H-FINITE IRREDUCIBLE REPRESENTATIONS OF SIMPLE LIE ALGEBRAS

F. LEMIRE AND M. PAP

Let L denote a simple Lie algebra over the complex number field \mathbf{C} with H a fixed Cartan subalgebra and $C(L)$ the centralizer of H in the universal enveloping algebra U of L. It is known [cf. 2, 5] that one can construct from each algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ a unique algebraically irreducible representation of L which admits a weight space decomposition relative to H in which the weight space corresponding to $\phi \downarrow H \in H^{*}$ is one-dimensional. Conversely, if (ρ, V) is an algebraically irreducible representation of L admitting a one-dimensional weight space V_{λ} for some $\lambda \in H^{*}$, then there exists a unique algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ which extends λ such that (ρ, V) is equivalent to the representation constructed from ϕ. Any such representation will be said to be pointed. The collection of all pointed representations clearly includes all dominated irreducible representations and is included in the family of all Harish-Chandra modules which are H-finite [cf. 2, 3].

In this paper we present a detailed study of the family of pointed represen-tations-in particular, we shall provide a complete description, up to equivalence, of all pointed representations of the simple Lie algebras $\operatorname{sl}(n, \mathbf{C})$ for $n=2,3$ and 4 . Our approach will be to label the equivalence classes of pointed representations of L by elements from the family of algebra homomorphisms $\phi: C(L) \rightarrow \mathbf{C}$ in analogy to the technique of labelling the dominant irreducible representations by their "highest weight function".

Section 1. Aut $(L: H)$. In order to simplify our study of the family F_{L} of all algebra homomorphisms $\phi: C(L) \rightarrow \mathbf{C}$ and their associated pointed representations we shall introduce an equivalence relation on F_{L}. Let $\operatorname{Aut}(L: H)$ denote the group of all automorphisms σ of L such that $\sigma(H) \subseteq H$. If one considers the weight space decomposition of U relation to H, viewed as an L-module under the adjoint representation, we have

$$
U=\sum_{\xi \in H^{*}} \oplus U_{\xi} .
$$

Then for any $\sigma \in \operatorname{Aut}(L: H)$ we have $\sigma\left(U_{\xi}\right) \subseteq U_{\xi{ }_{\xi \sigma}-1}$ where $\tilde{\sigma} \equiv \sigma \downarrow H$. In particular $U_{0}=C(L)$ and $\sigma\left(U_{0}\right)=U_{0}$; ie. if $\phi \in F_{L}$ then $\phi \circ \sigma \downarrow C \in F_{L}$ for all $\sigma \in \operatorname{Aut}(L: H)$. (Note that we also denote by σ the natural extension of σ to an automorphism of U).

Received May 30, 1978 and in revised form October 4, 1978.

Definition. If $\phi_{1}, \phi_{2} \in F_{L}$ we say that ϕ_{1} is weakly equivalent to ϕ_{2} if and only if there exists $\sigma \in$ Aut $(L: H)$ such that $\phi_{1}=\phi_{2} \circ \sigma$. This is clearly an equivalence relation on F_{L}.

Let M_{ϕ} denote the unique maximal left ideal of U containing ker ϕ for $\phi \in F_{L}$. Then [cf. 1] the left regular representation of L on U / M_{ϕ} is the pointed representation constructed from ϕ. If $\phi_{1}, \phi_{2} \in F_{L}$ are weakly equivalent then their associated pointed representations are related in the following way:

Proposition 1. Let $\phi_{1}, \phi_{2} \in F_{L}$ with $\phi_{1}=\phi_{2} \circ \sigma$ for some $\sigma \in$ Aut ($L: H$); then there exists a linear space isomorphism $\sigma: U / M_{\phi_{1}} \rightarrow U / M_{\phi_{2}}$ which preserves weight spaces in the sense that

$$
\hat{\sigma}\left(\left(U / M_{\phi_{1}}\right)_{\lambda}\right)=\left(U / M_{\phi_{2}}\right)_{\lambda \circ \tilde{\sigma}-1} .
$$

Proof. Recall that for any $\phi \in F_{L}$ we have

$$
\begin{array}{r}
M_{\phi}=\sum_{\xi \in H} \oplus\left(U_{\xi} \cap M_{\phi}\right) \text { and } \quad u \in U_{\xi} \cap M_{\phi} \text { if and only if } \\
U_{-\xi} u \subseteq \operatorname{ker} \phi .
\end{array}
$$

Now we observe that $\sigma\left(M_{\phi_{1}}\right) \subseteq M_{\phi_{2}}$. This follows since for any $u \in U_{\xi} \cap$ $M_{\phi_{1}}, \sigma(u) \in U_{\xi_{0} \tilde{\sigma}-1}$ and

$$
\phi_{2}\left(U_{-\xi \circ \sigma-1} \sigma(u)\right)=\phi_{2}\left(\sigma\left(U_{-\xi}\right) \sigma(u)\right)=\phi_{2} \circ \sigma\left(U_{-\xi} u\right)=\phi_{1}\left(U_{-\xi} u\right)=0 .
$$

Thus we can define a map $\hat{\sigma}: U / M_{\phi_{1}} \rightarrow U / M_{\phi_{2}}$ by setting

$$
\sigma\left(u+M_{\phi_{1}}\right)=\sigma(u)+M_{\phi_{2}} .
$$

Since $\sigma\left(M_{\phi_{1}}\right)=M_{\phi_{2}}$ and σ is an automorphism of $U, \hat{\sigma}$ is a well-defined, linear isomorphism from $U / M_{\phi_{1}}$ onto $U / M_{\phi_{2}}$.

Finally, if $u+M_{\phi_{1}} \in\left(U / M_{\phi_{1}}\right)_{\lambda}$ then for each $h \in H$

$$
\begin{aligned}
h\left(\sigma(u)+M_{\phi_{2}}\right)=\hat{\sigma} & \left(\sigma^{-1}(h) u+M_{\phi_{1}}\right)=\hat{\sigma}\left(\lambda \circ \sigma^{-1}(h) u+M_{\phi_{1}}\right) \\
& =\lambda \circ \sigma^{-1}(h) \hat{\sigma}\left(u+M_{\phi_{1}}\right)=\lambda \circ \sigma^{-1}(h)\left(\sigma(u)+M_{\phi_{2}}\right) .
\end{aligned}
$$

That is,

$$
\hat{\sigma}\left(\left(U / M_{\phi_{1}}\right)_{\lambda}\right)=\left(U / M_{\phi_{2}}\right)_{\lambda \circ \tilde{\sigma}-1}
$$

Remark. It should be emphasized that the representations of L on $U / M_{\phi_{1}}$ and $U / M_{\phi_{2}}$ are not, in general, equivalent. However, we do have the following result:

Proposition 2. If $\phi_{1}, \phi_{2} \in F_{L}$ with $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$ then for any $\sigma \in \operatorname{Aut}(L: H)$ we have $U / M_{\phi_{1} \circ \sigma} \cong U / M_{\phi_{2} \sigma \sigma}$.

Proof. As an intermediate step we first show that $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$ if and only if for $\xi=\left(\phi_{1}-\phi_{2}\right) \downarrow H$ there exists $u_{0} \in U_{\xi} \backslash M_{\phi_{2}}$ such that $\phi_{1}(c) \phi_{2}\left(w u_{0}\right)$ $=\phi_{2}\left(w c u_{0}\right)$ for all $c \in C(L)$ and all $w \in U_{-\xi}$.

