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Abstract. The role in the Conley index of mappings between flows is considered. A
class of maps is introduced which induce maps on the index level. With the addition
of such maps to the theory, the homology Conley index becomes a homology theory.
Using this structure, an analogue of the Lefschetz theorem is proved for the Conley
index. This gives a new condition for detecting fixed points of flows, extending the
classical Euler characteristic condition.

0. Introduction
The techniques of algebraic topology have long been useful in the study of dynamical
systems. Two classical results are the Lefschetz-Hopf fixed-point theorem and the
Morse inequalities. The Lefschetz theorem has as a corollary a condition for the
existence of fixed points of a flow on a compact polyhedron X. Namely, if the Euler
characteristic ^-(X)^O, then every flow on X has a fixed point. The Morse
inequalities (among other things) strengthen this result for gradient-like flows on
X, relating x(X) to the number of fixed points.

The Conley index theory generalizes Morse theory in two ways: it generalizes
hyperbolic critical points to isolated invariant sets; and it greatly weakens the
conditions on the flow needed for the index to be defined. The Conley index is the
homotopy type of a pointed space N/No, where (N, No) is an index pair for 5 in
X: a compact pair chosen to capture the behaviour of the flow about S in X. The
homology of N/No then defines the homology Conley index, denoted here by
CH^{X; S). With the Poincare polynomials of these homology groups replacing
the Morse indices of hyperbolic critical points, the Morse inequality remains valid
[2]. This and the other uses of the homology index ([1], [4]-[8]) have made it a
powerful topological tool for dynamical systems.

This work seeks to further strengthen the Conley index theory by introducing to
it mappings between flows. A class of maps, called flow maps, is defined and shown
to induce maps between Conley indices and between homology Conley indices.
This enables invariant sets in different flows to be compared in the Conley index
theory. In particular, with the addition of flow maps to the theory, we can define
a category of isolated invariant sets on which the Conley index is a functor and the
homology Conley index is a homology theory. This greatly increases the range of
homological methods available to the index theory, and generates analogues of
many of the standard theorems of homology.

One of these is a generalization of the Lefschetz fixed-point theorem. In some
cases, a flow map which is also a self-map on an isolated invariant set 5 induces a
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self-map on the homology Conley index of S. Using this homology in place of the
singular homology of S, and ANR hypotheses on index pairs replacing the ANR
hypothesis on S, we can define a generalization of the Lefschetz number, called the
Conley-Lefschetz number. The generalization of the Lefschetz theorem (theorem
5.7) is that if the Conley-Lefschetz number of a map is non-zero, then a certain
family of maps homotopic to it all have fixed points in S. In particular, the
Conley-Lefschetz number of the identity (the Conley-Euler number of S) detects
fixed points of the flow on S.

In § 1 the definitions and notation of the Conley index are reviewed. In § 2 we
introduce mappings between flows and consider how the objects in the index theory
transform under them. These maps are used in § 3 to define a cateogry 3>y of isolated
sets. The Conley index is shown to be a functor, and the homology Conley index
a homology functor, on this category. In §§ 4 and 5 we record some of the results
made available by this formalism. Specifically, analogues of the Mayer-Vietoris and
Kiinneth theorems are proved in § 4, and an analogue of the Lefschetz theorem is
proved in § 5. This is used to show that, under mild hypotheses, if the Euler
characteristic of CH^(X; S) is non-zero, then S contains fixed points of the flow.
A relative version of the theorem and continuation properties of the theorem are
proved. The interaction between mappings and Morse decompositions is not dis-
cussed here, but will be examined in [9].

1. Definitions and notation
We will use the formulation and notation of the Conley index found in Salamon
([12]). We will work only with locally compact metric flows: a locally compact
metric space X with a continuous action <p:X xU^> X. We will generally not display
the action, writing x- t for <p,(x).

Definition 1.1. If X is a flow, U^X, the maximal invariant set in U is /(£/) =
{x e X | x • U c U}. A set S c X is an isolated invariant set if there exists a compact
neighbourhood N of S in X such that S is the maximal invariant set of N. N is
then an isolating neighbourhood for 5.

For closed U, J( U) is closed. In particular, the definition requires an isolated
invariant set to be compact.

Definition 1.2. Let S c X be an isolated invariant set. An index pair for S in X is a
compact pair (AT,, No) such that

(i) clx (N,\N0) is an isolating neighbourhood for S in X;
(ii) if xe No, t>0 with x• [0, t]c AT,, then x• [0, l]c)V0;
(iii) if x e N, so that x • R+ £ TV,, then there exists a ( > 0 such that x • [0, t ] c N{

and x • teN0.

Property (ii) is referred to as positive invariance of No in N,; property (iii) is
referred to by saying that No is an exit set for Nt.

THEOREM 1.3 ([12], theorem 4.3). IfN is an isolating neighbourhood for S in X, then
there exists an index pair (N,, No) for S in X with N, c N and both Nt and No

positively invariant in N.
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It is useful in topology to be able to work with neighbourhood deformation retract
(NDR) pairs ([3], [13]). Towards this end, Salamon introduces in [12] the idea of
a regular index pair, defined as follows. For any index pair (TV,, TV0), define the
'exit-time' map r+: TV, -»[0, oo] by

f
= \

1

ifxe/V,\TVo,

0 i fxeN0.

(TV,, TV0) is said to be a regular index pair if T+ is continuous. A regular index pair
is then an NDR pair, with the neighbourhood of TV0 retracting to TV0 along flow
lines. Salamon proves the following:

LEMMA 1.4 ([12], lemma 5.2). If (TV,, TV0) is an index pair such that, for every x e 7V0

and every t > 0, x • [0, /] £ clx (7V,\7VO), then (TV,, TV0) is a regular index pair.

LEMMA 1.5 ([12], lemma 5.3). If (TV,, TV0) is an index pair for S in X, there exists a
compact M such that TVoc M e TV, and (TV,, M) is an index pair which satisfies the
hypothesis of 1.4.

If (TV,, TV0) is an index pair satisfying the hypothesis of 1.4, then (TV,, TV0) =
(clx (TV,\TV0), Nonclx (TV,\TV0)) is also an index pair, with T+ continuous and
T+(X) = sup { t>0 |x- [0, f]c TV,}. As X is a two-sided flow, we can make a similar
construction for S as an isolated invariant set in the reverse flow (the 'exit-time'
map is now an 'entrance-time' map and is denoted T_). In fact, we can construct
such index pairs for the forward and reverse flows simultaneously. Namely:

THEOREM 1.6. If S is an isolated invariant set in a (two-sided) flow, then there exists
an isolating neighbourhood TV and compact TV0, N ° c dxTV so that

(i) (TV, TV0) 15 an index pair for S in the forward flow with T+ continuous and
T+(x) = sup{f>0|x-[0, f]cTV};

(ii) (TV, TV0) is an index pair for S in the reverse flow with T_ continuous and
T_(x) = inf{f<0|x •[*,<)]£ TV}.

Proof. Take an index pair (TV, TV0) satisfying (i) (which exists from the discussion
above). Let (M, M°) be an index pair for S in the reverse flow so that (M, M°) is
negatively invariant relative to TV. From Salamon's construction ([12], lemma 4.2),
M can be chosen to be a neighbourhood of M+(TV) = {x e TV | x • R+ c TV} in TV so
that P = {xe TV|3f<0 with x-[t,0]^N and x- ted^(M)} is compact. Let
M = P u c l x ( M \ M ° ) .

(i) TV is invariant relative to clx (TV\M°).

Pf. P is by construction positively invariant in TV, and an orbit in clx (M\M°) can
only exit clx (M\M°) if it enters P, so M is positively invariant. Similarly,
clx (M\M°) is negatively invariant in clx (TV\M°) (as M and M° are both nega-
tively invariant in TV), and orbits in P can only exit P in backwards time if they
enter M or M°, so M is negatively invariant.

(ii) (M, M°) is an index pair for S in the reverse flow.

Pf. (M,M°) is formed by attaching P to (M, M°). M\M°cM\M°cN, so
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c\x (M\M°) is an isolating neighbourhood for S in X. From the discussion above,
Mo is a negatively invariant exit set for the reverse flow.

(iii) Choose a n M ° c M ° c M so that (M, M°) satisfies the hypothesis of 1.4. Let
N = c\x(M\M°), No=NonN, N°=Af°nN. By construction, (N, N°) satisfies
(ii). (N, No) is the intersection of (N, No) with a compact set positively invariant
relative to N. Such an intersection changes none of the properties required in (i);
(N, No) satisfies (i). •

If S is isolated in X, the collection of index pairs (N, No) which admit an N° so
that N, No and N° satisfy 1.6(i), (ii) will be denoted Jf(X; S). Let s#J{(X; S) =
{(N, N0)eJV(X;S)|N/N0 is an absolute neighbourhood retract (ANR; cf. [3],
[13])}. The construction of index pairs in [11] shows that sdJf(X; S) is non-empty
when X is a manifold.

