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//-FINITE IRREDUCIBLE REPRESENTATIONS OF 
SIMPLE LIE ALGEBRAS 

F. L E M I R E AND M. PAP 

Let L denote a simple Lie algebra over the complex number field C with H 
a fixed Cartan subalgebra and C(L) the centralizer of H in the universal 
enveloping algebra U of L. It is known [cf. 2, 5] that one can construct from 
each algebra homomorphism <f>:C(L) —> C a unique algebraically irreducible 
representation of L which admits a weight space decomposition relative to H 
in which the weight space corresponding to <t> [ H £ H* is one-dimensional. 
Conversely, if (p, V) is an algebraically irreducible representation of L admit­
ting a one-dimensional weight space V\ for some X 6 H*, then there exists a 
unique algebra homomorphism <j>:C(L) —>C which extends X such that 
(p, V) is equivalent to the representation constructed from 0. Any such 
representation will be said to be pointed. The collection of all pointed represen­
tations clearly includes all dominated irreducible representations and is 
included in the family of all Harish-Chandra modules which are infinite 
[cf. 2, 3]. 

In this paper we present a detailed study of the family of pointed represen­
tations—in particular, we shall provide a complete description, up to equiva­
lence, of all pointed representations of the simple Lie algebras sl(n, C) for 
n = 2, 3 and 4. Our approach will be to label the equivalence classes of pointed 
representations of L by elements from the family of algebra homomorphisms 
</>: C(L) —> C in analogy to the technique of labelling the dominant irreducible 
representations by their "highest weight function". 

Section 1. Aut (L : H). In order to simplify our study of the family FL of 
all algebra homomorphisms <j>:C(L) —» C and their associated pointed repre­
sentations we shall introduce an equivalence relation on FL. Let Kut{L:H) 
denote the group of all automorphisms a of L such that a(H) Q H. If one 
considers the weight space decomposition of U relation to H, viewed as an 
L-module under the adjoint representation, we have 

U = ]C*€#* 0 C7{. 

Then for any a G Aut (L'.H) we have <T(U{) ^ U^oa-i where â = a [ H. In 
particular U0 = C(L) and a(U0) = U0;ie. if 0 Ç FL then <j>oa l C G FL 

for all a G Aut(L :H). (Note that we also denote by a the natural extension of 
a to an automorphism of U). 
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IRREDUCIBLE REPRESENTATIONS 1085 

Definition. If tj>h 02 Ç FL we say that </>i is weakly equivalent to </>2 if and only 
if there exists a Ç Aut (L:H) such that f = ^ o a. This is clearly an equiva­
lence relation on FL. 

Let M<t> denote the unique maximal left ideal of U containing ker </> for 
<j) G FL. Then [cf. 1] the left regular representation of L on U/M<t> is the pointed 
representation constructed from </>. If 4>i, $2 € FL are weakly equivalent then 
their associated pointed representations are related in the following way: 

PROPOSITION 1. Let </>i, </>2 G FL with $1 = <j)2 o a for some a £ Aut (L:H); 
then there exists a linear space isomorphism a : U/M(f)l —» U/M^ which preserves 
weight spaces in the sense that 

a((U/M,M = (U/M^ov-i. 

Proof. Recall that for any <t> £ FL we have 

^ = Z^€" ® (£/« H M«) and M Ç V\ C\ M^ if and only if 

£/-£ ^ ^ ker <f>. 

Now we observe that a(M(t)l) Ç M^. This follows since for any w Ç U^C\ 
M01, o-(w) G f/fo?-i and 

<t>î(U-lo*-l<T(u)) = <t>2(<T(U-j:)(T(u)) = 4>20(T{U-1M) = <j>\{U-^U) = 0. 

Thus we can define a map a : U/M^ —> U/M^ by setting 

(7(w + M^) = (r(w) + M02. 

Since a{M<i)l) = M^ and a is an automorphism of U, a is a well-defined, linear 
isomorphism from U/M<pl onto U/M<t>2. 

Finally, if *̂  + M^ £ (U/M^x then for each K i^ 

/ * 0 0 ) + M*2) = afr^Wu + Af01) = &(\ o a~l{h)u + M01) 

= Xoor-HA)^^ + M^) = \o<j~l(h){<7(u) + M,2). 

That is, 

H(U/M*M = (U/MtJxov-i-

Remark. It should be emphasized that the representations of L on U/M^ 
and U/Mfa are not, in general, equivalent. However, we do have the following 
result: 

PROPOSITION 2. / / <f>u <t>2 6 ^ L W ^ U/M4>1 = U/M^ then for any 
a G Aut (L:H) we have U/M^o* = U/M^o*. 

Proof. As an intermediate step we first show that U/M^ = U/M(f>2 if and 
only if for £ = (#1 — <£2) j , H there exists ^0 G U^M^ such that </>i(c)</>2(wwo) 
= <j>2(wcuo) for all £ G C(L) and all w G £/_$. 
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1086 F. LEMIRE AND M. PAP 

In fact if U/Mfa = U/M^ then there exists an L-module homomorphism 

\p : U/M^ - » U/M^. If ^ ( 1 + M0 1) = u0 + M^ then clearly w0 € U^M^ 

and for w; £ U-ç, c £ C(L) we have 

i/ 'Oc + Af01) = wcuo + M^ = 02(wcwo)(l + M^) 

and also 

*(wc + M0 1) = *{fa{c)(w + M 0 1 ) ) = * i (c)*(w + M0 1) 

= fa(c)(wu0 + -M02) = 0i(c)02(wwo)(l + M 0 2 ) . 

Comparing, we have fa(c)fa(wuo) = fa(wcuo). 

Conversely if fa} fa G F and there exists u0 G Ut\M<f,2 such t ha t fa(c)fa(wuo) 

= fa(wcu0) for ail c G C(L) and ail w G £/_£ we claim [ / / M ^ = U/M^. Let 

M = Ann Oo + M4,2) = {u £ U\uu0 Ç M^}. 

Clearly I f is a maximal left ideal of U and U/M = U/M^. I t remains only 

to show tha t M = M^v Since M4>1 is the unique maximal left ideal of U 

containing ker fa it suffices to show tha t ker fa C M. Take c £ C(L) with 

0i(c) = 0. Then we have that fa(wcuo) = 0 for all w £ [/_$. This implies that 
cwo G -M .̂ That is, c £ M as required. 

Returning now to the proposition we assume U/M4>1 ~ U/M^ and fix 
Uo G U$ with properties as noted above. Then for any a £ Aut (L :H) we have 

0i O cr(a~1(c))fa O <T((T~1(W)(T~1(UQ)) = a2 o a(a~1(w)a~1 (c)a~l(u0)). 