In fact if $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$ then there exists an L-module homomorphism $\psi: U / M_{\phi_{1}} \rightarrow U / M_{\phi_{2}}$. If $\psi\left(1+M_{\phi_{1}}\right)=u_{0}+M_{\phi_{2}}$ then clearly $u_{0} \in U_{\xi} \backslash M_{\phi_{2}}$ and for $w \in U_{-\xi}, c \in C(L)$ we have

$$
\psi\left(w c+M_{\phi_{1}}\right)=w c u_{0}+M_{\phi_{2}}=\phi_{2}\left(w c u_{0}\right)\left(1+M_{\phi_{2}}\right)
$$

and also

$$
\begin{aligned}
\psi\left(w c+M_{\phi_{1}}\right)=\psi\left(\phi_{1}(c)\right. & \left.\left(w+M_{\phi_{1}}\right)\right)=\phi_{1}(c) \psi\left(w+M_{\phi_{1}}\right) \\
& =\phi_{1}(c)\left(w u_{0}+M_{\phi_{2}}\right)=\phi_{1}(c) \phi_{2}\left(w u_{0}\right)\left(1+M_{\phi_{2}}\right) .
\end{aligned}
$$

Comparing, we have $\phi_{1}(c) \phi_{2}\left(w u_{0}\right)=\phi_{2}\left(w c u_{0}\right)$.
Conversely if $\phi_{1}, \phi_{2} \in F$ and there exists $u_{0} \in U_{\xi} \backslash M_{\phi_{2}}$ such that $\phi_{1}(c) \phi_{2}\left(w u_{0}\right)$ $=\phi_{2}\left(w c u_{0}\right)$ for all $c \in C(L)$ and all $w \in U_{-\xi}$ we claim $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$. Let

$$
M=\operatorname{Ann}\left(u_{0}+M_{\phi_{2}}\right)=\left\{u \in U \mid u u_{0} \in M_{\phi_{2}}\right\} .
$$

Clearly M is a maximal left ideal of U and $U / M \cong U / M_{\phi_{2}}$. It remains only to show that $M=M_{\phi_{1}}$. Since $M_{\phi_{1}}$ is the unique maximal left ideal of U containing ker ϕ_{1} it suffices to show that ker $\phi_{1} \subset M$. Take $c \in C(L)$ with $\phi_{1}(c)=0$. Then we have that $\phi_{2}\left(w u_{0}\right)=0$ for all $w \in U_{-\xi}$. This implies that $c u_{0} \in M_{\phi_{2}}$. That is, $c \in M$ as required.

Returning now to the proposition we assume $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$ and fix $u_{0} \in U_{\xi}$ with properties as noted above. Then for any $\sigma \in$ Aut $(L: H)$ we have

$$
\phi_{1} \circ \sigma\left(\sigma^{-1}(c)\right) \phi_{2} \circ \sigma\left(\sigma^{-1}(w) \sigma^{-1}\left(u_{0}\right)\right)=\sigma_{2} \circ \sigma\left(\sigma^{-1}(w) \sigma^{-1}(c) \sigma^{-1}\left(u_{0}\right)\right) .
$$

But $\sigma^{-1}(C(L))=C(L), \sigma^{-1}\left(u_{0}\right) \in U_{\xi \circ \sigma} \backslash M_{\phi_{2} \sigma \sigma}$ and $\sigma^{-1}\left(U_{-\xi}\right)=U_{-\xi \circ \sigma}$. Therefore for $\phi_{1} \circ \sigma, \phi_{2} \circ \sigma \in F_{L}$ where $\phi_{1} \circ \sigma-\phi_{2} \circ \sigma=\xi \circ \sigma$ there exists an element $\sigma^{-1}\left(u_{0}\right) \in U_{\xi \circ \sigma} \backslash M_{\phi_{2} 0 \sigma}$ such that for all $c^{\prime} \in C(L)$ and all $w^{\prime} \in U_{-\xi 0 \sigma}$ we have

$$
\phi_{1} \circ \sigma\left(c^{\prime}\right) \phi_{2} \circ \sigma\left(w^{\prime} \sigma^{-1}\left(u_{0}\right)\right)=\phi_{2} \circ \sigma\left(w^{\prime} c \sigma^{-1}\left(u_{0}\right)\right)
$$

which implies that $U / M_{\phi_{1} \sigma \sigma} \cong M_{\phi_{2} 0 \sigma}$.
We now single out a finite subgroup of Aut $(L: H)$ which will be of importance in this paper. Calling liberally on the results of chapters 14 and 25 of [4] we let $\Delta \subset H^{*}$ be a root system of L with basis Δ_{++}and select a Chevalley basis

$$
\left\{X_{\beta}, h_{\alpha} \mid B \in \Delta, \alpha \in \Delta_{++}\right\}
$$

of L. To each $\alpha \in \Delta_{++}$we define a map $S_{\alpha}: H^{*} \rightarrow H^{*}$ by setting

$$
S_{\alpha}(\lambda)=\lambda-\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \alpha
$$

where (,) denotes the symmetric, non-degenerate Killing form on H^{*}. The maps S_{α} are automorphisms sending Δ into itself and one can induce, via the Killing form, an automorphism (again denoted by S_{α}) of the Cartan subalgebra H. By Theorem 14.2 [4] there exists a unique automorphism, denoted by σ_{α},
of L such that σ_{α} extends S_{α} and

$$
\sigma_{\alpha}\left(S_{\alpha^{\alpha^{\prime}}}\right)=X_{S_{\alpha}\left(\alpha^{\prime}\right)}
$$

for all $\alpha^{\prime} \in \Delta_{++}$. Let $A(L)$ denote the subgroup of Aut $(L: H)$ generated by $\left\{\sigma_{\alpha} \mid \alpha \in \Delta_{++}\right\}$. From the definition of the maps σ_{α} we can show that

$$
\sigma_{\alpha}\left(X_{\gamma}\right)= \pm X_{\sigma_{\alpha}(\gamma)}
$$

for all $\gamma \in \Delta$. Since $\left\{\sigma_{\alpha} \downarrow H \mid \alpha \in \Delta_{++}\right\}$generates a group isomorphic to the Weyl group we can conclude that $A(L)$ is a finite group. In the particular case of $L=A_{n}$ the group $A(L)$ is isomorphic to the Weyl group of A_{n}.

Section 2. The family F_{L}. By combining the results of two previous papers $[6,7]$ we construct a family of algebra homomorphisms $\phi: C(L) \rightarrow \mathbf{C}$ as follows. In [7] we constructed for each fixed $s \in \mathbf{C}$ and each fixed linear functional λ in the dual of the Cartan subalgebra of A_{n} an explicit representation ($\rho, V_{s, \lambda}$) of A_{n}. The representation space $V_{s, \lambda}$ is the complex linear space having basis

$$
\left\{v(\mathbf{k}) \mid \mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{Z} \times \ldots \times \mathbf{Z}\right\}
$$

and the representatives of elements $x_{\alpha_{i}}=e_{i, i+1}$ and $y_{\alpha_{i}}=\mathrm{e}_{i+1, i}$ in A_{n} are given by the formulas

$$
\begin{aligned}
& \rho\left(x_{\alpha_{i}}\right) v(\mathbf{k})=\left(s-\lambda\left(h_{1}+\ldots+h_{i-1}\right)-k_{i-1}+k_{i}\right) v\left(\mathbf{k}+\xi_{i}\right) \\
& \rho\left(y_{\alpha_{i}}\right) v(\mathbf{k})=\left(s-\lambda\left(h_{1}+\ldots+h_{i}\right)-k_{i}+k_{i+1}\right) v\left(\mathbf{k}-\xi_{i}\right)
\end{aligned}
$$

where ξ_{i} is the n-tuple having 1 in its $i^{\text {th }}$ component and zeroes elsewhere. By convention $h_{0}=0$ and $k_{0}=k_{n+1}=0$. Since $\left\{x_{\alpha_{i}}, y_{\alpha_{i}} \mid i=1,2, \ldots, n\right\}$ generates A_{n} these formulas completely specify the representation ($\rho, V_{s, \lambda}$). For any such representation we obtain an algebra homomorphism $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ by setting

$$
\phi(c) v(\mathbf{0})=\rho(c) v(\mathbf{0}) \quad\left(\forall c \in C\left(A_{n}\right)\right)
$$

Any algebra homomorphism defined as above will be called standard. As is easily checked for $n \geqq 2$ the parameters s and λ of a standard algebra homomorphism are uniquely determined.