Index pairs are used to define the Conley index, which has the structure of a
connected simple system.

Definition 1.7. A connected simple system is a collection Io of pointed spaces along
with a collection Im of homotopy classes of maps between these such that

(i) hom (X, Y) = {[f]e[X, Y]\[f]e Im} consists of a single element for every
X, Ye / 0 ;

(ii) if X,Y,ZeI0 and [f]ehom(X, Y), [g]ehom (Y,Z), then [g° / ]e
hom(X,Z);

(iii) hom (X, X) = {[idx]} for every Xelo.
A morphism <f>:(/0, Im)-*(Jo,Jm) of connected simple systems is a collection of

homotopy classes of maps between spaces in /„ and spaces in Jo such that
(iv) for every X € / 0 and y e / o t h e set *(X, Y) = {[<p]e[X, Y]\[<p]€<&} consists

of a single element;
(v) if X , X G / 0 and Y, YeJo and if [<p]e[X,Y], [/ |ehom (X, X), [g]e

hom (Y, Y), then [g ° cp °/] e <J>(X, Y).

Remarks, (i) Within a single connected simple system, the requirements on the
morphisms force them to be homotopy equivalences.

(ii) If X e Io and Y€ Jo, any homotopy class of maps [<p] e [X, Y] generates a
morphism between connected simple systems.

(iii) While each connected simple system forms a category, we also have a category
^yy whose objects are connected simple systems and whose morphisms are as in
the definition.

We obtain pointed spaces from index pairs by taking quotient spaces N/ No. The
point No corresponding to No is a distinguished point, so the pointed space is
written as (N/No, No) or (N/No, *). These pointed spaces will be the objects in a
connected simple system. We obtain the morphisms hom (Na/Na0, Np/Npo) as
follows. If (N, No) is an index pair for S in X, T>0, let (N\N0)

T =
{xeX\x-[-T,T]<=N\N0}.

LEMMA 1.8 ([12], lemma 4.7). Let (Na, Na0) and (N^, N^o) be index pairs for S in
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X. There exists a T > 0 such that (Na\Na0)
T c Np\Npo and (Np\Np0)

T c Na\Na0.
Further, for every t^T, the map <p'aP: Na/ JVa0-» Np/Np0 defined by

L/soJ otherwise

is continuous.

Definition 1.9. If S is an isolated invariant set in X, the Conley index of S in X is
the connected simple system I(X; S) whose objects are I0 = {N/N0\(N, No) is an
index pair for S in X} and whose morphisms are [<p'ap]:[Na/Na0]-*[Np/Np0].

THEOREM 1.10 ([12], theorem 4.10). The Conley index is a connected simple system.

That is, the quotient spaces formed from index pairs all have the same homotopy
type, with the maps <p' providing the homotopy equivalences. A simpler form of
the index, in which only the homotopy type of the index pairs is recorded, is the
homotopy index h(S) = [N/No, *] (cf. [1], Ch. Ill, § 5).

2. Mappings in the Conley index
In the existing theory, morphisms in ^ifif are used only in continuation, and appear
there only as isomorphisms—morphisms between connected simple systems with
the same homotopy types and the same homotopy classes of maps. To extend to
more general morphisms, and so make the Conley index functional, we introduce
flow maps.

Definition 2.1. Let X and Y be flows. A flow map is a proper continuous function
f:X-*Y which is equivariant with respect to the R-actions on X and Y (i.e. for
every xeX, r e R, f(x• t) =f(x) • t).

Examples of flow maps include:
(i) The inclusion i:A-*X of a closed invariant (under the flow) subset of X.
(ii) If G is a compact group acting on a flow X, then multiplication by g € G

and the quotient map TT : X -* X/G are flow maps, where X/G is the G-orbit space.
(iii) In [1], Conley shows that any flow has a strongly gradient-like quotient flow,

obtained by collapsing components of the chain recurrent set to points. If each
component is compact, then this quotient map is a flow map.

THEOREM 2.2. Let f:X-*Ybe a flow map, S<^Y an isolated invariant set with
isolating neighbourhood N and {regular) index pair (N,, No). Then f~\S) is an
isolated invariant set with isolating neighbourhood f~\N) and (regular) index pair
(/"1(NI),/-I(N0)).

Proof. Invariance under the flow is preserved by pull-backs, so f~\S) is invariant.
Further, if x- Rc/- '(JV), then f(x) • U=f(x- R)<= N and / ( x ) s I(N) = S. The
map/ i s proper, so/"'(TV) is compact, and so is an isolating neighbourhood for
isolated invariant set f~1(S).

Likewise, clY(Ni\N0) is an isolating neighbourhood for S, so
c\x(f~l(Nl)\f-

l(N0))=f-\c\Y(Nl\N0)) is an isolating neighbourhood for
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f'\S). Positive invariance is also preserved by pull-backs, so/~'(N0) is positively
invariant in f~l(Ni). If xef~\Nx) so that x- R+^f~l(N,), then f(x)cNl with
f(x) • 0* £ JV,. There is then a l > 0 s o that f(x) • teNo and f(x) • [0, i ] c N , . That
is, x- tef~l(N0) and x- [0, ̂ cf-'iNt), and f~\N0) is an exit set for/"'(N,).

Finally, if (N,, No) is a regular index pair, then the exit-time map T+ : N, -* U is
continuous. But r+ °f:f~\Ni)-* U is then the exit-time map for (f~1{Ni),f~\N0)),
and so it is a regular index pair also. •

Definition 2.3. Suppose / : X -» Y is flow map, S ̂  y is an isolated invariant set and
(TV,, JV0) is an index pair for S in Y. Then ft(/): h(f~l(S)) -* h(S) is the homotopy
class [ / ] : [ / 1(N1)//- '(N0)]^[N1/N0] and Hf):I(X;f-\S)) + HX;S) is the
morphism of connected simple systems induced by /»(/).

PROPOSITION 2.4. / ( / ) is a morphism of connected simple systems.

Proof. Let (JV,, No) and (TV,, JV0) be index pairs for S in Y. Using the notation of
lemma 1.8, choose T>0 so that (Nl\N0)

T<= N^No and (N1\JV0)rcN1\N0.
(i) As ( /-1(No\No)) r=/- ' ( (N1\No) r ) , (f~l(NAN0))

T^f-'iNANo). Thus, if
<p'v represents the homotopy class hom (Nx/No, NJNo) in /(S), then

f[x-3f] i fx-[0,2r]s/-1(JVI\N0),x-U3r]c/- I (N,\No)

U*oJ otherwise

is continuous for every t > T and represents the homotopy class

hom (/-1(N1)//-1(No),/"1(N,)//-1(N0)) in J(X;/- ' (S)) .

(ii) / ( / ) will be a well defined morphism of connected simple systems provided

VOJ otherwise,

while

/ 30] ifx-[0,2/]c
l[N0] otherwise.

As / commutes with the quotients and the flows, the two formulae agree. •

We are now free to study the role of flow maps in either the homotopy index
h(S) or the Conley index I(X; S). As connected simple systems give more precise
information than homotopy classes, we will limit our attention to the Conley index.

PROPOSITION 2.5. Given a commutative diagram of flow maps

f
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and an isolated invariant set S^Z, then there exists a commutative diagram of
connected simple systems

HZ; S)
Proof. This is immediate from the formulae in 2.4. •

We next want to describe how flow maps behave under continuation. To do so,
some results on isolating neighbourhoods are needed.

LEMMA 2.6. Let A g X be a closed pair of flows and S s X an isolated invariant set.
Let N^Abe an isolating neighbourhood for SnAin A. Then there exists an isolating
neighbourhood M for S in X such that M nA = N.
Proof. The inclusion i.A^X is a flow map, so i~l{S) = SnA is isolated in A.
Choose an isolating neighbourhood M for S in X M n A n J V is an isolating
neighbourhood for S n A in A, so S n A c intA (M nAn TV). Let U = M n (A\TV).
Then S and C I ^ A (U) - CIM (U) are disjoint closed subsets of M. Choose disjoint
open sets Vx, V2 in M with C1M(£/)<= V, and S c V2, and let M = (M\V,)^ W-

(i) Mn A = ((M\ V,)n A)u TV, with ((M\Vx)n A)s ((M\U)n A) = MnN, so

(ii) 5c V2cM\V,cM and 5cintxM, so S^intxM.
(iii) N c A, which is invariant. Thus orbits in M\ Vl can intersect N only if they

are contained in A, hence in (M\V,)nAcN. Thus 7(M) = /((M\ V^u N) =
/(M\V,)u/(N)s/(M)u/(Ar). 7(M) = S and I(N) = SnA, so I(M)cS. But
5c M, so /(M) = S and M is an isolating neighbourhood for 5 in X. •

LEMMA 2.7. Let f: X^Y be a flow map, S £ Y an isolated invariant set and TV £ X
an isolating neighbourhood for f~l(S). Then there exists an isolating neighbourhood
M ofS in Y such that f~\M) c intx TV.
Proof, (i) First assume/ is onto. By taking one-point compactifications if necessary,
we may assume that X and Y are compact.