But d~l{C(L)) = C(L), a-^uo) e Uio\Mtoo* and <J~1{U^) = [/_*>,. There­
fore for fa o a, 02 o o- G F L where 0i o o- — 02 o cr = £ o o- there exists an 
element <T~1(UQ) (Z U^^M^a such t ha t for all c' £ C(L) and all w' Ç £7_£0<r 
we have 

01 O (j(c')fa O a(w'(T~l(uo)) = 02 O c r ^ V o " - 1 ^ ) ) 

which implies t ha t U/M^l0(r = M^oa-

We now single out a finite subgroup of Aut (L:H) which will be of impor­
tance in this paper. Calling liberally on the results of chapters 14 and 25 of 
[4] we let A C Ff* be a root system of L with basis A + + and select a Chevalley 
basis 

{X0tha\B £ A,a e A++} 

of L. T o each a Ç A + + we define a m a p Sa : H* —> H* by set t ing 

O A N x 2 ( X , Q t ) 

Oa(Aj = A — -7 r - a 
(a, a ) 

where ( , ) denotes the symmetr ic , non-degenerate Killing form on H*. The 
maps Sa are automorphisms sending A into itself and one can induce, via the 
Killing form, an automorphism (again denoted by Sa) of the Car t an subalgebra 
H. By Theorem 14.2 [4] there exists a unique au tomorphism, denoted by aa, 
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of L such that aa extends Sa and 

for all a 6 A++. Let A(L) denote the subgroup of Aut (L:H) generated by 
\aa\a Ç A++j. From the definition of the maps aa we can show that 

(Ta(Xy) = dzXffa(7) 

for all 7 G A. Since {aa [ H\a Ç A++} generates a group isomorphic to the 
Weyl group we can conclude tha t A (L) is a finite group. In the part icular case 
of L — An the group A (L) is isomorphic to the Weyl group of An. 

S e c t i o n 2. T h e f a m i l y FL. By combining the results of two previous papers 
[6, 7] we construct a family of algebra homomorphisms <t> : C(L) —» C as 
follows. In [7] we constructed for each fixed s ^ C and each fixed linear func­
tional X in the dual of the Car tan subalgebra of An an explicit representation 
(p> Vs,\) of An. The representation space Vs,\ is the complex linear space 
having basis 

{w(k)|k = (K. ..,*») e z x . . . X Z J 
and the representatives of elements xai = eiti+i3indyai = ei+iti in An are given 
by the formulas 

p ( x „ t > ( k ) = (s - \(hi + . . . + hi-!) - kt-i + kt)v(k + %i) 

P(yai)v(k) = (s - X(Ai + . . . + h^ - kt + ki+l)v(k - li) 

where £* is the «-tuple having 1 in its ith component and zeroes elsewhere. By 
convention h0 = 0 and k0 = kn+i = 0. Since {xai, yai\ i = 1, 2, . . . , n) gener­
ates An these formulas completely specify the representation (p, Vs,\). For any 
such representation we obtain an algebra homomorphism <j> '• C(An)—>C by 
setting 

<t>(c)v(0) = P(c)v(0) (Vc Ç C(An)). 

Any algebra homomorphism defined as above will be called standard. As is 

easily checked for n ^ 2 the parameters 5 and X of a s tandard algebra homo­

morphism are uniquely determined. 
T o construct algebra homomorphisms <j> : C(L) —> C for an arbi t rary simple 

Lie algebra L we first require some notation. Let A C H* be the root system of 
L with basis A++ and set A+ as the positive roots of L relative to A+ + . Let 
{ Ti} i==i(2 / b e a collection of disconnected complete subsets of A relative to 
A+ + . Recall [cf. 6] t ha t this means: 

l) - r < c r < (v*) 
2) at(3erif a + B G A => a + £ G Tt (Vi) 

3) a , ^ A + , a + ^ r ^ a , K I1, (V*) 

4) A + + H r f is a basis of I \ (V*) 

5) « ç r t , p e r , , i ^ j => « + £ ? A. 
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Note tha t such a collection can be constructed by selecting any subset of 

A + + and forming the closure in A of this set under ± . 

Select a Chevalley basis of L say {yp, xp, ha\ /3 G A+, a Ç A++} and apply the 

Poincarré-Birkhoff-Witt Theorem to obtain a linear basis of U(L) consisting 

of all monomials 

r u * ^ n^+^ EUA-HAA (*) 

where the exponents are non-negative integers and each product preserves a 

fixed order. A linear basis of C(L) then consists of all monomials of the form 

(*) where 

E/KA+fo - h)p = o. 

Denote by C(U* I\) (resp. C(Tt)) the linear subspace of C(L) generated by 
all basis elements of C(L) for which tp = Y$ = 0 for all |8 G A+\Ui I\ (resp. 
ft 6 A+\I\). Also set C( Ui I\) (resp. C(I\)) equal to the linear subspace of 
C(L) generated by all basis elements of C(L) not in C( U I\) (resp. C{L%)). 
By the properties of the 17 s one can readily see that C( \Jt I\) and C(Ti) 
are subalgebras of C(L) and C( U \ I\) and C(I\) are two-sided ideals of C(L) 
with 

C(L) = c (u r<) ® c(u r<) = c(i\) e C(r\) 

as linear spaces. 
From now on we assume tha t the T / s are isomorphic to root systems of 

algebras Ani (for positive integers nt). Then the subalgebra U(Tt) of U 
generated by 

{i, ha, xfi, yp\a e A++ n i\, (3 e A+r\ r,} 

is isomorphic to the universal enveloping algebra of Ani and C{L) C\ £/(I\-) 
^ C(A„?). Identifying C U „ ? ) with C(L) H £ / ( I \ ) and observing tha t 

c(r,) = {C(L)n u(rt)} - u(H), 

any algebra homomorphism 0 : C(^4Wî-) —> C can be extended to an algebra 
homomorphism 0 : C ( I \ ) —>C by setting 0(fea) to an arb i t ra ry value for 

« e A++\r,. 
Finally if 0* : C ( I \ ) —> C are constructed as above s tar t ing from s tandard 

algebra homomorphisms <t>t: C(Ani) —> C such t ha t 0* j U(H) = 0̂ - j U(H) 
for all i, 7 then by Theorem 6 [6] there exists an algebra homomorphism 0: 
C(L) —> C such tha t 

1) 0 J C ( I \ ) = 0 * for all i and 

2) 0jC(u< r<) - o. 

Any such algebra homomorphism will be called a generalized (or g-) standard 
algebra homomorphism relative to U?;I\-
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CONJECTURE I. Every algebra homomorphism <t> : C(L) —> C is weakly equiv­

alent to a g-standard one. More precisely, there exists a £ A(L) such that </> o a 
is g-standard. 

We now proceed to verify this conjecture for the algebras Ah Ai and A%. 

Case 1. The Algebra A\ = si(2, C) . A Chevalley basis of Ai is given by 
h = eu — e22, x = eX2 and y = e2\ (where etj denotes the 2 X 2 matrix with 
(i,j)th component 1 and zero elsewhere). Fix C • h as the Car tan subalgebra 
and observe tha t C(A\) is generated, as an algebra, by {1, h, yx). Clearly C{A\) 
is commutat ive and has a linear basis given by 

{(yx)<W*\qi,q2 É Z+}. 

Any algebra homomorphism (/> £ FAl is then completely determined by speci­
fying arbi t rary values for <t>(h) and <j>{yx) and extending. In particular, we may 
select arbi t rary scalars s, X £ C and set <j>(h) = X and <t>(yx) = s(s — X — 1). 
Hence any algebra homomorphism c/> Ç T7^ is s tandard. 