To construct algebra homomorphisms $\phi: C(L) \rightarrow \mathbf{C}$ for an arbitrary simple Lie algebra L we first require some notation. Let $\Delta \subset H^{*}$ be the root system of L with basis Δ_{++}and set Δ_{+}as the positive roots of L relative to Δ_{++}. Let $\left\{\Gamma_{i}\right\}_{i=1,2, \ldots, i}$ be a collection of disconnected complete subsets of Δ relative to Δ_{++}Recall [cf. 6] that this means:

1) $-\Gamma_{i} \subseteq \Gamma_{i}(\forall i)$
2) $\alpha, \beta \in \Gamma_{i}, \quad \alpha+B \in \Delta \Rightarrow \alpha+\beta \in \Gamma_{i} \quad(\forall i)$
3) $\alpha, \beta \in \Delta_{+}, \alpha+\beta \in \Gamma_{i} \Rightarrow \alpha, \beta \in \Gamma_{i} \quad(\forall i)$
4) $\Delta_{++} \cap \Gamma_{i}$ is a basis of $\Gamma_{i}(\forall i)$
5) $\alpha \in \Gamma_{i}, \quad \beta \in \Gamma_{j}, \quad i \neq j \Rightarrow \alpha+\beta \notin \Delta$.

Note that such a collection can be constructed by selecting any subset of Δ_{++}and forming the closure in Δ of this set under \pm.
Select a Chevalley basis of L say $\left\{y_{\beta}, x_{\beta}, h_{\alpha} \mid \beta \in \Delta_{+}, \alpha \in \Delta_{++}\right\}$and apply the Poincarré-Birkhoff-Witt Theorem to obtain a linear basis of $U(L)$ consisting of all monomials

$$
\prod_{\beta \in \Delta_{+}} y_{\beta}{ }^{t_{\beta}} \prod_{\beta \in \Delta_{+}} x_{\beta}^{r_{\beta}} \prod_{\alpha \in \Delta_{++}} h_{\alpha}{ }^{l_{a}} \quad(*)
$$

where the exponents are non-negative integers and each product preserves a fixed order. A linear basis of $C(L)$ then consists of all monomials of the form ${ }^{*}$) where

$$
\sum_{\beta \in \Delta_{+}}\left(r_{\beta}-t_{\beta}\right) \beta=0 .
$$

Denote by $C\left(\cup_{i} \Gamma_{i}\right)$ (resp. $\left.C\left(\Gamma_{i}\right)\right)$ the linear subspace of $C(L)$ generated by all basis elements of $C(L)$ for which $t_{\beta}=r_{\beta}=0$ for all $\beta \in \Delta_{+} \backslash \cup_{i} \Gamma_{i}$ (resp. $\left.\beta \in \Delta_{+} \backslash \Gamma_{i}\right)$. Also set $\bar{C}\left(\cup_{i} \Gamma_{i}\right)$ (resp. $\left.\bar{C}\left(\Gamma_{i}\right)\right)$ equal to the linear subspace of $C(L)$ generated by all basis elements of $C(L)$ not in $C\left(\cup \Gamma_{i}\right)$ (resp. $\left.C\left(L_{i}\right)\right)$. By the properties of the Γ_{i} 's one can readily see that $C\left(\cup_{i} \Gamma_{i}\right)$ and $C\left(\Gamma_{i}\right)$ are subalgebras of $C(L)$ and $\bar{C}\left(\cup_{i} \Gamma_{i}\right)$ and $\bar{C}\left(\Gamma_{i}\right)$ are two-sided ideals of $C(L)$ with

$$
C(L)=C\left(\cup \Gamma_{i}\right) \oplus \bar{C}\left(\cup \Gamma_{i}\right)=C\left(\Gamma_{i}\right) \oplus \bar{C}\left(\Gamma_{i}\right)
$$

as linear spaces.
From now on we assume that the Γ_{i} 's are isomorphic to root systems of algebras $A_{n i}$ (for positive integers n_{i}). Then the subalgebra $U\left(\Gamma_{i}\right)$ of U generated by

$$
\left\{1, h_{\alpha}, x_{\beta}, y_{\beta} \mid \alpha \in \Delta_{++} \cap \Gamma_{i}, \beta \in \Delta_{+} \cap \Gamma_{i}\right\}
$$

is isomorphic to the universal enveloping algebra of $A_{n i}$ and $C(L) \cap U\left(\Gamma_{i}\right)$ $\cong C\left(A_{n i}\right)$. Identifying $C\left(A_{n i}\right)$ with $C(L) \cap U\left(\Gamma_{i}\right)$ and observing that

$$
C\left(\Gamma_{i}\right)=\left\{C(L) \cap U\left(\Gamma_{i}\right)\right\} \cdot U(H)
$$

any algebra homomorphism $\phi: C\left(A_{n_{i}}\right) \rightarrow \mathbf{C}$ can be extended to an algebra homomorphism $\bar{\phi}: C\left(\Gamma_{i}\right) \rightarrow \mathbf{C}$ by setting $\bar{\phi}\left(h_{\alpha}\right)$ to an arbitrary value for $\alpha \in \Delta_{++} \backslash \Gamma_{i}$.

Finally if $\bar{\phi}_{i}: C\left(\Gamma_{i}\right) \rightarrow \mathbf{C}$ are constructed as above starting from standard algebra homomorphisms $\phi_{i}: C\left(A_{n_{i}}\right) \rightarrow \mathbf{C}$ such that $\bar{\phi}_{i} \downarrow U(H)=\bar{\phi}_{j} \downarrow U(H)$ for all i, j then by Theorem $6[\mathbf{6}]$ there exists an algebra homomorphism ϕ : $C(L) \rightarrow \mathbf{C}$ such that

1) $\phi \downarrow C\left(\Gamma_{i}\right)=\bar{\phi}_{i}$ for all i and
2) $\phi \downarrow \bar{C}\left(\cup_{i} \Gamma_{i}\right)=0$.

Any such algebra homomorphism will be called a generalized (or g-) standurd algebra homomorphism relative to $\bigcup_{i} \Gamma_{i}$.

Conjecture I. Every algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ is weakly equivalent to a g-standard one. More precisely, there exists $\sigma \in A(L)$ such that $\phi \circ \sigma$ is g-standard.