Let V = {y e Y\f~\y) c intx TV}. Then Y\ V =/(X\intx TV) is compact and V is
open. As /"'(5)cintxTV, SeV. If TV = X, the result is trivial. If TV^X, then
X\intx TV * 0 and Y\ V * 0 .

If S = 0 , take M = 0 . If S * 0 , choose a : Y^ [0,1] so that a(S) = 0, a( Y\ V) = 1.
Then (a °/)(X\intx TV) = a(Y\V) = 1 is closed in [0,1]. Choose 0 < e < l and let
M, = a~'[0, e]. Then Sca~ ' (O)c in t v M, . (On the one-point compactifications,
/~1(oov) = {oox}£intxTV, so o o y e y \ V and ooxgM,.) Let Af2 be an isolating
neighbourhood for S in Y and let M = A^nMj . Then ScintyM, n in t v M 2 c
intv M and 5 c 7(M,) n I(M2) = /(TVf) c I(M2) = S, so M is an isolating neighbour-
hood for S. Further,/~1(Af)c/-1(M,)cintx TV.

(ii) If/ is not onto, choose an isolating neighbourhood M' forf(x) n S in/(X)
with/~'(M') c intx TV. By lemma 2.6, M' then extends to an isolating neighbourhood
M for 5 in V with / (X) n M = Af', hence with / " ' (M) =.T'(M') c intx TV. D

Recall that, if VxA is a parametrized family of flows, we define Sf(Y) =
{(SA, A)|SA is an isolated invariant set in yA}. We write t/A for U with the A-flow,
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and 7A (U) for the maximal invariant set of U in the A-flow. I f F : X x A - » Y x A i s
a flow map, define 9>(F):^(Y)^Sf(X) by Sf{F){SK, A) = (Fr'(5A), A).

THEOREM 2.8. If F:X xA-> YxA is a flow map, then 5^(F) is continuous.

Proof. Bases for the topologies of Sf(X) and Sf{ Y) are defined as follows. Let N c Y
be compact and let A(JV) be the set of A € A for which N is an isolating neighbour-
hood. A(7V) is open, and we define crN : A(N)^^(Y) by o-N(\) = (7A(JV), A). Then
S?( y) has basis B(Y) = {aN(U)\NcY is compact, ( / cA(N) is open}. Let o-N( U)
be such a basis element in Sf(X). Then ^(F)"'(o-N(t/)) = {(SA, A)|A G I/, SA an
isolated invariant set, FA'(SA) = 7A(N)}. By lemma 2.7, for every such (SA, A) there
exists a compact MA c yA with A e A(MA) and SA = 7A(MA).

LEMMA 2.9. For every MA f/iere exists an open A-neighbourhood U(MX) o/A contained

in UnA(Mx) with Ili(F-1(Mx)) = I^N) for every fie U(MA).

Proof. It suffices to show that there exist open A-neighbourhoods V(MA) and W(Mk)

of A in A with /M(F;I(AfA))s/M(JV) for all M e V(MA) and / M (N)s JM(F-'(MA))

for all/iG W(AfA). Then

t/(MA)= t /nA(M A )n V(MA)n W(MA).

A is locally compact, so there exists a compact CA c A with A e intA (CA). F~'(MA x
CA) is compact, as F is proper. Let TT; be the projection of X x A onto its ith factor.
Let Z=JVu7T,(F~1(MAxCA)) and consider (F\ZxCx):Zx.CK^YxCK.
F"'(MA x CA) and (Z\intzN) x CA are closed in Z x CA, so

{fi e CA |F;'(AfA) n (Z\intz N) * 0} = 772(F"1(MA X CA) n {(Z\intz N) x CA})

is closed. Then

is open in CA, and V(MA) = {/J. G intA CA | F~J{MK) c intz N} is an open neighbour-
hood of A in A. Clearly, if/*e V(MA), then /M(F-'(MA))<= /M(N).

W(Mk) is constructed analogously. ( F | Z x CA)"'(intyMA) is open in ZxCk,
and I(NxCx) is closed in ZxCx. Analogous to the above argument,
{/j. G CA | / ^ (N)c F~'(intyMA)} is open in CA and contains A.

then has the required properties. •

To complete the theorem proof, we must show that S^(F)"'(o-N(t/)) is open in
Sf(Y). For every element of 9>(FY\aN{U)), choose an MA and a l/(MA) as in 2.7
and 2.9. Each crM([/(MA)) is a basis element of &{Y), so U crM(f/(MA)) is open
in 5^(y). By construction, y(F)~l{aN{U)) is contained in this union, so we need
only show that each (TM(U{MK))^Sf(F)-\aN(U)). If M € t/(MA), then crM(ti) =
(^(MA),M) and ^(F)(crM(At)) = (/M(iV), M) by lemma 2.9, and <rM(/i)e

THEOREM 2.10. If F :X x A-* YxA is a flow map of parametrized families of flows
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with (SA,A) and (S^, p)e y(Y) related by continuation, then (FA"'(SA), A) and
(F~'(SM), fi) e y(X) are related by continuation, and the diagram commutes:

7(XA;Fr'(5A)) ^ > 7(KA;SA)

/ (SA, A) and (5^,/u.) are related by continuation if and only if there exists
a path w:[0, l]^Sf(Y) with w(0) = (SA,A) and «(1) = (SM, fi). Then
^(F)° (u : [0 , l ]^y(X) is a path with endpoints (FA"1(SA), A) and ( F ~ ' ( S J , M ) -

The continuation theorem ([12], theorem 6.7) states that if (5A, A), (SM, /i)€ y( V)
are related by continuation, then there exist isomorphisms of connected simple
systems FY(X, fi): /(VA ; Sk)±+I( Y^; SF): FY(/x, A) which are independent of the
path in £f( Y) relating (SA, A) and (5M, fi). The morphism Fy(A, yx) is constructed
by covering [0,1] with intervals Kt and taking a sequence 0 = so,su... ,sn = l so
that s, e Kj n X,+1. These X may be chosen so that the inclusion-induced morphism
jY(h, K): /(FA ; SA, A)-» I(Yx K; SK) is a homotopy equivalence for every A eK,
where SK ={J{(Sfi,ix)\ne<o(K)}. The homotopy inverse of jY(K K) is denoted
FY(k,K). We then take

FV(A, M) = Fy(An, X J °jV(An_,, Kn) o • • • o FY(Xl, K,)«;V(A0, «i),
where Af = w(5,).

We obtain a common set of the K for X and Y by taking covers {^(X)} and
{Kk( Y)} which are admissible for X and Y respectively, and taking KJk = Kj(X) n
Kk( Y). Take connected components of the Kjk and order them so that KtnKi+l^0.
As j(A,, /Cj+1) is inclusion-induced, hence flow map-induced, we have
I(F*,(K))"Jx(K K)=jY(\, X)»/(FA) from proposition 2.5. As F(A, /C) is the
homotopy inverse of j(\, K), a simple diagram chase shows that
I(Fa(K)) • FX(A, X) = Fy(A, K) o /(FA). D

Definition 2.11. Flow maps/, g:X-> V are homotopic as flow maps if there exists a
flow map F : X x [0,1] -> Y x [0,1] with Fo =/, F, = g, where X x [0,1] and Y x [0,1]
have product parametrization (i.e. the flows on X and Y are independent of the
parameter value).

COROLLARY 2.12. Iff, g:X-» Y are homotopic as flow maps, then for every isolated
invariant set S^Y, f~l(S) = g'x(S) and / ( / ) = I(g): I(Xf~l(S)) •* /(Y; S).
Proof. In a product parametrization, (SA, A) and (SM, /A) are related by continuation
if and only if SA=SM. •

Example 2.13. The flow on the torus T2 given by <yo{e, <j>) = (sin (0) cos (<f>), sin (<£))
has hyperbolic critical points xo = (Q, n), Xi = (ir,ir), x2 = (ir,0), x3 = (0,0) with
indices /„( T2; x0) = 2°, Jo( T

2; x,) = X1, 70( T
2; x2) = 2 \ 70( T

2; x3) = Z \ and with two
connecting orbits from (-tr, 0) to (0, IT). These connecting orbits can be perturbed
off by continuing to the flow given by <3/i(0, <j>) = (sin (0), sin (<£)). This flow has
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x0, x,, x2, x3 isolated with indices 7,(T2; xo) = 21, 7,(T2; x,) = 2°, /,(T2; x2) = Z \
7,(T2; x,) = 22. The continuation can be done so that x0 in the ^ 0 flow and xt in
the <3'1 flow are related by continuation (and vice versa).