Case 2. The algebra A2 = s/(3, C) . A Chevalley basis for A2 is given by the 
elements 

\ha = ^ n — £22, A/3 = ^22 — eU, Xa = ^12, X/9 = £23, ^a+0 = ^13, 

y a = 021, J^ = ^32, 3 / a + ^ = ^31 } 

where etj denotes the 3 X 3 matrix with 1 in the (i, j)th component and zeroes 
elsewhere. Let H = Cha + Chp be the fixed Car tan subalgebra. As in [1] we 
observe tha t C(A2) is generated, as an algebra, by 

{1, ha, hp, cx = yaxa, c2 = ypxp, c3 = ya+$xa+p, cA = ya^xax^ ch = y0yaxa^\ 

and has a linear basis given by 

{ (cb or Cï)QlCzQ2c2
Q3Ciuha

Q%Q*\qi are non-negative integers}. 

If one sets <j>{ha) — Xi, <t>(h$) = X2 and 4>{Ci) = %i for i = 1, 2, . . . , 6 then <t> 
can be extended to a linear map on C(A2) using the above linear basis. This 
linear map <t> is an algebra homomorphisms if and only if </> preserves the 
multiplication of the generators. This gives rise to the following four equat ions: 

1. Since C\C2 = c2C\ + c-b — c4 we must have 

2. Since C\C\ = c4£i + c^C\ — c2C\ + c5 — £3 — (c\ — c$) (ha-\- 1) we must have 

X1O4 — Z3) = Zl(Z3 — Z2). 

3. Since C2C4 = c4c2 + C2.C1 + c& — c^c2 — C\h$ — C\ we must have 

X2S4 = Zl(Z\ — Zz). 
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4. Since c\C$ = c3c2Ci + czc2ha + ctfihp + cjijifi + c5c3 + 2c3Ci + 2c3A + 2^4 

— 2c3£2 — Câ̂ a — c-Jip — 2c-0 + C4C2 — C4C1 — dha we mus t have 

(z4 - 33)(s2 — zi — Xi — 24) + z3(z2 + X2)(zi + Xi) = 0. 

The conditions imposed by multiplication of all other pairs of generators 
yield equations which are dependent on those above. Provided zt 9^ 0, — X* 
for i = 1,2 any solution of this system of equat ions is also a solution of the 
following system: 

1'. zA = zh 

2'. Nz\ = (zi + Xi — z2)ziz2 

3'. Nzz = (Xi + X2)ziz2 

4'. N(X1 + X2) = (z2 - Zi + X2)(z2 - zi - X0 

where N = ziX2 + z2Xi + XiX2. This latter system of equations has been 
solved by Bouwer [1] under the tacit assumption that Xi + X2 3̂  0. Since every 
such solution of 1' — 4' is also a solution of 1 — 4 in order to determine all 
solutions of 1 - 4 it remains only to solve this system under each of the above 
mentioned restrictions separately. Solving we obtain the following complete 
list of solutions to 1 — 4 and hence all algebra homomorphisms $ : C(A2) —* C. 

Table I. Algebra Homomorphisms 0 : C(A2) —> C. 

To T i r2 r3 r4 Tb r6 

ha X, Xi Xi Xi Xi Xi Xi 

hp Â2 x2 x2 x2 x2 x2 x2 
(~l s(s — Xi — 1) p 0 - X i 0 - X L P 
(~2 (5 - X , ) ( s - Xi - x2 -- 1 ) 0 -x2 P P 0 -x2 
('z s(s — Xi — X2 — 1) 0 p - X 1 - X 2 0 p - X 1 - X 2 

Ci s(s - Xi) (5 - Xi - x2 - 1 ) 0 p P 0 0 — \l—\2—p 

Cb s(s — \i)(s — Xi - x2 - 1 ) 0 p P 0 0 - \ l - \ 2 - p 

(The symbols Xi, X>, 5 and p denote fixed bu t a rb i t ra ry complex numbers ) . 
Note tha t the solutions of type T0, T\ and T4 are g-standard algebra homo­

morphisms relative to A, { zba:} and { zb/3} respectively. We claim tha t the other 
solutions are weakly equivalent to T\ or 1\. In fact recall t ha t A(A2) is 
generated by the two elements aa and ap where the explicit definition of these 
automorphisms is given by 

na Up xa xa xa+p ya y p ya+p 

(Ta —K ha + hp ya xa+p xp xa ya+p yp 
<rp ha + hp — hp xa+p yp xa ya+p xp ya 
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Extending these maps to automorphisms of C(A2) a direct computat ion verifies 

t ha t if (j) is a solution of type T2 then </> o ap is a solution of type 7 \ and if </> is 

of type r 3 then 0 o o-a o ap is of type 7Y In addition if 0 is a solution of type P 5 

(resp. type P6) then <j) o aa (resp. a o ap o aa) is a solution of type 1\. Thus we 

have shown tha t conjecture I is valid for the algebra A2. 

Remark. Solutions of type 7 \ and T+ are also weakly equivalent using the 
automorphism $ defined by $(ha) = hp, $(hp) = ha, $(xa) = —xp and 
$(xp) = — xa. Note however tha t $ (/ 4̂ (A2). 

Case 3. P/^e algebras An = sl(n + 1, C) for n ^ 3. A Chevalley basis for ^4„ 
is given by the following set of elements: 

hai = eu - ei+iti+1 for i = 1, 2, . . . , n 

xai+ai+] + ...+a] = eitj+i for 1 S i è j ^ n 

yal+ai+l+...+aJ = ej+lJ for 1 g i èj g n 

where £^- denotes an (w + 1) X (w + 1) matrix with 1 in the (i,j)th com­
ponent and zeroes elsewhere. We fix 

H = E"=i CA„, 

as a Car tan subalgebra. By the Poincaré-Birkhoff-Witt Theorem there exists 
a linear basis of U{An) given by 

n yztn.+.j n «.';^n*.-
where the products preserve a fixed order on the basis elements of An and the 
exponents are non-negative integers. By the degree of any such monomial we 
mean 

PROPOSITION 3. The algebra C(An) is generated by the set 

{i,hau...,haj VJ jc(M) = n 3̂ ï!::+«> n xïxï+aj 

M = (mfj) y£ 0 is an (n + 1) X (n + 1) matrix of 0Js and l's with mu = 0 

and 

X)*iî mitk = X ) ï î % , i = 0 or I for each k 

and M cannot be expressed as a nontrivial sum of two such matrices Y. 

Proof. The automorphisms aai Ç A(An) can be realized by setting aai(x) 
= Pi~l X P j for all x (j ^4n where P^ is the permutat ion matrix of the trans­
position (i, i + 1). 

T o prove this proposition it suffices to show tha t every basis monomial 
c £ C(An) can be expressed as a linear combination of products of the given 
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generators. We assume inductively tha t the theorem is t rue for An-i and tha t 
the above s ta tement is valid for basis monomials of C(An) of degree <k. Now 
if c £ C(An) is a basis monomial of degree k and contains some ha as a factor 
then we can express c a s a product of two basis monomials of C(An) of degree 
strictly less than k and then the result follows from the inductive hypothesis . 