We now proceed to verify this conjecture for the algebras A_{1}, A_{2} and A_{3}.
Case 1. The Algebra $A_{1}=\operatorname{sl}(2, \mathbf{C})$. A Chevalley basis of A_{1} is given by $h=e_{11}-e_{22}, x=e_{12}$ and $y=e_{21}$ (where $e_{i j}$ denotes the 2×2 matrix with $(i, j)^{t h}$ component 1 and zero elsewhere). Fix $\mathbf{C} \cdot h$ as the Cartan subalgebra and observe that $C\left(A_{1}\right)$ is generated, as an algebra, by $\{1, h, y x\}$. Clearly $C\left(A_{1}\right)$ is commutative and has a linear basis given by

$$
\left\{(y x)^{q_{1}} h^{\alpha_{2}} \mid q_{1}, q_{2} \in \mathbf{Z}^{+}\right\}
$$

Any algebra homomorphism $\phi \in F_{A_{1}}$ is then completely determined by specifying arbitrary values for $\phi(h)$ and $\phi(y x)$ and extending. In particular, we may select arbitrary scalars $s, \lambda \in \mathbf{C}$ and set $\phi(h)=\lambda$ and $\phi(y x)=s(s-\lambda-1)$. Hence any algebra homomorphism $\phi \in F_{A_{1}}$ is standard.

Case 2. The algebra $A_{2}=s l(3, \mathbf{C})$. A Chevalley basis for A_{2} is given by the elements

$$
\left\{h_{\alpha}=e_{11}-e_{22}, h_{\beta}=e_{22}-e_{33}, \quad x_{\alpha}=e_{12}, \quad x_{\beta}=e_{23}, \quad x_{\alpha+\beta}=e_{13}, ~ 子 ~ 子 ~ y_{\alpha}=e_{21}, \quad y_{\beta}=e_{32}, \quad y_{\alpha+\beta}=e_{31}\right\}
$$

where $e_{i j}$ denotes the 3×3 matrix with 1 in the $(i, j)^{\text {th }}$ component and zeroes elsewhere. Let $H=\mathbf{C} h_{\alpha}+\mathbf{C} h_{\beta}$ be the fixed Cartan subalgebra. As in [1] we observe that $C\left(A_{2}\right)$ is generated, as an algebra, by

$$
\left\{1, h_{\alpha}, h_{\beta}, c_{1}=y_{\alpha} x_{\alpha}, c_{2}=y_{\beta} x_{\beta}, c_{3}=y_{\alpha+\beta} x_{\alpha+\beta}, c_{4}=y_{\alpha+\beta} x_{\alpha} x_{\beta}, c_{5}=y_{\beta} y_{\alpha} x_{\alpha+\beta}\right\}
$$

and has a linear basis given by

$$
\left\{\left(c_{5} \text { or } c_{4}\right)^{q_{1}} c_{3}{ }^{q_{2}} c_{2}{ }^{q_{3}} c_{1}{ }^{\alpha_{4}} h_{\alpha}{ }^{{ }_{5}} h_{\beta}{ }^{q_{6}} \mid q_{i} \text { are non-negative integers }\right\} .
$$

If one sets $\phi\left(h_{\alpha}\right)=\lambda_{1}, \phi\left(h_{\beta}\right)=\lambda_{2}$ and $\phi\left(c_{i}\right)=z_{i}$ for $i=1,2, \ldots, 6$ then ϕ can be extended to a linear map on $C\left(A_{2}\right)$ using the above linear basis. This linear map ϕ is an algebra homomorphisms if and only if ϕ preserves the multiplication of the generators. This gives rise to the following four equations:

1. Since $c_{1} c_{2}=c_{2} c_{1}+c_{5}-c_{4}$ we must have

$$
z_{4}=z_{5} .
$$

2. Since $c_{1} c_{4}=c_{4} c_{1}+c_{3} c_{1}-c_{2} c_{1}+c_{5}-c_{3}-\left(c_{4}-c_{3}\right)\left(h_{\alpha}+1\right)$ we must have

$$
\lambda_{1}\left(z_{4}-z_{3}\right)=z_{1}\left(z_{3}-z_{2}\right) .
$$

3. Since $c_{2} c_{4}=c_{4} c_{2}+c_{2} c_{1}+c_{5}-c_{3} c_{2}-c_{4} h_{\beta}-c_{4}$ we must have

$$
\lambda_{2} z_{4}=z_{2}\left(z_{1}-z_{3}\right)
$$

4. Since $c_{4} c_{5}=c_{3} c_{2} c_{1}+c_{3} c_{2} h_{\alpha}+c_{3} c_{1} h_{\beta}+c_{3} h_{\alpha} h_{\beta}+c_{5} c_{3}+2 c_{3} c_{1}+2 c_{3} h+2 c_{+}$
$-2 c_{3} c_{2}-c_{5} h_{\alpha}-c_{5} h_{\beta}-2 c_{5}+c_{4} c_{2}-c_{4} c_{1}-c_{4} h_{\alpha}$ we must have

$$
\left(z_{4}-z_{3}\right)\left(z_{2}-z_{1}-\lambda_{1}-z_{4}\right)+z_{3}\left(z_{2}+\lambda_{2}\right)\left(z_{1}+\lambda_{1}\right)=0 .
$$

The conditions imposed by multiplication of all other pairs of generators yield equations which are dependent on those above. Provided $z_{i} \neq 0,-\lambda_{i}$ for $i=1,2$ any solution of this system of equations is also a solution of the following system:
$1^{\prime} . z_{4}=z_{5}$
$2^{\prime} . N z_{4}=\left(z_{1}+\lambda_{1}-z_{2}\right) z_{1} z_{2}$
3'. $N z_{3}=\left(\lambda_{1}+\lambda_{2}\right) z_{1} z_{2}$
4'. $N\left(\lambda_{1}+\lambda_{2}\right)=\left(z_{2}-z_{1}+\lambda_{2}\right)\left(z_{2}-z_{1}-\lambda_{1}\right)$
where $N=z_{1} \lambda_{2}+z_{2} \lambda_{1}+\lambda_{1} \lambda_{2}$. This latter system of equations has been solved by Bouwer [1] under the tacit assumption that $\lambda_{1}+\lambda_{2} \neq 0$. Since every such solution of $1^{\prime}-4^{\prime}$ is also a solution of $1-4$ in order to determine all solutions of $1-4$ it remains only to solve this system under each of the above mentioned restrictions separately. Solving we obtain the following complete list of solutions to $1-4$ and hence all algebra homomorphisms $\phi: C\left(A_{2}\right) \rightarrow \mathbf{C}$.

Table I. Algebra Homomorphisms $\phi: C\left(A_{2}\right) \rightarrow \mathbf{C}$.