Each of these flows lifts to a flow on X = [-TT, TT]X[-IT, TT]. That is, define
<%o(x,y) = (sin(x)cos(y),sin(y)) and 9£^{x, y) = (sm (x), sin (y)). Then the map
fix, y) = (0, <f>) is a flow map at 0 and at 1. Further, %0 continues to #f,. However,
there is no flow map F : X x [ 0 , l ] - > y x [ 0 , l ] with Fo = Fl =/, for x0 in the % flow
and x, in the 9t flow are related by continuation, but I0(X;f~1(x0)) = 2° v S°, while
A(*;/~1(x,)) = 20vZ0v20v2°. If such a flow map F existed, then theorem 2.10
would require /0(X;/-1(x0)) = /1(X;/-1(x,)).

3. Functorial constructions
A given invariant set may be isolated in more than one flow, and will in general
have a different index when viewed in different flows. One way in which the flow
may be changed is to restrict to some subflow. This may be done via flow maps. If
Ac X is a closed invariant subspace, the inclusion map i:A-*X is a flow map,
with i'\S) = Sr\A. With this, we will be able to define a category of isolated
invariant sets and flow maps and a homology functor on this category. That is, since
inclusions of closed subflows will lie in the category, we will be able to give it the
'pair' structure needed for a homology theory.

Definition 3.1. The category $y of isolated invariant sets has objects of the form
{X, A; 5), where X is a locally compact metric flow, A c X is a closed invariant
subspace and 5 c: X is an isolated invariant set in X. Morphisms are flow maps
f:(X,A;S)^(Y,B; T) wi th / (A)sB and / - ' (T) = S.

Remarks, (i) 3>y can readily be checked to be a category. Its pair nature lies in the
fact that (X, A) is a pair of flows. Properly, (X, A; S) is to be regarded as a pair
of isolated invariant sets in a pair of flows, with S nA the isolated invariant set
in A. A single isolated invariant set in a single flow may be obtained by taking
A = 0.

(ii) Everything above can be done with local flows or discrete dynamical systems
instead of flows. If X, Y local flows, define a local flow map to be a proper continuous
map with the following equivariance properties:

(a) if x € X, t e U such that x • t e X, then f(x) • t e Y and /(x) • t =f(x • t);
(b) if xeX, teU+ such that/(x) • te Y, thenx- teX.
If/~'(S) is replaced b y / " ' ( S ) n / ( X ) , all of the theorems above remain valid.

We can then define a category iP^S^ of isolated invariant sets in local flows.
If X, Y have discrete dynamical systems given by homeomorphisms g and h

respectively, a discrete flow map is a proper continuous map / : X -» Y such that
f°g = h°f.lf the Conley index is replaced by the shape index defined in [11], all
of the theorems above remain valid. For the present, however, we will limit ourselves
to the category SSf for continuous flows.

By taking pairs of spaces and maps of pairs, the definitions of a connected simple
system and a morphism of connected simple systems have obvious relative category
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versions. We now use ^Sfy to denote this category, and view the single space
category as a sub-category. With this relative category, we can define:

Definition 3.2. If (X, A; S) e $&*, the Conley index of {X, A; S) is the relative con-
nected simple system I(X, A; S) whose objects are

I0 = {(N/N0, (NnA)/(NonA))\(N, No) is an index pair for S in X}

and whose morphisms are

[<p']:(N/No,(NnA)\(NonA))^(N/No,(N^A)/(NonA)).

If / : (X, A; S) -»(Y, B; T) is a morphism in S31, / ( / ) is the morphism of relative
connected simple systems induced by

To emphasize the functorial dependence of the index on the flow, we write the
Conley index as I(X, A; S) (or as I(X; S) when A = 0 ) rather than 7(5) or 7(5, X).
This differs from the notation of other authors, as will the notation for the homology
Conley index. With this, we have the following reformulation of the Conley index:

PROPOSITION 3.3. The Conley index I is a functor from the category 3>if to the category

To pass to the homology Conley index, we note the following:

PROPOSITION 3.4. For every (X, A; S)eJ9!, the connected simple system I(X, A; S)
is an inverse system of sets.

Proof. If (Nla, NOa) and (Nl/3, Nop) are index pairs for 5 in X, then

(Nla n Nlfi, (Nla n Nop)u(NOa n Nlft))

is an index pair. Define a partial order on I(X, A; S) by [Nla/ NOa]<[Nip/ Nop~\
if Nip\NOp c Nla\NOa. Then for every a, /J there exists a y such that a, p < y. If
a s /3 < y, then Nly\NOy c Nip\Nop s Nla\NOa, so < is a partial order. Further,
the maps [<p'a>p]: N}a/NOa -» Nl/3/NOI3 of the connected simple system satisfy

^L:;] = [<P^ o ^kr] = [* ' ^ ] o [^ .y ] for all a < p < y. •

Thus, if we apply the singular homology H# to a connected simple system, we
obtain an inverse system of graded groups, with all of the groups isomorphic and
all of the maps between them isomorphisms. We can then take the inverse limit to
obtain a single graded group. This is equivalent to making a consistent choice of
generators for the groups H^iNJNo,*).

Definition 3.5. The homology Conley index is the functor CH^ = lim ° H^ ° I from
the category $£f to the category of graded Abelian groups.

We will denote CH^X, 0 ; S) by CH^X; S) and CH*{f) by/*. If 5 is a compact
flow, then S is isolated in S, and (S, 0 ; S) e JSf. S has only one index pair in itself,
namely (S, 0 ) , so CH^(S; S) = /^ (S) , the singular homology of S. By taking trivial
flows if necessary, any compact metric space can viewed as a compact flow, and
any map between compact metric spaces can be viewed as a flow map.
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THEOREM 3.6. CH^ is a homology functor on JSf in the following sense:
(i) if id:(X,A;S)^(X,A;S) is the identity map, then id*: CH^X, A; S)-»

CH^.(X, A; S) is the identity homomorphism;
(ii) iff: (X,A;R)^{ Y, B; S) andg:( Y, B; S) -*(Z,C; T) are morphisms in 3><f,

then (g°/)* = g*%;
(iii) ifi :(A,0;AnS)^> (X, 0 ; S) and): (X, 0 ; S) -• (X, A; S) are inclusion maps,

then there exists a degree - 1 map d: CH^X, A; S)-» CH*(A\ AnS) so that the
sequence is exact:

d-+CHn(A;AnS)-±+CHn(X; S) - ^ CHn(X, A; S)-»- • •;

(iv) if(X,A;S)-*(Y,B;T)isa morphism in 3>y, then d°f* = (/|A)+ °d;
(v) iff, g'-(X,A;S)^(Y,B; T) are homotopic as flow maps, then /„. = g*;
(vi) if (X, A,S)e$y and UGA is an open invariant set with c\x U£intx A,

then the inclusion i:(X\U,A\U;Sn(X\U))->(X,A;S) induces an isomorphism
i»:CHt(X\U, A\U;Sn(X\U))•*(X, A; S);

(vii) Ctf,(pt;pt) = tf#(pt).

Proof, (i), (ii) CH^ is a covariant functor, as it is a composition of covariant functors,
(iii), (iv) For every index pair (N,, No) for S in X, the pair

(AT,/No, (TV, nA)/(Non /I))

has a boundary operator a which commutes with the induced maps of flow maps
and makes the sequence

- ^ HB(N1/No,(N1ni4) / (Noni4))- i*- • •

exact. As this boundary operator is natural, it gives a well defined boundary operator
on the inverse limits which satisfies (iii) and (iv).

(v) This is immediate from corollary 2.12.
(vi) Let (N, No) be an index pair for 5 in X. No is then a neighbourhood retract

in N via the flow, and NonA is similarly a neighbourhood retract in NnA. It
follows then that the quotient maps

Pl:(N,Nov(NnA))^(N/No,(NnA)/(NonA))

and

P2:(N\U,(Nou(NnA))\U)^((N\U)/(No\U),

{(Nou(NnA))\U}/(NonA\U))

induce isomorphisms on homology. From the excision axiom of singular homology,
the inclusion

i*:/f#(N\t/ ,(Nou(Nni4))\ t /)->H1 | , (N,Nou(Nnyl))

is an isomorphism. Hence

i*:Ht((N\U)/(N0\U),{(N0u(NnA))\U}/(N0nA\U))
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which represents

, A\ U; S\ U) -* CH^X, A; S),

is also an isomorphism.
(vii) This is the observation above that CH^iS; S) = //^(S) for any compact

metric space S. •

The homotopy axiom is a special case of the following naturality statement for
the homology Conley index under continuation:

THEOREM 3.7. IfXxA is a parametrized family of flows, with SA £ XK and SM c X^
related by continuation, then CH^.(XX; Sx) = CH^X^, S^). Further, if F :XxA-»
Y x A is a flow map, then there exists a commutative diagram

We can equally well define a cohomology Conley index CH* based on singular
cohomology. As the morphisms in I(X, A; S) induce ring isomorphisms, this will
give a cohomology theory on 3>5P with cup product. Further, in different settings
we can follow the Conley index functor / by different (co-)homology functors h
and obtain corresponding Conley (co-)homology indices Ch (cf. [4]).