T h u s without loss of generality we assume c Ç C(An) is a basis monomial of 
degree k where 

and we associate with c the matr ix A = ( / 0 ) where lit = 0. If A is one of the 
matrices described in the s t a tement of the proposition then c itself is a generator 
and we are finished. If not, we note t ha t since c Ç C(An) we have 

Sw + 1 7 _ Y^n + 1 j 

i=l h,k — 2^1=1 ^ , i 
for all k and hence we must have for some k 

In fact we may assume tha t this is t rue for k = n + 1. (This follows since we 
have (Tai{c) = c' + terms of degree <k where c' is a basis monomial of C(An) 
with associated matr ix Pi~

1APi). 

We now factor c into generating elements of C{An-i{ot\, . . . , an-i}) by 
suppressing the index an, say c = CiC2 . . . cv -\- terms of lower degree. (Note 
tha t this factorization is not unique and whenever yan or xan occur as factors in 
c they are t reated as separate factors in this p roduc t ) . Since each factor ct is a 
generating element of C(An-i{ai, . . . , an-i}) or one of the terms yan or xan 

we have tha t it can contain a t most one factor of the form yai+...+an. T h u s for 
each i, c{ G C(An) or U(An)±an. By assumption 

Z n + l j _ V^w + 1 ; > 9 

Î = 1 l>i,n+l — 2^,1=1 l"n+l,i = L 

and hence the above factorization mus t contain a t least two factors. If there 
are exactly two factors then each factor mus t contain exactly one term of the 
form yai+mm.+an and one term of the form xa,-+...+«„ and hence both factors are 
in C(An) and we may apply out inductive hypothesis on each factor. If there 
are more than two factors, then either all are in C(An) in which case we are 
finished or a t least one, say Ci, is in U(An)+an and a t least one, say cu is in 
U(An)-an. Then c = (cict)(c2 . . .) + terms of lower degree and C\CU c2 . . . G 
C(An) and again we may apply our inductive hypothesis to complete the 
proof. 

We now return to the problem of construct ing the family of algebra homo-
morphisms FAn and prove the following reduction: 

PROPOSITION 4. Any algebra homomorphism </>: C(An) —» C is completely 
determined by its values on the generators of C(An) of degree ^ 3 . In particular, <f> 
is trivial on C(An) if <\> = 0 on all generators of degrees 1 and 2. 
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Proof. We proceed by induction on n, noting that the cases n = 1 and 2 are 
trivially true. For the inductive step we observe that every generator of 
C(An) of degree ^n is contained in a subalgebra isomorphic to C(An-i). Thus 
it suffices to verify that the value of 0 on the generators of degree n + 1 are 
determined by the values of <£ on the generators of degree ^n. 

The problem is further reduced by observing that </> is completely determined 
on all generators of degree n + 1 provided <f> is known on all generators of 
degree ^n and one generator of degree n + 1. In fact consider the following 
identities in C(An): 

&) YJan^ani 3^1 + • • .+otn- l ^ a i ^ « 2 • • • ^ « n - l J 

JOCI + . . .-\-an%ai - • • %an JotnJOci+ • • -+an - v^a\ • • • %an-\-\-an 

. / « 2 + - • --\-anJai^ai+a2*^a3 • • • *^«n 3^«1+ • • . + « n * a i • • • ^ a n 

C / Ijai^ai} ja\+.. . + a r A « l • • • * a , : - i^ai+cti + i ^ a i + 2 • • • ^ a n J J a i + . . .-\-an%a] • • • ^ a n 

y<xi+. . .+anya/^ai • • ••^«f - l + a ^ a i + a , + l*^ai+2 * * * *^«n 

3^«1+-• •+an*^ai • • • ^ « i - l ^ a i + « i ' + l%ai + 2 ' ' ' ^otn IOT 1 Z , o , . . . , fl 1 . 

Setting Mo = en+i,i + X^=i ^f,i+i and applying the algebra homomorphism 
0 to the above identities we have 

a) and b) =» 0(c(M„)) = ct>(c(Pn^MoPn)) = ct>(c(Pr'M0Pi)) 

c) => 4>(c(Mo)) = (t>(c(P-lM0Pi)) + *(a degree w term) 
for i = 2, 3, . . . n - 1. 

If c(M) is an arbitrary degree n -\- I generator of C(An), we have M = 
P~lMoP where P is a product of transposition matrices Pt. By sequentially 
applying the corresponding product of automorphisms aai £ A (An) to the 
above identities we may conclude that 

0(c(M)) = 0(c(Mo)) + </> (terms of degree ^ w). 

Thus </> is completely determined if one knows the image of <f> on all generators 
of degree ^n and on one generator of degree n + 1. 

Assume now that </> is zero on all generators (^1) of degree ^n. Con­
sidering the identity 

\yanyai+.. .+an-l-^ai • • • %an - l+an ) 13^1 + • • •+ocn^ai • • • %an ) 

V 3 a i + - . .+an - i ^ a i • • • ^ a n - i - f a n / a i + . . . + a n ^ a i • • • %an - 1 / \3^an^an / 

I yai + ...+anXai • • • %an-l+an 3^1 + • • -+«n - l ^ a i • • • %an - 1 / 

X (;y«i-f . . .+«nXai • • • Xan) 

and applying the map <t> we obtain </>(c(Pn~
1M0Pw))(/)(^(-Mo)) = 0. But by a) 

above this implies (j>(c(Mo))2 = 0; ie. <t>(c(Mo)) = 0. Thus <£ is identically 
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zero on all degree n + 1 generators. From Table I we note t ha t any algebra 
homomorphism </> : C(An) —> C for which </> = 0 on degree 1 and 2 generators 
is also zero on all degree 3 generators and hence the second s t a tement of the 
proposition is verified. 

We may now assume tha t </> is non-zero on some generator of degree ^ 2 ; 
in fact, wi thout loss of generality we may assume tha t </> o a(yaixai) ^ 0 for 
some a G A (An). Now consider the identi ty 

1 3 ^ 2 + - . .+an%a2+.. ,+an) \3^«1 + . • . + a n - l ^ a i ^ a 2 • • • Xan-l) 

= \ J ; a 2 + . - . + t t n 3 ; a i + - - - + a n - l ^ a i + . - - + a n ^ t t 2 • • • %an - 1 / Wai^ai ) 

I v3 ; «2+- - -+«n3 ; a i^ ' a i + . . . + a n / ( 3 ^ 1 + • • - + a n - l ^ a i + a 2 ^ « 3 • • * %ocn - 1 ) 

1 \ 3 ' « 2 + - . - + a n ^ ' « 2 + - - . + « n / \ 3 ' a i + - - - + « n - l ^ ' a i ^ ' a 2 ' ' ' ""'«n - 1 i ' 

Applying the homomorphism (/> o c to this ident i ty we have t h a t the value of 

</> on one generator of degree n + 1, namely the degree n + 1 generator 

associated with 

( 7 \ 3 ; « 2 + - - . + a n 3 ; « l + - . - + a n - l ^ a i + . - .+an^ ' a2 • • • ^ n - 1 ) J 

can be expressed as a rational function of the values of 0 on generators of 
degree ^n. 