T_{0}	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}	T_{6}	
h_{α}	λ_{1}						
h_{β}	λ_{2}						
c_{1}	$s\left(s-\lambda_{1}-1\right)$	p	0	$-\lambda_{1}$	0	$-\lambda_{1}$	p
c_{2}	$\left(s-\lambda_{1}\right)\left(s-\lambda_{1}-\lambda_{2}-1\right)$	0	$-\lambda_{2}$	p	p	0	$-\lambda_{2}$
c_{3}	$s\left(s-\lambda_{1}-\lambda_{2}-1\right)$	0	p	$-\lambda_{1}-\lambda_{2}$	0	p	$-\lambda_{1}-\lambda_{2}$
c_{4}	$s\left(s-\lambda_{1}\right)\left(s-\lambda_{1}-\lambda_{2}-1\right)$	0	p	p	0	0	$-\lambda_{1}-\lambda_{2}-p$
c_{5}	$s\left(s-\lambda_{1}\right)\left(s-\lambda_{1}-\lambda_{2}-1\right)$	0	p	p	0	0	$-\lambda_{1}-\lambda_{2}-p$

(The symbols $\lambda_{1}, \lambda_{2}, s$ and p denote fixed but arbitrary complex numbers).
Note that the solutions of type T_{0}, T_{1} and T_{4} are g-standard algebra homomorphisms relative to $\Delta,\{ \pm \alpha\}$ and $\{ \pm \beta\}$ respectively. We claim that the other solutions are weakly equivalent to T_{1} or T_{4}. In fact recall that $A\left(A_{2}\right)$ is generated by the two elements σ_{α} and σ_{β} where the explicit definition of these automorphisms is given by

	h_{α}	h_{β}	x_{α}	x_{β}	$x_{\alpha+\beta}$	y_{α}	y_{β}	$y_{\alpha+\beta}$
σ_{α}	$-h_{\alpha}$	$h_{\alpha}+h_{\beta}$	y_{α}	$x_{\alpha+\beta}$	x_{β}	x_{α}	$y_{\alpha+\beta}$	y_{β}
σ_{β}	$h_{\alpha}+h_{\beta}$	$-h_{\beta}$	$x_{\alpha+\beta}$	y_{β}	x_{α}	$y_{\alpha+\beta}$	x_{β}	y_{α}

Extending these maps to automorphisms of $C\left(A_{2}\right)$ a direct computation verifies that if ϕ is a solution of type T_{2} then $\phi \circ \sigma_{\beta}$ is a solution of type T_{1} and if ϕ is of type T_{3} then $\phi \circ \sigma_{\alpha} \circ \sigma_{\beta}$ is of type T_{1}. In addition if ϕ is a solution of type T_{5} (resp. type T_{6}) then $\phi \circ \sigma_{\alpha}$ (resp. $\sigma \circ \sigma_{\beta} \circ \sigma_{\alpha}$) is a solution of type T_{4}. Thus we have shown that conjecture I is valid for the algebra A_{2}.

Remark. Solutions of type T_{1} and T_{4} are also weakly equivalent using the automorphism Φ defined by $\Phi\left(h_{\alpha}\right)=h_{\beta}, \Phi\left(h_{\beta}\right)=h_{\alpha}, \quad \Phi\left(x_{\alpha}\right)=-x_{\beta}$ and $\Phi\left(x_{\beta}\right)=-x_{\alpha}$. Note however that $\Phi \forall A\left(A_{2}\right)$.

Case 3. The algebras $A_{n}=\operatorname{sl}(n+1, \mathbf{C})$ for $n \geqq 3$. A Chevalley basis for A_{n} is given by the following set of elements:

$$
\begin{array}{lll}
h_{\alpha_{i}} & =e_{i i}-e_{i+1, i+1} & \text { for } \quad i=1,2, \ldots, n \\
x_{\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j}} & =e_{i, j+1} & \text { for } 1 \leqq i \leqq j \leqq n \\
y_{\alpha_{i}+\alpha_{i}+1+\ldots+\alpha_{j}} & =e_{j+1, i} & \text { for } \\
1 \leqq i \leqq j \leqq n
\end{array}
$$

where $e_{i j}$ denotes an $(n+1) \times(n+1)$ matrix with 1 in the $(i, j)^{\text {th }}$ component and zeroes elsewhere. We fix

$$
H=\sum_{i=1}^{n} \mathbf{C} h_{\alpha_{i}}
$$

as a Cartan subalgebra. By the Poincaré-Birkhoff-Witt Theorem there exists a linear basis of $U\left(A_{n}\right)$ given by

$$
\prod_{1 \leqq i \leq j \leq n} y_{\alpha_{i}+\ldots+\alpha_{j}}^{t_{j}, j+1} \prod_{1 \leqq i \leq j \leq n} x_{\alpha_{i}+\ldots+\alpha_{j}}^{r_{i}^{i, j+1}} \prod_{i=1}^{n} h_{\alpha_{i}}^{l_{i}}
$$

where the products preserve a fixed order on the basis elements of A_{n} and the exponents are non-negative integers. By the degree of any such monomial we mean

$$
\sum_{1 \leqq i \leqq j \leqq n}\left(t_{i, j+1}+r_{i, j+1}\right)+\sum_{i=1}^{n} l_{i} .
$$

Proposition 3. The algebra $C\left(A_{n}\right)$ is generated by the set

$$
\begin{aligned}
& \left\{1, h_{\alpha_{1}}, \ldots, h_{\alpha_{n}}\right\} \cup\left\{C(M)=\prod_{1 \leqq i \leqq j \leqq n} y_{\alpha_{i}+\ldots+\alpha_{j}}^{m_{j+1}, \ldots} \prod_{1 \leqq i \leqq j \leqq n} x_{\alpha_{i}+\ldots+\alpha_{j}}^{m_{i, j+1}}\right. \\
& M=\left(m_{i j}\right) \neq 0 \text { is an }(n+1) \times(n+1) \text { mutrix of } 0 \text { 's and } 1 \text { 's with } m_{i i}=0
\end{aligned}
$$

and

$$
\sum_{i=1}^{n+1} m_{i, k}=\sum_{i=1}^{n+1} m_{k, i}=0 \quad \text { or } 1 \text { for euch } k
$$

and M cannot be expressed as a nontrivial sum of two such matrices $\}$.
Proof. The automorphisms $\sigma_{\alpha_{i}} \in A\left(A_{n}\right)$ can be realized by setting $\sigma_{\alpha_{i}}(x)$ $=P_{i}^{-1} \times P_{i}$ for all $x \in A_{n}$ where P_{i} is the permutation matrix of the transposition ($i, i+1$).

To prove this proposition it suffices to show that every basis monomial $c \in C\left(A_{n}\right)$ can be expressed as a linear combination of products of the given
generators. We assume inductively that the theorem is true for A_{n-1} and that the above statement is valid for basis monomials of $C\left(A_{n}\right)$ of degree $<k$. Now if $c \in C\left(A_{n}\right)$ is a basis monomial of degree k and contains some h_{α} as a factor then we can express c as a product of two basis monomials of $C\left(A_{n}\right)$ of degree strictly less than k and then the result follows from the inductive hypothesis.

Thus without loss of generality we assume $c \in C\left(A_{n}\right)$ is a basis monomial of degree k where

$$
c=\prod_{1 \leqq i \leqq j \leqq n} y_{\alpha_{i}+\ldots+\alpha_{j}}^{l_{j+1, i}} \prod_{1 \leqq i \leqq j \leqq n} x_{\alpha_{i}+\ldots+\alpha_{j}}^{l_{i, j+1}}
$$

and we associate with c the matrix $\Lambda=\left(l_{i j}\right)$ where $l_{i i}=0$. If Λ is one of the matrices described in the statement of the proposition then c itself is a generator and we are finished. If not, we note that since $c \in C\left(A_{n}\right)$ we have

$$
\sum_{i=1}^{n+1} l_{i, k}=\sum_{i=1}^{n+1} l_{k, i}
$$

for all k and hence we must have for some k

$$
\sum_{i=1}^{n+1} l_{i, k}=\sum_{i=1}^{n+1} l_{k, i} \geqq 2
$$

In fact we may assume that this is true for $k=n+1$. (This follows since we have $\sigma_{\alpha_{i}}(c)=c^{\prime}+$ terms of degree $<k$ where c^{\prime} is a basis monomial of $C\left(A_{n}\right)$ with associated matrix $P_{i}^{-1} \Lambda P_{i}$).