The exact sequence of a pair (theorem 3.6(iii)) can be used in a variety of ways
to facilitate computations with the homology Conley index. In [10] a theorem on
the structure of isolated invariant sets in a manifold M is proved by showing that,
if the theorem fails to hold, an invariant submanifold Mo can be constructed so
that the sequence of the pair (M, Mo; S) fails to be natural. A more positive
application comes from the relation between chain recurrence and strongly gradient-
like flows.

For example, if X has compact maximal invariant set S, then the chain recurrent
set R of X is compact. Form the quotient space X by collapsing each component
of R to a point. Conley [1] shows that X has a strongly gradient-like flow, and
suggests that the flow on X be studied by relating it to the flows on R and X. In
terms of the homology index, this is achieved by the exact sequence of (X, R; S).
Namely, the natural projection ir: X -* X is a flow map and generates a commutative
diagram

U CHn(R; R) -±+ CHn(x; S) - ^ CHn(X, R; S) -?-+• • •

y y •

_ " ! • J S - . • ' *

• CHn(R; R)-^CHn(X; S)-^CHn(X, R; S)

with CHn(R; R) = Hn(/?) and CHAR; R) = Hn(R). As R consists of a finite set of
points, jf-CHniX; S)^>CHn{X, R; S) is an isomorphism for n > 1 and injective
for n = l. Moreover, if R is an equivariant neighbourhood retract in X, or if a
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continuous homology theory is used, then 77*: CHn(X, R; S)-» CHn(X, R; S) is an
isomorphism. Then for n > 1 there is an exact sequence

X;S)-^ CHn(X; S)->- • •

relating the chain recurrent set and the homology indices in X and X.

4. Computational techniques for the homology Conley index
Many of the basic computational methods of singular homology remain valid for
the homology Conley index. As examples, we record analogues for the Conley index
of the Mayer-Vietoris and Kunneth theorems. As in singular theory, these theorems
require the concept of an excisive triad, so we first consider excisiveness in the
Conley index.

PROPOSITION 4.1. Suppose (X;S)eJy, with X,,X2 closed subflows of X. Let
Xo = X, n X2 and let S, = X, n 5. Then the following are equivalent:

(i) i,.: C/Z^X,, Xo; S,)-> CH^X, X2; S) is an isomorphism;
(ii) i2*:CHit:{X2, Xo; S2)-> CH^X, X,; S) is an isomorphism;
(Hi) (« , . ,«»iCtf^X, , XO;SX)®CH^X2,XO;S2)^CH^X,XO;S) is an iso-

morphism.

Proof. Choose a regular index pair (TV,, No) for S in X, and let Ny = N, n X}. We
then have exact sequences of chain complexes

St(Nn) ., S * ( N , ) ^ S * ( N , )
S ( N ) + S ( N ) S ( N ) + S ( N ) S ( N ) + S ( N ) + S ( N ) '

•0.

(i)-(iii) hold if and only if i,, i2 and (/,, i2) are chain equivalences, hence if and
only if H^S^NM S*(NU) + S*(N0) + S^N^)) = 0. Thus they are all equivalent.

•
Definition 4.2. A triad {(X, A; 5); (X,, A,; S,), (X2,A2;S2)} with A,cAnXi is
excisive if the inclusions ii.:C//!|e(X1,Xo; S,)-» CH^X, X2; S) and
i,.: CH^(Ar, Ao; Sn / i , ) -* CH^{A, A2; SnA) are isomorphisms.

PROPOSITION 4.3. If Xt,X2^X are closed subflows whose interiors cover X and
A, = An Yt, then for every (X, A; S) € 3>if the triad

{(X, A; 5); (X,, Ax; 5,), (X2, A2; S2)}

is excisive.

Proof. Let Ny be as in proposition 4.1. Then Nn and Nl2 are closed subsets of JV,
whose interiors cover Nlt so 5!)t(N,) = S!|.(N11) + 5:(.(Ari2). In particular,
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//*(£*( JV,)/S*(NU) + S*(N0) + S*(N12)) = 0. Similarly, the interiors of An AT,, and
AnN12 cover AnJV,. D

PROPOSITION 4.4. lfXx,X2gXare c/osed subflows so that X = X, v X2, A,, = AnX,
and Xo is a neighbourhood retract in X, then for every (X, A; S) e ^T", {(X, A; S);
(X,, A,; S,), (X2, A2; S2)} is excisive.

Proof. Choose a regular index pair (N,, No) for S in X. Then CH^X,, Xo; 5J and
CH^X, X2; S) are represented by H%(NU, N01u Nl0) and H^JV,, JVou JVi2)- As
Xo is a neighbourhood retract, we can excise N12\NW from NouN,2, and
i,.: CH^X,, Xo; S,) -> CH^X, X2; S) is an isomorphism. D

THEOREM 4.5 (Mayer-Vietoris theorem for the Conley index). Let (X, A; S) e 3>y.
For i = 1,2, suppose (X,, A,; S,) s (X, A; 5) wif/i Xt a closedsubflow ofX, S, = XtnS,
and {(X,A;S); ( X ^ A , ; ^ ) , (X2,A2;S2)} excisive. Let (X0,A0;S0) =
(XlnX2,AlnA2; SinS2). Then there exists a natural exact sequence

• • • -> CHt(Xo,Ao; S0)+CHt{X1,Al;Sl)®CH*(X2, A2; S2)

•+CH^iX, A; S)->••-.

Proof. Choose a regular index pair for S in X. Then the following sequences of
chain complexes are exact:

5 t (JVl 8nA) S*(NunA) S*(N,2nA) S<l:(NunA) + S*(NunA)

^S^NnA^S^NnA) S(NnA)^S(NnA) +S(NnA)^ '

(4.6)

As was noted in proposition 4.1, the hypothesis CH!(C(X1, Xo; 5 , ) s C/fJ|t(X, X2; S)
is equivalent to

—— - 0 ,

which is in turn equivalent to

That is, (4.7) generates the long exact sequence

> CH*(X0; So)^> CH^{XX; S,)© CH*(X2; S2)^CH^X; S)-* • •

Similarly, (4.6) generates the long exact sequence

A0; Aon So)-* CH*(AX\ Atn S1)@CHSI:(A2; A2n S2)

The quotient of (4.7) by (4.6) then generates the desired sequence. •

Example 4.8. Consider the flow on the torus 90(0, <!>) = (sin (0) cos (#), sin (<£))
given in 2.13. The set S = (</> = 0, n) is isolated. We compute its index in T2 from
the Mayer-Vietoris sequence. Take X, = {—IT S <j> < 0}, X2 = {0 < <f> =£ IT}. The homeo-
morphism # >-*• -<$> is a flow map which takes S to S and X, to X2, so CH^X,; S) =
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CH*(X2; S), CHif{Xl,X0;S) = CH!|C(X2, Xo; S), etc. An index pair for S in T2 is
N1 = {-ir^<t>^E-ir, - e<<£<e , 7r-e=£$< TT}, N0 = {<f> = -e, e}. By excision,
H»(JVn, 7V01 u JV10) s ff*(7V,, TVou TV,2) (i.e. CH*(XX, Xo; 5) s C/f^X, X2; 5)) so
{(X; S); (X,; S), (X2; S)} is excisive, and there is an exact sequence

y"(Tj / •y t C\ ^ ^ T r ^ "V* » O\/T\ /^rT / "y . c*\ ^^ /"'rr / ^ ^ . c*\ ^
* * * " ^ ^''"'n\^^0 9 ) "^ *-̂ -*̂ n V-̂ 1 \ 9 ")^y -̂'•*̂ rt \^^2 » ^ / ^^ ^''^n \ ^ ^ y ^/ ~^ •

A« C V /""W /̂  V • C^ £•/ ^ C^ (IP (£\ T? 77 (£\ ~P €\ ft \ / ^ ' ^ / ^ V • C ^ —

CH*(X2; S) s (Z, Z, 0 ,0 , . . . ) , with i*: C/fn(Xo; S) ̂  CHn(X,; 5) the projection
onto a factor for n=0 ,1 . From this, the sequence computes CH%(X;S) =
(Z,Z©Z,Z,0,0, . . . ) .

THEOREM 4.9 (Kiinneth theorem for the Conley index). / / (X, A; S), (Y, B; T) € JV

so that {(XxBuAxY,0;Sx(BnT)u(SnA)xT); (AxY,0;(SnA)xT),

(X x B, 0; S x (B n T))} is an excessive triad, then there exists a natural exact sequence

0-» CH*(X, A; S)®CH*( Y, B; T)

->• CH*(X x Y, X x B u A x Y; S x (B n T) u (S n A) x T)

-> CH5):(X, A; S) * CH^{ Y, B;T)^0

which is split exact.