We now particularize these results to the case of n = 3 where we construct , 
up to weak equivalence, all members of FAz. Take an arb i t ra ry algebra homo-
morphsm <j> G FAz and assume first t ha t <t>, restricted to one of the four 
natural ly embedded copies of C(A2), is of type Tt for i = 1, 2, . . . , 6 (cf. 
Table I ) . Applying an appropr ia te automorphism from Aut (A3) we may 
assume tha t </> restricted to C(A2{a, (3 + 7}) is of T y p e 7 \ . This places restric­
tions on the other values of </> as shown in the following table: 

Table II 

1. 2a) b) c) d) 3a) b) c) d) 

4>(ha) Xi 

<t>(hp) X2 

<f>(ky) X3 

<f>(Cl) /> 
<Kc2) 0 ? -x2 9 

<t>(c3) Ç 0 g -x3 0 Y r - X ; 

<t>{c\) r 0 — Xi —X2 r 
0(^5) 0 0 0 0 0 
</>W 0 0 0 0 0 
0(C7) = = 4>(c9) 

</>M = = </>(do) 0 0 Q - 0 

4>(cu) = <f>(cu) 0 0 r — r 

0O12) = <f>(cu) 0 
<f>(Cib) = . . . = </>(c2o) 

https://doi.org/10.4153/CJM-1979-100-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-100-5


IRREDUCIBLE REPRESENTATIONS 1095 

Remarks. 1. For convenience we have labelled the generators of C(A%) by 

sett ing 

ci = yaxa; c2 = ypxp) c3 = yyxy; c4 = ya^xa^\ ^ = yp+yxp+y; 

cQ = ya+p+yXa+l3+y ; c7 = ya+pXaX(3; c8 = y^+yx0xy; c9 = y^yaxa^\ 

610 — yyypxp+y\ en = ya+p+yxa+pXy ; Ci2 = ^a+fl+T^a^/s+T » 

£13 = yyya+&xa+p+y\ C\\ = yp+yyaxa+p+y'j C15 = 3 â4-/3+7xaX/3X7 ; 

Cl6 = ^ y ^ a ^ a + l S - P y Î C17 = ya+(3y(3+yXa+(3+yXp ] 

C\$ = 3/£ya+/3+7tfa+/3#j8+7 » ^19 = ^ y ^ a + l ^ a ^ + T » ^20 = yp+yyaXa+pXy. 

2. The values in column 1 result from the assumption tha t <f> [ 

C(A2{a, & + 7}) is of type 7 \ . 

3. The values in columns 2a)-d) represent the four possible solutions for 
</> j C(A2{fi, 7}) consistent with <t>(c6) = 0. In columns 2c) and rf) we also 
must have 0 ( ^ ) + 4>(hy) = X2 + X3 = 0. 

4. The values in columns 3a)-d) represent the four possible solutions for 
</> I C(A2{a + ]8, 7}) consistent with </>(c6) = 0. In columns 3c) and d) we also 
must have (j>(ha + /^) + <t>(hy) = Xi + X2 + X3 = 0. 

If 0 satisfies conditions 2a) and 3a) then <j> = 0 on all generators of C(^43) 
in C{±a, ±jS, zb (a + /3)\ of degree ^ 3 . T h u s <£ must coincide with the trivial 
extension of an algebra homomorphism (/> : C(A2{a, 13}) —> C. By the previous 
analysis of FA2, there exists a £ A (A2{a, /3j) such tha t <f> o 0- : C(^42{«, /3}) —> C 
is g-standard. Since any a Ç y4(^42{a:, 0}) has a natural extension to a map 
<T G ^ ( ^ 3 ) with the property tha t 

â(C{=ba, ±/3, ± ( a , 0)}) C C{d=a, ±/3, =b (a, /3)} 

we conclude tha t (f>oâ agrees with a g-standard algebra homomorphism of 
FAz on all generators of degree ^ 3 and hence by Proposition 3, <t> o <r is itself 
^-standard. 

If 0 satisfies conditions 2a) and 3b) then # = 0 on all generators of C(^43) 
in C{=ba, ± 7 } of degree ^ 3 . T h u s ^ is a trivial extension of algebra homo-
morphisms $r. C(zLa) —> C and #2 '• C ( ± 7 ) —» C and hence is ^-standard 
relative to {dba} VJ { ± 7 } . 

In each of the other cases, by using identities from C(A^), and automor­
phisms from A (A3) we can show tha t </> is weakly equivalent to a g-standard 
algebra homomorphism. 

I t remains now to consider those algebra homomorphisms 0 6 FAz such tha t 
the restrictions of <j> to each of the four copies of C(^42) in C(A*) are s t andard ; 
ie. of type To from Table I. We parametrize </> separately on each restriction 
as follows: 
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In order tha t 0 be well-defined we must have certain relations among the 

parameters ; in fact, we must have 

1. s = u or s = 1 + Xi — u 

2. s = t + Xi or s = 1 + Xi + X2 - t 

3. / = v — Xi or t = 1 + Xi + 2X2 + X3 

4. s = v or s = 1 + Xi + X2 — v 

5. t = u — Xi or t = 1 + Xi + X2 + X3 -

6. ^ = w or v = 1 + Xx + X2 + X3 • 

By analyzing each of the distinct combinations of relations and applying 
Proposition 3, we may conclude tha t either 0 is a s tandard algebra homo-
morphism in FAz or 0 is weakly equivalent under A(A$) to one of the pre­
viously described algebra homomorphisms. Thus to summarize we have tha t 
Conjecture I is valid for the algebra A$. 

Although we are as yet unable to verify this conjecture for the algebra An 

with n ^ 4 we do have the following first step in this direction: 

PROPOSITION 5. / / 0 : C(An) —> C is an algebra homomorphism such that 0 
restricted to each copy of C{Az) in C(An) is standard then 0 itself is standard. 

Proof. We proceed by induction on n, noting tha t the case n = 3 is trivially 
true. Assume tha t the proposition is true for n — 1 è 3 and consider 
0 : C(An) —> C as given. By our inductive hypothesis 0 restricted to the sub-
algebras 

C(An-i{ai, a2, • . . , «n_i}), C(An-i{ai + a2, «3, . . . , «„}), . . . , 

C(An-1{a2l . • • , OLn}) 

is s tandard with parameters Si, s2, . . . , sn+i respectively. In order tha t 0 be 
well-defined we must have s-i = s2 = . . . = sn = sn+ï + <j>(hai). Since every 
degree g 3 generator of C(An) is in a t least one of these subalgebras we have 
tha t 0 agrees on all generators of degree ^ 3 with a s tandard algebra homo­
morphism of FAn paramerized by s\ and 0 J H. By Proposition 4 we have tha t 
0 itself is then s tandard. 

S e c t i o n 3. P o i n t e d representa t ions . In this section we shall " label" the 
pointed representations of a simple Lie algebra L in the following sense. We 
wish to specify a set FL Ç FL having the following properties: 

1) If <t>i, fa G FL with 0i ^ 0o then U/M^ $k U/M^ as L-modules. 

2) If F is a pointed representation of L then there exists 0 Ç FL such tha t 
V == U/Mtfy and 0 is weakly equivalent modulo A (L) to an element in FL. 
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Since the group A (L) is finite we would thus associate with each < j > ^ L a 

finite number of non-equivalent pointed representations of L. 

Definition. A s tandard algebra homomorphism 0 : C{An) —> C with param­
eters s G C and X G H* is said to be complete if and only if 

* - 0 ( I X o hai 0- Z for p = 0, 1, . . . , n and 0 g Re <t>(hai) < 1 

for i = 1, 2, . . . , n 

where {«*} is the dual basis of {at} relative to the Killing form. 