We now factor c into generating elements of $C\left(A_{n-1}\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}\right)$ by suppressing the index α_{n}, say $c=c_{1} c_{2} \ldots c_{p}+$ terms of lower degree. (Note that this factorization is not unique and whenever $y_{\alpha_{n}}$ or $x_{\alpha_{n}}$ occur as factors in c they are treated as separate factors in this product). Since each factor c_{i} is a generating element of $C\left(A_{n-1}\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}\right)$ or one of the terms $y_{\alpha_{n}}$ or $x_{\alpha_{n}}$ we have that it can contain at most one factor of the form $y_{\alpha_{i}+\ldots+\alpha_{n}}$. Thus for each $i, c_{i} \in C\left(A_{n}\right)$ or $U\left(A_{n}\right)_{ \pm \alpha_{n}}$. By assumption

$$
\sum_{i=1}^{n+1} l_{i, n+1}=\sum_{i=1}^{n+1} l_{n+1, i} \geqq 2
$$

and hence the above factorization must contain at least two factors. If there are exactly two factors then each factor must contain exactly one term of the form $y_{\alpha_{i}+\ldots+\alpha_{n}}$ and one term of the form $x_{\alpha j+\ldots+\alpha_{n}}$ and hence both factors are in $C\left(A_{n}\right)$ and we may apply out inductive hypothesis on each factor. If there are more than two factors, then either all are in $C\left(A_{n}\right)$ in which case we are finished or at least one, say c_{1}, is in $U\left(A_{n}\right)_{+\alpha_{n}}$ and at least one, say c_{i}, is in $U\left(A_{n}\right)_{-\alpha_{n}}$. Then $c=\left(c_{1} c_{i}\right)\left(c_{2} \ldots\right)+$ terms of lower degree and $c_{1} c_{i}, c_{2} \ldots \in$ $C\left(A_{n}\right)$ and again we may apply our inductive hypothesis to complete the proof.

We now return to the problem of constructing the family of algebra homomorphisms $F_{A n}$ and prove the following reduction:

Proposition 4. Any algebra homomorphism $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ is completely determined by its values on the generators of $C\left(A_{n}\right)$ of degree $\leqq 3$. In particular, ϕ is trivial on $C\left(A_{n}\right)$ if $\phi=0$ on all generators of degrees 1 and 2 .

Proof. We proceed by induction on n, noting that the cases $n=1$ and 2 are trivially true. For the inductive step we observe that every generator of $C\left(A_{n}\right)$ of degree $\leqq n$ is contained in a subalgebra isomorphic to $C\left(A_{n-1}\right)$. Thus it suffices to verify that the value of ϕ on the generators of degree $n+1$ are determined by the values of ϕ on the generators of degree $\leqq n$.

The problem is further reduced by observing that ϕ is completely determined on all generators of degree $n+1$ provided ϕ is known on all generators of degree $\leqq n$ and one generator of degree $n+1$. In fact consider the following identities in $C\left(A_{n}\right)$:
a) $\left[y_{\alpha_{n}} x_{\alpha_{n}}, y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} x_{\alpha_{2}} \ldots x_{\alpha_{n-1}}\right]$

$$
=y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n}}-y_{\alpha_{n}} y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}+\alpha_{n}}
$$

b) $\left[y_{\alpha_{1}} x_{\alpha_{1}}, y_{\alpha_{2}+\ldots+\alpha_{n}} x_{\alpha_{2}} \ldots x_{\alpha_{n}}\right]$

$$
=y_{\alpha_{2}+\ldots+\alpha_{n}} y_{\alpha_{1}} x_{\alpha_{1}+\alpha_{2}} x_{\alpha_{3}} \ldots x_{\alpha_{n}}-y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n}}
$$

c) $\left[y_{\alpha_{i}} x_{\alpha_{i}}, y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{i}-1} x_{\alpha_{i}+\alpha_{i}+1} x_{\alpha_{i+2}} \ldots x_{\alpha_{n}}\right]=y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n}}$
$-y_{\alpha_{1}+\ldots+\alpha_{n}} y_{\alpha_{i}} x_{\alpha_{1}} \ldots x_{\alpha_{i-1}+\alpha_{i}} x_{\alpha_{i}+\alpha_{i+1}} x_{\alpha_{i+2}} \ldots x_{\alpha_{n}}$
$-y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{i}-1} x_{\alpha_{i}+\alpha_{i+1}} x_{\alpha_{i+2}} \ldots x_{\alpha_{n}}$ for $i=2,3, \ldots, n-1$.
Setting $M_{0}=e_{n+1,1}+\sum_{i=1}^{n} e_{i, i+1}$ and applying the algebra homomorphism ϕ to the above identities we have
a) and b) $\Rightarrow \phi\left(c\left(M_{0}\right)\right)=\phi\left(c\left(P_{n}^{-1} M_{0} P_{n}\right)\right)=\phi\left(c\left(P_{1}^{-1} M_{0} P_{1}\right)\right)$
c) $\quad \Rightarrow \phi\left(c\left(M_{0}\right)\right)=\phi\left(c\left(P_{i}^{-1} M_{0} P_{i}\right)\right)+\phi($ a degree n term $)$
for $i=2,3, \ldots n-1$.
If $c(M)$ is an arbitrary degree $n+1$ generator of $C\left(A_{n}\right)$, we have $M=$ $P^{-1} M_{0} P$ where P is a product of transposition matrices P_{i}. By sequentially applying the corresponding product of automorphisms $\sigma_{\alpha_{i}} \in A\left(A_{n}\right)$ to the above identities we may conclude that

$$
\phi(c(M))=\phi\left(c\left(M_{0}\right)\right)+\phi(\text { terms of degree } \leqq n)
$$

Thus ϕ is completely determined if one knows the image of ϕ on all generators of degree $\leqq n$ and on one generator of degree $n+1$.

Assume now that ϕ is zero on all generators $(\neq 1)$ of degree $\leqq n$. Considering the identity

$$
\begin{aligned}
& \left(y_{\alpha_{n}} y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}+\alpha_{n}}\right)\left(y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n}}\right) \\
& \quad=\left(y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}+\alpha_{n}} y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}}\right)\left(y_{\alpha_{n}} x_{\alpha_{n}}\right) \\
& \left.+y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}+\alpha_{n}}-y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} \ldots x_{\alpha_{n-1}}\right) \\
& \quad \times\left(y_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{1}} \ldots x_{\alpha_{n}}\right)
\end{aligned}
$$

and applying the map ϕ we obtain $\phi\left(c\left(P_{n}^{-1} M_{0} P_{n}\right)\right) \phi\left(c\left(M_{0}\right)\right)=0$. But by a $)$ above this implies $\phi\left(c\left(M_{0}\right)\right)^{2}=0$; ie. $\phi\left(c\left(M_{0}\right)\right)=0$. Thus ϕ is identically
zero on all degree $n+1$ generators. From Table I we note that any algebra homomorphism $\phi: C\left(A_{n}\right) \rightarrow C$ for which $\phi=0$ on degree 1 and 2 generators is also zero on all degree 3 generators and hence the second statement of the proposition is verified.

