

k V φ(y) = yλ−(1/p′)
∫ ∞

0
x−λKλ(1, y/x) f (x) dx = y1/q′

∫ ∞

0
Kλ(x, y) f (x) dx,

|||k V φ|||γ =

∥∥∥∥∥∫ ∞

0
Kλ(x, y) f (x) dx

∥∥∥∥∥
q′

(3.6)

and

|||φ|||β = ‖ f ‖p. (3.7)

Assuming the conditions of part (i), 1 ≤ p ≤ ∞ gives 1 ≤ β ≤ ∞, 1 ≤ q ≤ ∞ gives
1 ≤ γ ≤ ∞ and 0 ≤ λ ≤ 1 gives 1 ≤ α ≤ ∞. All the conditions of Theorem BBL2 part
(i) are satisfied. Thus we have

|||k V φ|||γ ≤ CαCβCγ′ |||k|||α|||φ|||β
which, via (3.6) and (3.7), is equivalent to (3.3). And (3.2) follows from the Hölder
inequality.

If instead we take the conditions of part (ii), then 0 < p < 1 implies 0 < β < 1,
−∞ < q < 0 implies 0 < γ < 1 and 1 < λ < ∞ gives 0 ≤ α < 1. Here the conditions
of Theorem BBL2 part (ii) are satisfied. Thus we have the reverse inequality to (3.3)
which is (3.5). Again (3.4) will follow but this time the reverse Hölder inequality, the
second part of [6, Theorem 189], is required.

So far we have shown that all K and f that are allowed in Theorem B2 map
to functions allowed in Theorem BBL2. The converse is also required. Given
k : R+ → R, we construct K : R+ × R+ → R using K(1, z) = z1/(p′λ)−1|k|1/λ(z) for all
z > 0 and K(x, y) = x−1K(1, y/x) for all x, y > 0. Then K is positive and homogeneous
of degree −1 and (3.6) holds. Also given φ : R+ → R+, define f (z) = z−1/pφ(z) so (3.7)
holds.

In particular, the functions k and φ that give equality in Theorem BBL2 will map
to functions giving equality in Theorem B2. These are the nonnull functions whose
existence is asserted if p , 1 and λ , 1. �
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Theorem B2 as presented seems odd in that the domain of q is not contiguous. It is
1 ≤ q ≤ ∞ in part (i) and −∞ < q < 0 in part (ii). However, in the context of extended
reals, these intervals are connected at q = ±∞. The theorem would perhaps seem more
natural if expressed in terms of q′ which takes all values in (0,∞].

The question remains as to why Theorem B involves a strict inequality for nonnull f
whereas Theorem B2 allows equality. If p−1 + q−1 > 1, then λ < 1 and C1/λCpCq < 1.
Then the constant Cλ in Theorem B is greater than the best constant, and equality
cannot apply in (1.2). If, however, p−1 + q−1 = 1 then λ = 1 and C1/λCpCq = 1, but
Theorem B2 no longer asserts equality.

Finally, we consider special cases of Theorem B2. In the case where p and q are
conjugate, as mentioned above, λ = 1 and C1/λCpCq = 1, and so part (i) of Theorem B2
immediately yields Theorem HLP319. Further, part (ii) will give the following result.

Suppose that 0 < p < 1, K : R+ × R+ → R+ is homogeneous of degree −1 with∫ ∞

0
x−1/pK(x, 1) dx =

∫ ∞

0
x−1/q′K(1, x) dx = C <∞,

and f and g are nonnegative functions on R+ in Lp and Lp′ respectively. Then∫ ∞

0

∫ ∞

0
K(x, y) f (x)g(y) dx dy ≥ C ‖ f ‖p‖g‖p′ (3.8)

and ∥∥∥∥∥∫ ∞

0
K(u, v) f (u) du

∥∥∥∥∥
p
≥ C ‖ f ‖p. (3.9)

This is Theorem 335 of Hardy, Littlewood and Pólya [6], except for a subtle difference
in the conditions. Inequality (3.9) here requires the finiteness of the right-hand side and
implies that of the left, whereas this is reversed in Theorem 335. A similar but more
elaborate difference occurs with (3.8).

The second special case of Theorem B2 is obtained using K(x, y) = 1/(x + y).
Here part (ii) does not apply since C is no longer finite. Part (i) immediately gives
Theorem HLP340, with the constant A as C1/λCpCqCλ. This is a tighter bound than
that afforded by Levin’s constant Cλ. Note, however, that determination of the best
constant in Theorem B does not completely settle the question of the best constant in
Theorem HLP340, since restriction of the kernel there may allow a smaller constant.
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[4] A. Erdélyi, ‘An extension of a Hardy–Littlewood–Polya inequality’, Proc. Edinb. Math. Soc. (2)

21 (1978), 11–15.
[5] S. R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, 2003).

https://doi.org/10.1017/S0004972715000921 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000921


404 T. C. Peachey [8]
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