(Note tha t if 0 j H = Y^=i SJajtnen </>fe) = £*)• 

Definition. A ^-standard algebra homomorphism 0: C(L) —> C defined 

relative to U L i I \ is said to be extreme if and only if 0 j {C(L) Pi f/(I\-)} is 

complete for each i. 

Remark. In part icular any algebra homomorphism 0 : C ( L ) —> C which is 

identically zero on the ideal C(0) is an extreme ^-standard algebra homo­

morphism. 

C O N J E C T U R E II . The family of all extreme g-standard algebra homomorphisms 
0 £ FL labels the pointed representations of L. 

Our aim in this section will be to prove tha t any two dist inct extreme 
g-standard algebra homomorphisms give rise to non-equivalent pointed rep­
resentations and tha t if 0 is a g-standard algebra homomorphism then there 
exists an extreme g-standard algebra homomorphism 0 such t ha t U/M$ 
= U/M^oa for some a £ A (L). This will imply tha t for any algebra L satisfying 
Conjecture I, Conjecture II is also valid. 

We first give an explicit description for the pointed representat ions associ­
ated with s tandard and g-standard algebra homomorphisms. Let 0 : C(An) —> C 
be the s tandard algebra homomorphism parametr ized by s £ C and X £ H*. 
For each u G U$ where £ = T ^ L i &i«i- (kt 6 Z) we define a scalar n{u) by 
sett ing 

p(u)v(0) = n(u)v(klf . . . , kn). 

We claim tha t fx(u) = 0 implies /x £ M^. In fact, it suffices to show tha t for any 
w G U-t we have (j)(wu) = 0 and this follows since 

<t>(wu)v(0) = p(wu)v(0) = p(w)p(u)v(0) = p(w)id(u)v(ki, . . . , kn) = 0. 

By construction of U/M<f, every weight function must be of the form 

V = (0 + X ^ = i liPi) ï H 

where the coefficients If s are integers. Set t ing £ = X ^ = i ^ai w e know tha t 
(U/M^n^ Ut/(U^r\ M+) as / / -modules . Tak ing uu u? G £/$ we claim tha t 
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the set \u\ + M^, u2 + M^} is always linearly dependent. Wi thou t loss of 

generality we may assume tha t n(u2) 9e 0 and hence consider the element 

At(wi) 
Ui = —,—r u2. 

n(u2) 

For all w £ U-$ we have 

• ( - ( • • - ^ • • ) ) ' » > - ' ( - ( " ' - ^ * ) ) ' < » > 

= p(w)\n(ui) - !LT]T tl(u2))v(lh . . . ,ln) 

= 0 or 

6\ U-Aiii — —T~T ^2 = 0 and hence u\ — —7—7 u2 £ M*. 

Therefore d im([ / /M*)„ ^ 1 for all 77. 
To complete our description of the representation U/M<t> it remains only to 

indicate which weight spaces are one-dimensional. T o this end we set 

p _ is — X(hai + . . • + hai) if this is a positive integer 
I + 0 0 otherwise 

and 

_ is — \(hai + . . . + hai) if this is a non-positive integer 
(—00 otherwise 

where i = 0, 1, 2, . . . , n and by convention haQ = 0. Define 

D8tX = {(/1, . • . , 4 ) G Z»| g< ^ lt - lt+1 <Pt for all i = 0, 1, . . . ,»} 

(note t ha t Z0 = 4+i = 0 by convention). We claim then tha t the linear func­
tional (</> + y T L i /7:Q!i) I # is a one-dimensional weight function of U/M^ 
if and only if (/1, . . . , ln) £ D^\. Recall from [7] tha t if 

5 — \(hai + . . . + hai) = m G Z 

then the subspace of F^x with basis {fl(£i, • • • > W l &* ~~ ki+i = ^ ! is a sub-
representation of (p, F s x ) . Suppose now tha t u G £A with £ = X ^ = i / ^ and 
(lu • • • , ln) $ £>s,x then for any w £ £/_£ we must have 

<t>(wu)v(§) = p(wu)v(Q) = p(w)p(u)v(0) = 0 

since there exists a subrepresentation of F S t \ to which only one of the vectors 
v(0) and v(lu • • • , D belongs. If, on the other hand, (/1, . . . , ln) £ DSt\ then 
one can select elements u Ç £/$ and w G C/_^ such tha t (f>(wu) 7^ 0; ie. w (? M^. 
Summarizing we have 
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PROPOSITION 6. With the notation introduced above, if 0 : C(An) —» C is a 
standard algebra homomorphism parametrized by s £ C and A Ç 77* //ze/z the 
associated pointed representation of An is 

U/M, E 8 (£ / /M, ) n 
( Z l , . . . , In) CDs,X 0 + 2 Z ^ 

2 = 1 

where each weight space is one-dimensional. 

We now consider a ^-standard algebra homomorphism </> : C(L) —> C relative 
t o U Tj and make the following observations: 

1) For any v = A + \ U I \ , x , Ç Af0. In fact, if w G [/_„ then m , £ C ( U I \ ) 
and hence 4>(wxv) = 0; ie. x , Ç lf0. 

2) If zz is a basis element of [/of the form (*) for which 3 0 ê A + \ U T^ with 
r$ ^ 0 then zz £ M"0. This follows from 1) using induction on the degree of u. 

3) If £ = ]Ca6A + +n (u ro ^« > a where ( W ) i f Z then for any basis element 
zi Ç [/$ we have either u G i l ^ or u = tiiih . . . // ^ where s £ [ / ( # ) and, if 

£i = ^ « ç A + + n i\&« • « , 

If zz G M^ then by 2) we may assume tha t r$ = t$ = 0 for all /3 Ç A + \ U F7. 
Then applying induction on the degree of u, we may reorder the terms of a 
into the required form. 

4) For each i, M 0 H [ / ( I \ ) is a maximal left ideal of £ / ( I \ ) . 

I t is clear tha t M 0 Pi £ / ( I \ ) is a left ideal of [ / ( I \ ) and since ker 0 C\ U(Tt) 
Ç M ^ P\ [/( r z) it remains only to show tha t for any it G U(T ^^M^, where rj is an 
integral linear combination of roots from A + + P\ r u there exists v G [ /(r^)- , , 
such tha t </>(zm) 3^ 0. Since M^ is maximal in U there exists w £ [/_„ with 
<t>{wu) 9^ 0. If Wo is a basis element of [/of minimal degree such tha t <\>(w§u) 9^ 0 
then w{) G [/(T *)-,,. In fact w0 does not contain any factors of type ha since in 
this case we have w{) = w'ha + lower degree terms and hence a contradict ion; 

0 9^ <t>(wott) = <\>(w'hau) = <t>{w'u)<t>(ha) + r](ha)(t)(w
ru) = 0. 

We also know tha t w0 G [ / (U I\-) as otherwise w0zz G C ( U I \ ) . T h u s by 3) 
we have w0 = cfl + lower degree terms where c 6 C(L) and z; £ [/(T *)_,,. By 
the minimali ty of the degree of Wo we mus t have c is a non-zero scalar and hence 
WQ (E [/(F i)_T7, as required. 