We may now assume that ϕ is non-zero on some generator of degree $\leqq 2$; in fact, without loss of generality we may assume that $\phi \circ \sigma\left(y_{\alpha_{1}} x_{\alpha_{1}}\right) \neq 0$ for some $\sigma \in A\left(A_{n}\right)$. Now consider the identity

$$
\begin{aligned}
& \left(y_{\alpha_{2}+\ldots+\alpha_{n}} x_{\alpha_{2}+\ldots+\alpha_{n}}\right)\left(y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} x_{\alpha_{2}} \ldots x_{\alpha_{n-1}}\right) \\
& \quad=\left(y_{\alpha_{2}+\ldots+\alpha_{n}} y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{2}} \ldots x_{\alpha_{n-1}}\right)\left(y_{\alpha_{1}} x_{\alpha_{1}}\right) \\
& \quad+\left(y_{\alpha_{2}+\ldots+\alpha_{n}} y_{\alpha_{1}} x_{\alpha_{1}+\ldots+\alpha_{n}}\right)\left(y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}+\alpha_{2}} x_{\alpha_{3}} \ldots x_{\alpha_{n-1}}\right) \\
& \quad+\left(y_{\alpha_{2}+\ldots+\alpha_{n}} x_{\alpha_{2}+\ldots+\alpha_{n}}\right)\left(y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}} x_{\alpha_{2}} \ldots x_{\alpha_{n-1}}\right)
\end{aligned}
$$

Applying the homomorphism $\phi \circ \sigma$ to this identity we have that the value of ϕ on one generator of degree $n+1$, namely the degree $n+1$ generator associated with

$$
\sigma\left(y_{\alpha_{2}+\ldots+\alpha_{n}} y_{\alpha_{1}+\ldots+\alpha_{n-1}} x_{\alpha_{1}+\ldots+\alpha_{n}} x_{\alpha_{2}} \ldots x_{\alpha_{n-1}}\right)
$$

can be expressed as a rational function of the values of ϕ on generators of degree $\leqq n$.

We now particularize these results to the case of $n=3$ where we construct, up to weak equivalence, all members of $F_{A_{3}}$. Take an arbitrary algebra homomorphsm $\phi \in F_{A_{3}}$ and assume first that ϕ, restricted to one of the four naturally embedded copies of $C\left(A_{2}\right)$, is of type T_{i} for $i=1,2, \ldots, 6$ (cf. Table I). Applying an appropriate automorphism from Aut (A_{3}) we may assume that ϕ restricted to $C\left(A_{2}\{\alpha, \beta+\gamma\}\right)$ is of Type T_{1}. This places restrictions on the other values of ϕ as shown in the following table:

Table II

	1.	$2 a)$	$b)$	$c)$	$d)$	$3 a)$	$b)$	$c)$
$\phi\left(h_{\alpha}\right)$	λ_{1}							
$\phi\left(h_{8}\right)$	λ_{2}							
$\phi\left(h_{\gamma}\right)$	λ_{3}							
$\phi\left(c_{1}\right)$	p							
$\phi\left(c_{2}\right)$		0	q	$-\lambda_{2}$	q			
$\phi\left(c_{3}\right)$		q	0	q	$-\lambda_{3}$	0	r	r

Remarks. 1. For convenience we have labelled the generators of $C\left(A_{3}\right)$ by setting

$$
\begin{aligned}
& c_{1}=y_{\alpha} x_{\alpha} ; \quad c_{2}=y_{\beta} x_{\beta} ; \quad c_{3}=y_{\gamma} x_{\gamma} ; \quad c_{4}=y_{\alpha+\beta} x_{\alpha+\beta} ; \quad c_{5}=y_{\beta+\gamma} x_{\beta+\gamma} ; \\
& c_{6}=y_{\alpha+\beta+\gamma} x_{\alpha+\beta+\gamma} ; \quad c_{7}=y_{\alpha+\beta} x_{\alpha} x_{\beta} ; \quad c_{8}=y_{\beta+\gamma} x_{\beta} x_{\gamma} ; \quad c_{9}=y_{\beta} y_{\alpha} x_{\alpha+\beta} ; \\
& c_{10}=y_{\gamma} y_{\beta} x_{\beta+\gamma} ; \quad c_{11}=y_{\alpha+\beta+\gamma} x_{\alpha+\beta} x_{\gamma} ; \quad c_{12}=y_{\alpha+\beta+\gamma} x_{\alpha} x_{\beta+\gamma} ; \\
& c_{13}=y_{\gamma} y_{\alpha+\beta} x_{\alpha+\beta+\gamma} ; \quad c_{14}=y_{\beta+\gamma} y_{\alpha} x_{\alpha+\beta+\gamma} ; \quad c_{15}=y_{\alpha+\beta+\gamma} x_{\alpha} x_{\beta} x_{\gamma} ; \\
& c_{16}=y_{\gamma} y_{\beta} y_{\alpha} x_{\alpha+\beta+\gamma} ; \quad c_{17}=y_{\alpha+\beta} y_{\beta+\gamma} x_{\alpha+\beta+\gamma} x_{\beta} ; \\
& c_{18}=y_{\beta} y_{\alpha+\beta+\gamma} x_{\alpha+\beta} x_{\beta+\gamma} ; \quad c_{19}=y_{\gamma} y_{\alpha+\beta} x_{\alpha} x_{\beta+\gamma} ; \quad c_{20}=y_{\beta+\gamma} y_{\alpha} x_{\alpha+\beta} x_{\gamma} .
\end{aligned}
$$

2. The values in column 1 result from the assumption that $\phi \downarrow$ $C\left(A_{2}\{\alpha, \beta+\gamma\}\right)$ is of type T_{1}.
3. The values in columns 2a)-d) represent the four possible solutions for $\phi \downarrow C\left(A_{2}\{\beta, \gamma\}\right)$ consistent with $\phi\left(c_{5}\right)=0$. In columns $2 c$) and d) we also must have $\phi\left(h_{\beta}\right)+\phi\left(h_{\gamma}\right)=\lambda_{2}+\lambda_{3}=0$.
4. The values in columns 3a)-d) represent the four possible solutions for $\phi \downarrow C\left(A_{2}\{\alpha+\beta, \gamma\}\right)$ consistent with $\phi\left(c_{6}\right)=0$. In columns 3 c) and d) we also must have $\phi\left(h_{\alpha}+h_{\beta}\right)+\phi\left(h_{\gamma}\right)=\lambda_{1}+\lambda_{2}+\lambda_{3}=0$.

If ϕ satisfies conditions 2a) and 3a) then $\phi=0$ on all generators of $C\left(A_{3}\right)$ in $\bar{C}\{ \pm \alpha, \pm \beta, \pm(\alpha+\beta)\}$ of degree $\leqq 3$. Thus ϕ must coincide with the trivial extension of an algebra homomorphism $\phi: C\left(A_{2}\{\alpha, \beta\}\right) \rightarrow \mathbf{C}$. By the previous analysis of $F_{A 2}$, there exists $\sigma \in A\left(A_{2}\{\alpha, \beta\}\right)$ such that $\phi \circ \sigma: C\left(A_{2}\{\alpha, \beta\}\right) \rightarrow \mathbf{C}$ is g-standard. Since any $\sigma \in A\left(A_{2}\{\alpha, \beta\}\right)$ has a natural extension to a map $\bar{\sigma} \in A\left(A_{3}\right)$ with the property that

$$
\tilde{\sigma}(\bar{C}\{ \pm \alpha, \pm \beta, \pm(\alpha, \beta)\}) \subseteq \bar{C}\{ \pm \alpha, \pm \beta, \pm(\alpha, \beta)\}
$$

we conclude that $\phi \circ \bar{\sigma}$ agrees with a g-standard algebra homomorphism of $F_{A_{3}}$ on all generators of degree $\leqq 3$ and hence by Proposition $3, \phi \circ \bar{\sigma}$ is itself g-standard.