Proof. Choose regular index pairs (M,, Mo) for 5 in X and (TV,, 7V0) for T in Y.
Then (M,, Mo) x (TV,, TV0) is regular index pair for S x T in X x Y. Let A, = A n M,,
B, = BnTVf. Then CH^X, A; S) and C//!)!(y, B; T) are represented by

i,) and //^(TV,, Nou B,), and

is represented by / ^ ( M , x N,, (MouA,) x TV, u M, x (7Vou B,)) ([1], Ch. Ill, § 6).
The excision hypothesis allows us to apply the Kiinneth theorem of singular theory
to (M,, Mou A,) x (TV,, NOKJB{), which gives the result. •

As the sequences in theorems 4.5 and 4.9 are natural, they remain exact under
continuation (in 4.5 we must require that the sets Xt and At remain invariant
throughout the continuation), and the theorems are 'stable' under continuation.

5. Lefschetz theorem for the Conley index
We now develop an analogue of the Lefschetz fixed-point theorem. Given a self-map
/ o n a flow X with/(S) c S (and some technical hypotheses), CH^X; S) to compute
a Lefschetz number in place of H^{S). Similar to the ordinary Lefschetz number,
this will detect fixed points of flow maps (theorem 5.7). Such a fixed-point theorem
will have (at least) two uses. First, many problems in differential equations can be
translated into searches for fixed points of maps. If this translation leads to a search
for fixed points of a flow map on an isolated invariant set S, this result will be
applying the classical Lefschetz theorem to / or to f\ S. In particular, the Conley-
Lefschetz number will not depend on the topology of S, so this result may be able
to detect fixed points when the classical Lefschetz number L( / | S) is not defined,
not computable, or zero. Second, knowing that S n Fix (/) is non-empty may give
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further information about 5. For example, if a group acts on X, the fixed-point set
of multiplication by a group element may be computable, If 5 can be shown to
have fixed points under this multiplication, then S has been (partially) located.

To develop the theorem, we require an appropriate class of self-maps on flows
and some ANR hypotheses on index pairs.

Definition 5.1. Let Y be a locally compact metric flow, (Y, X; S)e$y with 5 c
intyX. A morphism/:(X;/" ' (S))^(y; 5) is a self-map on (X; S) i f / (S)c 5 and
5 is an attractor in /" ' (5) .

That is, / is a self-map on 5 and is defined on an invariant neighbourhood of S.
With the attractor condition, 5 has a dual repeller in/~'(S), which we will denote
by 5*. The atractor-repeller pair (/~'(S); 5, S*) has associated to it an index triple
in X: a compact triple (N2, N}, No) with (N2, No) an index pair for/"' (S); (JV,, No)
an index'pair for 5; and (N2, N,) an index pair for S* (all relative to X).

If (A/, No) is an index pair for S in X, then it is an index pair for S in Y as well,
and (f~\N),f~\N0)) is an index pair for/~'(S) in X. In [8] Kurland shows that
a compact N'Gf~\N) can be chosen so that (f~1(N), N',f~1(N0)) is an index
triple for (f~l(S); S, S*). As both (N, No) and (N',f-l(N0)) are index pairs for S,
the map <p': N/No-* N'/g~1(N0) is a homotopy equivalence for t sufficiently large.
The composition

then defines the induced homology map /„,:CH#(X; S)-^CHie(Y; S). Since S c
intyX, if.: CH%{X, S)-> CH^i Y; S) is an isomorphism (induced by the identity on
N/NQ), a n d / induces a homology self-map i^1 °f!j. on CH^X; S). All homology
groups will now be taken with rational coefficients.

Definition 5.2. If (X; 5) e SV and / is a self-map on (X; S), the Conley-Lefschetz
number off is ! ( / ; X, 5) = S^= 0(- l ) n tr (i~l <>/„.). The Conley-Euler number of

The class of maps chosen in 5.1 is essentially the largest for which L(/; X, 5) can
be defined in terms of self-maps on index pairs, and is singled out for that reason.
Note that when CH*(X; S) is finitely generated (so that the sum above is finite),
L( / X; 5) is well defined. For, if (N, No) and (N, No) are index pairs for S in X,
the diagram

(N/No, *) — (N'/f-\N0), *) -^ (f-\N)/f-\N0), *) -L. (AT/No, *)

commutes for sufficiently large s and t. The two horizontal compositions are then
identified after applying H* taking the appropriate inverse limits, so tr(/^.' »/„.) is
independent of the choice of index pair.

To find when L(/; X, S) is defined, and to relate it to fixed points of/ we consider
the classes of index pairs Ji(X; S) and MJf{X; S).
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LEMMA 5.3. / / (A/, N0)e Jf(X; S), let NT = {xe N\x-[-T,T]<z N}, No
r =

N0-(-T)nNT. Then (NT, No)eJf(X; S) for every f>0.

Proof. (NT, No) is clearly a compact pair.
(i) SGCIX(NT\NO)<^C\X (N\NO), SO S = I(clx(N

T\No)). If S£
intx(N

T\No), then there exists a sequence {xn} converging to xeS with xn£
NT\No, so with xn • [-T, T]<£ N\N0. Choose fn e [-T, T] so that xn • tn £ N\N0.
Then (taking a subsequence if necessary) tn -» f G [- T, T] and xn • fn -* x • f. But x e S,
so x- f e S c i n t x (N\N0) and {xn • rn}cX\(7V\AT0) is bounded away from x- t.
This is a contradiction, so S^intx(N

T\No).
(ii) If XG A/Jandx- [0, t]c NT, thenx- Te No and x-[-T, t+T]c N. In par-

ticular, x • TG NO and (x • T) • [0, f] s N, so (x • T) • [0, f] c No. That is, x• [0, t] s

(iii) IfxeNT, x-M+#NT, then x-R+£A/. There exists then a />0 so that
x-[0, t]s N,x- teN0.Thusx-[-T,t]cN,x- teN0. If t> T, then x- [0, / - T]c
A/ and x • (f - T) e A/o • ( - T), so x • (t - T) s ATJ". If r < T, then x-TeN0.

(iv) Let T+T, T_r: A/T -» R be the exit-time and entrance-time maps for (NT, Nj").
Then T+T(X) = T+0(X) - T and T_T(X) = T_0(X) + T.

If xe AfT, then T < T + 0 ( X ) . If T + 0 ( X ) = T , then « N 0
T and r+ r(x) = 0. If x e N T

with T<T + O (X)<OO, then xeNT\No. x- T+0(x)eN0, so

x - ( T + 0 ( x ) - r ) e A V ( - r ) and T + T ( X ) < T + 0 ( X ) - T.

If T+7-(x)<T+0(x)-r, then T + 0 (X)> T + T ( X ) - T and x-[0,r+T(x)-T]c N\No.
But x • T+T(X) e N ^ ^ ^o ' (~T), so x • (T+ T(X) -T)e No. This is a contradiction,
so T+ T(X) = T+0(x) - T. If T+0(x) = oo, then x-U+^N\N0. If x e NT, f > 0 so that
x- te N o, thenx- (t+ T)e No. There is no such f, sox- R + c NT\No and r+T(x) =
oo. This gives the equality for T+T. The equality for T_T is analogous. And if x • T+0(X)
leaves N immediately, then x- ( T + 0 ( X ) - T ) leaves NT immediately, so T+T(X) =
sup{f>0|x-[0, t]cNT}. D

LEMMA 5.4. / / (N, No)e$£MX; S), then (NT, No)e siJf{X; S) for every T>0.

Proof. It suffices to show that there exist maps rT: N/ N0+±NT/ Ng :iT so that
rT o iT = id.

Let I'T([X]) = [X- T]. AS N,[ • T c A/o, this is well denned and continuous on
NT/Nl

Let

([x-(-T)] if-T_0(x)>2T,

[x-(r_0(x)+T] if-T_o(x)<2T<r+0(x)-r_0(x),
[Nil ifT+o(x)-r_o(x)<2T.

The definitions agree on the overlaps and take all of No to No, so rT is also well
denned and continuous. If xeNT, then - T _ 0 ( X ) > T , SO -T_ 0 (X- T)>2T and
rT ° JV[X] = [ (X-T) • (-T)] = [x]. •

Definition 5.5. Suppose / is a self-map on (X;S)efSf. For every {N,N0)e
sfJf(X; S), choose an A/' so that (f~\N), N',f-\N0)) is an index triple for
(f-\S); S, S*). Let; A/, N0) = inf { r > 0 | ( N \ N 0 ) T c N ' \ / " ' (N 0 ) , (N'\f-l(N0))

T s
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and let
T(f; X, S) = inf {T(/; N, N0)\(N, N0)eMJf(X; 5)}.

That is, T(f; X, S) is the minimum time needed in the definition of L(f; X, S).
An example below shows that T(f; X,S)>0 in general .