With the help of these observations we can now prove the following result: 

PROPOSITION 7. Let 

£ = X &a-a and ^ = X) *a • a 
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where ka £ Zfor alia. Then dim (U/M<t>)\ ^ I for X = (</> + £) | H and more­

over dim (U/M^x = I if and only if 

dim ([/(I\-)/(M0H £/(I\)))0+{|. = lJoralli= 1 ,2 , . . . , / . 

iVoo/. Since for each i, £ / ( I \ ) ^ f /(^w i) and 0 j (C(L) P\ £/(I\.)) is a 
s tandard algebra homomorphism, Proposition 6 implies tha t 

dim (U(rt)/(Mtr\ t / ( I \ ) ) W g 1 

and gives explicit conditions when it is exactly 1. 
Assume first tha t there exists i0 such tha t 

dim (U(Th)/(M,r\ £ / ( I \ . 0 ) ) W , o = 0. 

This implies tha t 

E/(r,0)t,.o ç M,. 

We claim tha t in this case U$ Q M^ and hence dim (U/M<f>)\ = 0. In fact if 
u £ ^ is a basis element we may assume by remark 3 tha t u = UiU2 . . . u& 
where z £ £ / (# ) and ^ G £/(I\)* t-. Then 

It = UiU2 . . . UtZ = U! . . . Ûî0 . . . UiZUi0 + £iQ(z)Ui . . . Ui0 . . .ttiUi0 £ M4. 

T h a t is, ^ C M<p as required. 
Assume now tha t for all i• = 1 , 2 , . . . , / we have 

dim(^(r,)/(M,n t/(i\))W- = 1 

and hence there exists gt £ U(Ti)z\M<i> such tha t for any z/z £ £^(r\)si> 
Mi is a non-zero scalar multiple of gt modulo M^. Since [U(Ti)} U(Tj)] = {0} 
for i 9^ j we have tha t gi . . . gt £ Ut\M<f, and for any w £ t/^, w is a scalar 
multiple of gi . . . gi modulo M^. T h a t is, dim (U/M<f,)\ = 1. 

We now make use of these descriptions of pointed representations to com­
plete our labelling programme. 

LEMMA. / / </> : C(L) —» C is an extreme g-standard algebra homomorphism 
relative to \J tY t then the set of weight functions of U/M^ is contained in the set 

Î 0 + Z«€A++fc«-a|(W)*« e z ; (v« G A + + \ ^ i\) *a ^ o}. 

Proof. Set X = 0 + ^LaçA + +&a • « a n d £ = ^ & a ' a where (V«) &« £ Z and 
consider any basis element w £ £7$. If ^ > 0 for some (3 £ A + + \ U I \ then there 
must exist some fir £ A + + \ 1 J I \ such tha t ?> =̂  0 in w and hence by remark 
2 we have n £ M^. T h a t is, dim (U/M<f,)\ = 0. Thus in order for X to be a 
weight function of U/M^ we must have ka è 0 for all a £ A + + \ I \ . 

PROPOSITION 8. i j 0i, 02 : C(L) —> C are /wo distinct extreme g-standard 
algebra homomorphisms then U/M^i $k U/M<t>2 as L-modules. 
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Proof. Assume that fa and fa are as given and U/M^ ~ U/M<t>,. We claim 
that fa = fa. Since equivalent representations have the same set of weight 
functions we must have that fa I H is a weight function of U/M^ and hence 

fa.[H = falH + 2«€A + + / « -« 

where (\/a) Ia Ç Z. We also note that if fa is ^-standard relative to U IY1} 

and fa is ^-standard relative to U I\ (2 ) then U I 7 ] ) - U I\ (2 ) . Indeed if 
^ U I\ (1) and /3 # U I\ (2 ) then fa [ H + I • fi is a weight function of 
U/M^ and therefore of U/M^ for all / Ç Z. But then 

0i j # + / j 8 = fa[H+ X«€A + + / a - a + /-i8 

is a weight function of U/M^, for all / Ç Z and since 0 (/-_ I\ (2 ) this contradicts 
the lemma above. 

Now fix any £0 6 A + + \U IV1* - A + + \U I7 2 ) and note that 

falH = fa[H+ Y,aeA + +la'a 

is a weight function of U/M^. Therefore by the above lemma lpQ ^ 0. But we 
also have that 

falH = falH+ Z«€A + + (- /«) -a 

is a weight function of U/M<f)1 and again applying the lemma we have — lp0 ^ 0. 
Therefore we have that l0Q = 0 for all 0O G A + + \U IVX). 

On the other hand assume /5o G U T/11 = U IV2). Then by definition of 
extreme ^-standard we have that 0 g Re 0;(/^o) < 1 for i = 1, 2. But 

</>l(A?o) = 4>2 (Vo) + ^o 

and hence /̂ 0 = 0. Thus fa [ H = fa ,[ H and since U/M4>1 — U/M^ we have 
0i = 02 as required. 

It remains now only to show that for any ^-standard algebra homomorphism 
0 : C(L) —* C there exists an extreme ^-standard 0: C(L) —-> C such that 
UIM$ = UIM$oa for some a o A (L). We proceed through a series of lemmas. 

LEMMA 9a. If 0 : C(An) —> C is a standard algebra homomorphism parame­
trized by s 6 C and X Ç H* //zew 

1) 0 o o-al zs standard parametrized by s — \(hai) (z C awd X o ai G i/*. 

2) 0 o o-tfx ^ standard parametrized by s Ç C awd \ O f f j ^ 77* /or i = 
2, 3, . . . , w. 

3) If £ = ŷ w,=i h- cti where lt (z Z and (0 + £) J, 7/ is a l-dimensional 
weight function of U/M^ then the algebra homomorphism fa : C(^4re) —> C associ­
ated with (0 + J) | H is standard parametrized by s + /i Ç C ami (0 + £) I 
77 Ç #*. 
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Proof. 1) Define two representations 

(p, VSi\) and (p, Vs-Mhai)jxoaai) 

as in [7] where the underlying vector space is the same for both. Using the 

explicit description of these representations one can easily verify tha t 

(p • (Tau VSf\) = ( p ' , ^-X(/»at.),Xocrai.) 

where the equivalence map is the identity. Then we have 

4>oaai(c)v(0) = Poaai(c)v(0) = p'(c)v(0) (\/c G C(An)). 

T h a t is, (j> o aai is s tandard, parametrized by 5 — \(hai) G C and y o aai G H*. 

2) This follows in the same manner as 1) on noting tha t for i ^ 2 

(Poaai, F,,x) ^ (pr, F.,,xo.ai) 

where the equivalence map is the identity. 

3) Recall from [7, Proposition 2] tha t the representations (p, F,,x) and 
(p'> U*,x') where X' — X = 5 ^ = i ^ ' « i and £ = s + /i are equivalent and the 
equivalence map \p : VSt\ —> F*,x' is given by 

\p(v(ku . . . , fej) = i;(^x - /i, . . . , kn — ln). 

By assumption we also have U/M<p ~ U/M^ and this equivalence can be 
realized by the map $ : U/M* - » U/Mr where $ ( 1 + M*) = u0 + M ^ with 

^o G UT\M^ where r = J^Li /*«* . 