LEMMA 5.6. / / (N, N0)e^jV(X; 5) and (f'iN), N',f-\N0)) is an index triple
for (f-\S); S, S*), let N'(T) = N'Tuf-\NZ). Then (f-\NT), N'(T),f-\NZ))
is an index triple for (f'\S); S, S*) and T(f; NT, JV0

T) < T(f; N, No) for every T >0.

Proof, (i) To show (f'\NT), N'(T),f~\No)) is an index triple, it suffices to show
(N'(T),f-\No)) is an index pair for S. But (N'T,f-\N0) • (-T)n(N'T) is an
index pair for S by lemma 5.3, and (JV'CO./^iVj)) adds a positively invariant
set to the exit set, so it too is an index pair.

(ii) N'(T)\f-\NZ) = N'T\rl(N0) • (-T)nN'T = (N'\f-1(N0))
T. The lemma

then follows from the observations that (A')s = A'+s for every t, s>0 and that
A ' c B ' i f A c f i •

THEOREM 5.7 (Lefschetz theorem for the Conley index). If f is a self-map on
(X;S)eJ'Sf and sdN{X;S) is non-empty, then L{f;X,S) is defined. Further, if
L(f; X, S>5* 0, then for every g homotopic to fas flow maps and every t > T(g; X, S),
the composition g ° <p3, has fixed points in S.

Proof, (i) If (N, No) G MX{X; S), then CH*(X; S) = H*(N/N0, *) is the reduced
homology of a compact ANR. It is then finitely generated, so L(/; X, S) is given
by a finite sum.

(ii) First consider g = / Choose a t>T(f;X,S). There exists an (N,N0)e
Mtf(X; S) with T(f; N, No) < t. For every T>0,let UT = {x e NT\ T + T ( X ) < f}.Then
<p'T:NT/No-*N'(T)/f~\No) is continuous (as t> T(f; NT, N%) for every T)
and has <p'T( UT/NZ) = [f'\N^)]. That is, <p'AW) * [/"'(Atf)] only if x • [0,2* ] c
NT\No, but every xeUT has T+0(X)e[0,2T] and x• T+0(X)e No- Further, UT is
compact, deformable along orbits into No, with UT/No an ANR (as it is a
neighbourhood retract in the ANR NT / No). We then have the commutative diagram

J, *) -^-^ (f-'iN^/f-'iN^), *) —f-^ (NT/No
r, *)

0
T, UT/No

r)

with the inclusion i:(NT/No, *)->(NT/N0, UT/Nl) an isomorphism on
homology. In particular, f°<p'T:(NT/No,U

T/No
r)->(NT/No,U

T/N6r) has
L(f_°<p'T) = Uf;X, S). Thus (NT/No, UT/N^) is a compact ANR pair with
L(f ° <PT) ^ 0, so / ° <p'T has fixed points in clx (N

T\ UT) by the Lefschetz theorem
for compact ANR pairs.

As this holds for every T, it holds for S = n{clx(WT\£/T) | T>0}, so f° <p'T has
fixed points in S. But on S, f° <p'T=f° <p3l, so f° <p3, has fixed points in S. This is
true for every t > T(f; X, S), so by continuity it is also true for t = T(f; X, S).

(in) If F:f—g is a homotopy of flow maps, then /" ' (S) = g'\S), so S is an
attractor in g~\S). As /* = g*, L(f; X,S) = L(g; X,S). The hypothesis that
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, S) is non-empty is independent of the flow map being considered, so we
may apply (i) to g. •

COROLLARY 5.8. If (X; S) e #y such that siJtf{X; S) is non-empty, then \(X; S) is
defined. If x(X\ S)#0, then S contains a fixed point of the flow.
Proof. Take X = Y and /= id. Then S is an attractor in f~\S) = S and T(g; X, S) = 0.
Then for every t > 0, Fix (<p,\s) ^ 0 . If 5 does not contain a fixed point of the flow,
then it contains periodic points of arbitrarily small period. Take a convergent
sequence of such points, with periods going to zero. Take a limit x0 e S. Then for
every neighbourhood U of x0 and every teR, Un(U- t)^0.

If x0 is not a rest point, then there exists a t > 0 such that x0 ^ x0 • t. Choose
disjoint open sets [/,, U2 around x0 and x0 • t. Let V] = I/, n(U2 • (-/)) and let
V2= V, • <.Thenxo€ V, with Vfc [/, open.Thus V,n V, • ( = V , n V 2 c t / ,n l/2 = 0 .
But this contradicts the assumption above, so x0 is a rest point. •

COROLLARY 5.9. If (X; S)eJSf has the Conley index of a hyperbolic critical point
and s4Jf{X; S) is non-empty, then S contains a fixed point of the flow.

Proof. The Conley index of a hyperbolic critical point is 2", the homotopy type of
a pointed n-sphere. Thus x{X\ S) = (-1)" ^0 . •

COROLLARY 5.10. Suppose (X; S)eJSf with S homeomorphic to a circle and f is a
self-map on (X; S). If MJf(X; S) is non-empty and L(f; X, S) # 0, then for every g
homotopic to fas flow maps, there exists a fixed point oftheflowxwith x e Sandg(x) = x

Proof. As in theorem 5.7, it suffices to consider g =f. If L(/; X, S) ^ 0, then
Fix (f° <p,\s)^0 for sufficiently large t. As / is equivariant, if f° <p,(x) = x, then
f°<p,° <ps(x) = <ps(x) for every seU. It follows that the limit sets a>(x) and w*(x)
are also fixed by / If S does not consist of a single periodic orbit, then CJ(X) and
o)*(x) are fixed points. If S is periodic with period T, then for large n,f=f° <pnT = id.
But then for large t # nr, id ̂  <p, = / ° q>, = id. •

Remarks, (i) The requirement that S be an attractor in f~l{S) is satisfied if S is a
union of components of/" ' (S), in particular if S=f~\S). It is also satisfied if 5
is an attractor in X with S&f'l(S).

(ii) Just as CH^ has the special case CH^S; S) = H%(S) for 5 a compact metric
space, this theorem has as a special case the Lefschetz theorem for compact absolute
neighbourhood retracts (with T(f; S, S) = 0). However, this theorem applies in two
cases in which the classical theorem does not. First, S can be an ANR with MNiX; S)
non-empty and L(f; X, S) * L(f; 5, 5) = 0 (cf. example 5.17). Second, S can fail to
be an ANR, but can embed in X so that s£N(X; S) is non-empty and L(/; X, S) ^ 0.

(iii) The time estimate T(f; X, S) is not necessary for fixed points to exist.
However, to prove their existence by generating self-maps on index pairs, the time
is required, and is in general non-zero. For example, the flow x = x o n R admits
self-map f(x) = x/2. 5 = {0} is an isolated invariant set, and if (N, L) is an index
pair for S in U, then there is a point x0 > 0 with xoe L and [0, x0) £ N\L. In particular,
f(x0) = xo/2e N\L and is only carried into L by flowing forward for time In (2).
Thus T(f; U, S) = In (2), yet fixed points of f° <p, exist for all t.
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There is also a version of the theorem for pairs (X, A; S) in $&. If (X, A) and
(Y,B) are closed pairs of flows with X s Y and A = X nB, define
f:(X,A;f\S))-*(Y,B;S) to be a self-map on (X,A;S) if it is a self-map on
(X; S). For such a map we have the commutative diagram

* CH*(A; AnS)^ CH^X; S) -* CH*(X, A; S) -> • • •

«u>; ' -< /u> . •*'-•>* • * '%

> CH^A; AnS)-* CH^X; S)-> CH*(X, A; S)-* • • •

If C H J X i S ) and CH^CAiAnS) are finitely generated, then CH^X, A; S) is
finitely generated. We can then define a relative Conley-Lefschetz number
L(f; X, A, S) with (from the exact sequence)

L(/; X, S) = L(f\A ;A,AnS) + L(f; X, A, S).

The theorem then becomes:

THEOREM 5.11. Iff is a self-map on (X, A; S)e$£f and S admits an index pair
(N,N0)es4Jf(X;S) with (N/No,(Nj^A)/(NonA)) an ANR pair, then
L(f; X, A, S) is defined. Further, if L(f; X,A,S)i* 0, then for every g homotopic to
f as flow maps and every t s T(g; X, S), the composition g ° (p3t has fixed points in
Snclx(X\A).

Proof. Construct NT, No, UT as in the proof of theorem 5.7. Consider the maps

NT (t/Tu(JVrnA))\ ^ ((f~l(NT) f-\NTnA)\ I ^ INT NTnA\

NO7"' JVO
T / (/"'(No) 7"'(N0

Tn/i)/ W ' Nj"n A/"

By construction, UT/Nl is an ANR; (NTn A)/(N^n A) = (Nn A)T/(Non A)T

is an ANR by lemma 5.4. As all of the retractions involved preserve A, (UT n
(NTnA))/No is an ANR. Thus (UTKj(NTnA))/No is an ANR, with ( t / T u
(NTnA)) retracting onto NQKJ(NT nA). The rest of the argument is unchanged
by the presence of A, and gives fixed points in clx (N

T\( UT u (JVT n A))), hence
inclx(S\(SnA)) = Snclx(X\A). D

COROLLARY 5.12. Suppose f is a self-map on (X; S) e JSf and S admits an index pair
(A/, No) e stJf(X; S) with (N, S) an ANR pair. JfL(f\ S;S,SnS)* L(f; X, S), then
for every g homotopic to f as flow maps and every t > T(g; X, S), the composition
g o (p3, has fixed points in 8XS.