We may also assume tha t uo has been selected in such a way tha t 

p ' ( t t o M - / i , - ^ . • • , - 4 ) = v(0). 

In fact for any w G UT\M<i, we have 

P ' ( t t M - * i , . . . . - / „ ) = P ' ( K ) * ( » ( 0 ) ) = t(p(u)v(0)) 

and p(^)^(0) is a non-zero scalar multiple of v(li, . . . , /„) since w G M^. 
T h a t is, 

p'(u)v(-lu. . . , - 4 ) = Kv(0) 

with i£ ^ 0 and hence we may select u0 = u/K. Also since u0 G M$ we can 
select an element WQ G UT such tha t </>(w0̂ o) = 1. Now by Proposition 2 
we have <f>'(c) = <J)(WQCU0) for all c G C(^4W). Finally for all c G C(^4W) we have 

p ' (cMO) = p ' ( c )p ' (uo)»( - / i , • • • , - / » ) = P ' ( « « > ) * ( * ( 0 ) ) 

= ^ o p ( ^ o W O ) = p(w0cu0)v(0) = <t>(w0cuo)v(0) = p'(c)v(0). 

Thus <// is s tandard, parametrized by s + /i G C and (0 + £) | # G # * . 
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LEMMA 9b. Assume (/> : C(An) —> C is a standard algebra homomorphism, 
parametrized by s Ç C and X Ç 77* such that for some p = 0, 1, . . . , n, 

* -x (X£-oM e z. 
Then there exists a g-standard algebra homomorphism <pf : C(An) —» C relative 
to the complete subset Tf or T" of A generated by \ai, . . . , an-i} or {a2j . . . , a„! 
5MC& //mi f//if0/ = U/M+oafor some a G 4 C 4 J . 

Proof. Let m denote the minimum integer, by absolute value, among the 
integers in the set 

[s- Hl?i=ohai)\p = 0 , l , . . . , n } . 

Assume first that 

m = s - A(X^=o Ki) ^ 0. 

If r 7e- 0 (ie. .v ^ m) then applying parts 1) and 2) of Lemma 9a we have 
that if 

a = aar o . . . O <rai £ A(An) 

then 0 o c is a standard algebra homomorphism parametrized by 5' Ç C and 
X' G 77* where 

s' = s — X(2<=o fea») = w. 
By Proposition 6, (</> o cr — mai) I 77 is a 1-dimensional weight space of 
U/M^oa. Applying part 3) of Lemma 9a, the algebra homomorphism </>': 
C(An) —> C associated with the 1-dimensional weight function (<j> o a — mai) 
J, 77 is also standard parametrized by 5" £ C and X" (E 77* where s" = 5' 
- mi = 0. It then follows that <// j C(T') = 0. That is, (// is g-standard 
relative to r ' . Finally we also have U/M^ = U/M^oa-

On the other hand, if we assume that m > 0 by a similar argument we can 
define an algebra homomorphism <// : C(An) —• C which is g-standard relative 
to r " and U/Mv ~ U/M^a for some a £ A(An). 

LEMMA 9C. Let </> : C(L) —> G be a g-standard algebra homomorphism relative 
to U l= i l \ . Then: 

1) For any a Ç A++ P\ I\0 we have </> o ca is g-standard relative to U 1%. 
More precisely we have <f> o aa = 4> on U(Tj) C\ C(L) for j T6- io and <t> o aa = 0 
<w C{\J I \ ) . 

2) If 

£ = Z«€A + + nrv 0 k-a 
wi//î /a Ç Z jfor a// a suc/& //m/ (0 + £) j 77 is a 1-dimensional weight function of 
U/Mj, then the algebra homomorphism <j>' associated with (<£ + £) 1 77 is g-
standard relative to [J Tim More precisely we have </>' = </> on U(Tj) Pi C(L) for 
j 7^ io and <// = 0 on C(\J I \ ) . 
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Proof. 1) For any j ^ i0 and 0 G A P\ Tj we have o-a(0) = 0. T h a t is, for 

any c G C(L) H £/(I\-), <ra(c) = c. Hence 0 o <ra(c) = <$>{c) for all c G C(L) 

n f/(r,). 
For any ^ A W r , <ra(p) Ç A U I \ and hence for any c f C ( U I \ ) , 

o-«(c) 6 C ( U r f ) . Therefore 0O(r«(c) = 0 for all c G C ( U I \ ) . 
Finally <t> o aa I (C(L) C\ U(Ti0)) is s tandard by Lemma 9c and hence 

<t> o aa is ^-standard relative to U I \ . 

2) Take u G [ 7 ( I \ o ) f \ M 0 and note tha t 

(Vc e C(L)) <t>'(c)(u + M+) = c(u + M*) 

for any c G C(L) P\ U(Tj) with j ^ i0 we have 

<t>'{c)(u + Af0) = c(u + M0) = uc + M^ = 4>(c)(u + M 0 ) . 

Hence 0'(c) = 0(c) . 
Also for any c G C(U<=i I \ ) we note tha t f/_g ^ Ç C ( U I \ ) C M* and 

hence cw G M^. Therefore 

<t>'(c)(u + Af0) = c« + M , = 0(u + M*). 

Thus 0'(c) = 0. 
Finally 0 ' [ (C(L) Pi U(Ti0)) is s tandard by Lemma 9a and hence <// is 

^-standard relative to U Ti-

Combining these lemmas we now have the main result of this section. 

PROPOSITION 9. Let <j> : C(L) —» C be a g-standard algebra homomorphism 
relative to U i=\ Tz-. Then there exists an extreme g-standard algebra homomorphism 
0 : C(L) -> C such that U/M$ ^ U/M^for some cr £ A(L). 

Proof. We define the order of a g-standard algebra homomorphism relative 
to Ui-=il\- to be 2 ^ = i # (A + + H Tz). Every order 0 g-standard algebra homo­
morphism is by definition extreme hence we assume inductively tha t the 
proposition is t rue for g-standard algebra homomorphisms of order <N. Then 
consider a g-standard algebra homomorphism 0: C(L) —> C of order N. 

If there exists iQ = 1 , 2 , . . . , / such tha t 0 [ (C(L) H U(Ti0)) satisfies the 
conditions of Lemma 9b then by Lemmas 9b and 9c there exists a Ç A(L) 
such tha t 0 o a is g-standard of order N - l and U/M^ = U/M<t>0<r- By the 
inductive hypothesis then there exists an extreme g-standard algebra homo­
morphism 0: C(L) —> C such tha t U/M^oa = U/M$oai for some <n Ç A(L). 
Hence by Proposition 2 U/M$~ UIM^oao<JX-^ as required. 

We may therefore assume tha t 

( 0 + zJ«€A + +n cur») k • °0 ! # 

is a 1-dimensional weight function of U/M^ for all la £ Z. Thus sett ing 
&a = [ R e 0 ( f c ) ] for all a Ç A+ + H ( U I \ ) (where [ • ] denote the greatest 
integer function), 

( 0 - Z « ^ + + n ( u r , - ) * a ' a ) i ^ 
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is a 1-dimensional weight function of U/M^. If </> is the associated algebra 
homomorphism then U/M<j> ~ U/M$, </> is ^-standard by Lemma 9c and is 
extreme since 0 ^ Re (<j>(ha) — ka) — 1. 
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