Proof. If (N,S) is an ANR pair and N/No is an ANR, then (N/No,S/0) =
(N/No,(NnS)/{NonS)) is an ANR pair. If L(/|S; S, S)* L(/; X, S), then
L(/; X, S, S) # 0. Then, taking A = S in 5.11, there are fixed points in clx (X\S) n

s=as. D
L(f\S;S, S) is the ordinary Lefschetz number of f\S. If L(f\S; S, S) = 0#

L(/; X, S), then the corollary gives fixed points in 3XS, even though L(/; X, S) 5* 0
by itself only detects fixed points in S; and L( / | S; S, S) = 0 by itself gives no
information.
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COROLLARY 5.13. / / (X; S) e JSf so that S admits an index pair (N, No) e s!Jf(X; S)
with (N,S) an ANR pair, and x(X; S)^x(^), then there exist fixed points of the
flow in 3S.

Finally, we consider how the theorem behaves under continuation.

LEMMA 5.14 (local continuation of the Lefschetz theorem). Let YxA be a para-
metrized family of flows, (o: [0,1]-> y( Y) apath. LetK = ir° w([0,1]), (S,, A,) = w(t),
SK = «([0, 1]). Suppose that

(i) SK^XzYxKso that F:X^> YxKis a self-map on (X; SK);
(ii) there exists an (NK, N0K) e s#Jf(X x K; SK) so that (N,, NOl) = (NK, N0K) n

X, € sOT(X,; S,) for every t;
(iii) j(\,, K):I(S,, A,)-> I(SK) is a homotopy equivalence for every t.
Then L(FK;X,SK) = L(Ft; X,; S.) for every t (where X, = (Yx{\,})nX). Fur-

ther, ifL(FK ;XxK,SK)^0, then for every s>T(FK;XxK,SK)andte[O,l~\, the
composition F, ° <p,3s has fixed points in (S,, A,).

Proof. Each F, is a self-map on (X,; S,). As noted in theorem 2.10, we have
I(FK) °j(\,, K) =j(\,, K) o I(F,). At the homology level, FK- and F,» are conjugate
and so have the same trace. The lemma follows by applying theorem 5.7 to each
(X,;S,). D

THEOREM 5.15 (global continuation of the Lefschetz theorem). Let YxA be a
parametrized family of flows, u>: [0,1] -> V{ Y) apath. LetK = -ir° w([0,1]), (S,, A,) =
(o(t), SK = w([0,1]). Suppose that

(i) SK^XcYxKso that F:X-> YxKis a self-map on (X, SK);
(ii) there exist {J,} covering [0,1] so that for each j there exists an (NJt NOj)€

s*Jf(X x Jj; Sj) such that (N,, NOl) = (Nj, N0J) n X, e $iJ{(X,; S,) for every t e Jj.
Then L(F0; Xo, So) = L(F,; X,, S.) for every t e [0,1]. Further, ifL(F0; Xo, So) * 0,

then there exists a T>0 so that for every t e [0,1 ], s > T the composition F,° <p ,is has
fixed points in (S,, A,).

Proof. From the continuation theorem, there exist {X,} covering [0,1] so that (iii)
of lemma 5.14 holds on Kt. Let Ktj = KjnJj. Then {K{j} give a cover of [0,1] with
lemma 5.14 holding on each Kt]. L(F,; X,, S,) is constant on each Kv, so on [0,1].
Take T = max {T(Fy; Xu, Sy)}. The result follows by applying lemma 5.14 to the Ktj.

•
COROLLLARY 5.16. If X x A is a parametrized family of flows, (SA, \)eSf(X) with
X(XK, 5A) ^ 0 , then i/(SM, fi)e V{X) continues to (SA, A) by a path w :[0, \]^V(X)
satisfying the ANR hypothesis of theorem 5.15, there exists a fixed point of the fi-flow
in SF.

Example 5.17. Consider the family of flows on R3 given by

p =/ , (p , A) cos2 (<f>)+f2(p, A) sin2 (<£), 0 < A < 1,

6 = 0,

= 2 cos (<f>) sin (</>),
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with /,(p,A) = - p V - A 2 ) ( p 2 + A2)-3/2 and /2(p, A) = p3(p2-A2)2(p2 + AT3. For
each A the set of bounded orbits is SA ={p< A}, so 5A is isolated and all SA are
related by continuation. At A = 0, SA is a hyperbolic critical point with Conley index
MR3; So) = I2. For A > 0 the origin is a repeller At, with dual attractor AK = {p = 0}.
As the system is independent of 6, the map g(p, d, </>) = (p, -0 , <f>) is a flow map.
Further, for all A it is a self-map on (R3;SA), (R3;AA) and (R3; Aj) with
T(g; U3, 5A) = T(g; R3; AA) = T(g; R3; A*) = 0.

At A = 0 the sets JV2 = {p < 1}, N0 = {p = 1, ir/4< 0 < 3TT-/4} form an ANR index
pair with g~\N2) = N2, g-\N0) = N0. Thus L(g; R3; So) = L(g\N2)-L(g\N0) =
- 1 . Similarly, for A >0 the sets JV2 = {p<2A}, N, = {A/2<p<2A},

No = {p = 2A, tan2 (</>)> ~/,(2A, A)//2(2A, A)}

form an ANR index triple for (SA;Ak,Af) with g"1(Ni) = iVi and L(g\N2) = l,
L(g|JV,) = 0, L(g, JV0) = 2. Thus L(g;R3,SA) = - l ,L(g;R3; A*) = 1, L(g;R3,AA) =
-2. Note that L(g; R3, AA) + L(g; R3, Aj) = L(g;R3, SA). In [9] conditions are
developed for which an attractor-repeller pair (or more generally, a Morse decompo-
sition) has L(f; X, A), L(/; X, A*) and L(f; X, S) all denned and L(/; X, S) =
L(f;X,A) + L(f;X,A*).

Thus L(g;R3, AA) detects fixed points of g in AA, while L(/|AA) = 0 does not.
Also each plane P(0O) = {6= d0,60+ir}, h(P(e);AxnP(6)) = 'L1v'Ll and
X(F; AA n P(6)) = -2 , while A-(AA n P(»)) = 0. That is, *(P(«); AA n P(6)) detects
fixed points in AA n P(0), while ^(AA n P(0)) does not.

Acknowledgements. The author is indebted to Charles Conley for all of his help and
inspiration. He would also like to thank Edward Fadell and Joel Robbin for their
advice and encouragement in this work, which forms part of the author's Ph.D.
thesis under the direction of Professor Fadell. The author was supported in part by
NSF Grant DMS-8320099.

REFERENCES

[1] C. Conley. Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in
Mathematics 38. AMS, Providence, RI (1978).

[2] C. Conley & E. Zehnder. Morse type index theory for flows and periodic solutions for Hamiltonian
systems. Comm. Pure Appl Math. XXXVII (1984), 207-253.

[3] A. Dold. Lectures on Algebraic Topology. Springer-Verlag, Berlin (1972).
[4] A. Floer & E. Zehnder. The equivariant Conley index and bifurcations of periodic solutions of

Hamiltonian systems. Ergod. Th. & Dynam. Sys. 8* (1988), 87-97.
[5] R. Franzosa. Index filtrations and the homology index braid for partially ordered Morse decomposi-

tions. Trans. AMS 298 (1986), 193-213.
[6] R. Franzosa. The connection matrix theory for Morse decompositions. Trans. AMS. To be published
[7] H. Kurland. The Morse index of an isolated invariant set is a connected simple system. / Differential

Equations 42 (1981), 234-259.
[8] H. Kurland. Homotopy invariants of repeller-attractor pairs. I. The Puppe sequence of an R-A

pair. / Differential Equations 46 (1982), 1-31.
[9] C. McCord. Mappings and Morse decompositions in the Conley index theory. Preprint.

[10] C. McCord. The connection map for attractor-repeller pairs. Trans. AMS. To be published.

https://doi.org/10.1017/S014338570000941X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000941X


198 C. K. McCord

[11] J. Robbin & D. Salamon. Dynamical systems, shape theory and the Conley index. Ergod. Th. &
Dynam. Sys. 8* (1988), 375-393.

[12] D. Salamon. Connected simple systems and the Conley index of isolated invariant sets. Trans. AMS
291 (1985), 1-41.

[13] E. H. Spanier. Algebraic Topology. McGraw-Hill, New York (1966).

https://doi.org/10.1017/S014338570000941X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000941X