If ϕ satisfies conditions 2a) and 3b) then $\phi=0$ on all generators of $C\left(A_{3}\right)$ in $\bar{C}\{ \pm \alpha, \pm \gamma\}$ of degree $\leqq 3$. Thus ϕ is a trivial extension of algebra homomorphisms $\phi_{1}: C(\pm \alpha) \rightarrow \mathbf{C}$ and $\phi_{2}: C(\pm \gamma) \rightarrow \mathbf{C}$ and hence is g-standard relative to $\{ \pm \alpha\} \cup\{ \pm \gamma\}$.

In each of the other cases, by using identities from $C\left(A_{3}\right)$, and automorphisms from $A\left(A_{3}\right)$ we can show that ϕ is weakly equivalent to a g-standard algebra homomorphism.

It remains now to consider those algebra homomorphisms $\phi \in F_{A_{3}}$ such that the restrictions of ϕ to each of the four copies of $C\left(A_{2}\right)$ in $C\left(A_{3}\right)$ are standard; ie. of type T_{0} from Table I. We parametrize ϕ separately on each restriction as follows:

Table III

	$C\left(A_{2}\{\alpha, \beta\}\right)$	$C\left(A_{2}\{\beta, \gamma\}\right)$	$C\left(A_{2}\{\alpha+\beta, \gamma\}\right)$	$C\left(A_{2}\{\alpha, \beta+\gamma\}\right)$
$\phi\left(h_{\alpha}\right)$	λ_{1}	λ_{1}	λ_{1}	λ_{1}
$\phi\left(h_{\beta}\right)$	λ_{2}	λ_{2}	λ_{2}	λ_{2}
$\phi\left(h_{\gamma}\right)$	λ_{3}	λ_{3}	λ_{3}	λ_{3}
$\phi\left(c_{1}\right)$	$s\left(s-\lambda_{1}-1\right)$			$u\left(u-\lambda_{1}-1\right)$
$\phi\left(c_{2}\right)$	$\left(s-\lambda_{1}\right)\left(s-\lambda_{1}-\lambda_{2}-1\right)$	$t\left(t-\lambda_{2}-1\right)$		
$\phi\left(c_{3}\right)$		$\left(t-\lambda_{2}\right)\left(t-\lambda_{2}-\lambda_{3}-1\right)$	$\left(v-\lambda_{1}-\lambda_{2}\right)\left(v^{1}-\lambda_{1}-\lambda_{2}-\lambda_{3}-1\right)$	
$\phi\left(c_{4}\right)$	$s\left(s-\lambda_{1}-\lambda_{2}-1\right)$		$v\left(v-\lambda_{1}-\lambda_{2}-1\right)$	
$\phi\left(c_{5}\right)$		$t\left(t-\lambda_{2}-\lambda_{3}-1\right)$		$\left(u-\lambda_{1}\right)\left(u-\lambda_{1}-\lambda_{2}-\lambda_{3}-1\right)$
$\phi\left(c_{6}\right)$				$u\left(u-\lambda_{1}-\lambda_{2}-\lambda_{3}-1\right)$
$\phi\left(c_{7}\right)=\phi\left(c_{9}\right)$	$s\left(s-\lambda_{1}\right)\left(s-\lambda_{1}-\lambda_{2}-1\right)$			
$\phi\left(c_{8}\right)=\phi\left(c_{10}\right)$		$t\left(t-\lambda_{2}\right)\left(t-\lambda_{2}-\lambda_{3}-1\right)$		
$\phi\left(c_{11}\right)=\phi\left(c_{13}\right)$			$v\left(v-\lambda_{1}-\lambda_{2}\right)\left(v-\lambda_{1}-\lambda_{2}-\lambda_{3}-1\right)$	
$\phi\left(c_{12}\right)=\phi\left(c_{14}\right)$				$u\left(u-\lambda_{1}\right)\left(u-\lambda_{1}-\lambda_{2}-\lambda_{3}-1\right)$

In order that ϕ be well-defined we must have certain relations among the parameters; in fact, we must have

1. $s=u \quad$ or $\quad s=1+\lambda_{1}-u$
2. $s=t+\lambda_{1}$ or $s=1+\lambda_{1}+\lambda_{2}-t$
3. $t=v-\lambda_{1}$ or $t=1+\lambda_{1}+2 \lambda_{2}+\lambda_{3}-v$
4. $s=v \quad$ or $\quad s=1+\lambda_{1}+\lambda_{2}-v$
5. $t=u-\lambda_{1}$ or $t=1+\lambda_{1}+\lambda_{2}+\lambda_{3}-u$
6. $v=u \quad$ or $v=1+\lambda_{1}+\lambda_{2}+\lambda_{3}-u$.

By analyzing each of the distinct combinations of relations and applying Proposition 3, we may conclude that either ϕ is a standard algebra homomorphism in $F_{A_{3}}$ or ϕ is weakly equivalent under $A\left(A_{3}\right)$ to one of the previously described algebra homomorphisms. Thus to summarize we have that Conjecture I is valid for the algebra A_{3}.

Although we are as yet unable to verify this conjecture for the algebra A_{n} with $n \geqq 4$ we do have the following first step in this direction:

Proposition 5. If $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ is an algebra homomorphism such that ϕ restricted to each copy of $C\left(A_{3}\right)$ in $C\left(A_{n}\right)$ is standard then ϕ itself is standard.

Proof. We proceed by induction on n, noting that the case $n=3$ is trivially true. Assume that the proposition is true for $n-1 \geqq 3$ and consider $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ as given. By our inductive hypothesis ϕ restricted to the subalgebras

$$
\begin{aligned}
C\left(A_{n-1}\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right\}\right), \quad C\left(A _ { n - 1 } \left\{\alpha_{1}+\alpha_{2}, \alpha_{3}, \ldots,\right.\right. & \left.\left.\alpha_{n}\right\}\right), \ldots, \\
& C\left(A_{n-1}\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}\right)
\end{aligned}
$$

is standard with parameters $s_{1}, s_{2}, \ldots, s_{n+1}$ respectively. In order that ϕ be well-defined we must have $s_{1}=s_{2}=\ldots=s_{n}=s_{n+1}+\phi\left(h_{\alpha_{1}}\right)$. Since every degree $\leqq 3$ generator of $C\left(A_{n}\right)$ is in at least one of these subalgebras we have that ϕ agrees on all generators of degree $\leqq 3$ with a standard algebra homomorphism of $F_{A n}$ paramerized by s_{1} and $\phi \downarrow H$. By Proposition 4 we have that ϕ itself is then standard.

Section 3. Pointed representations. In this section we shall "label" the pointed representations of a simple Lie algebra L in the following sense. We wish to specify a set $\hat{F}_{L} \subseteq F_{L}$ having the following properties:

1) If $\phi_{1}, \phi_{2} \in \hat{F}_{L}$ with $\phi_{1} \neq \phi_{2}$ then $U / M_{\phi_{1}} \not \approx U / M_{\phi_{2}}$ as L-modules.
2) If V is a pointed representation of L then there exists $\phi \in F_{L}$ such that $V \cong U / M_{\phi}$ and ϕ is weakly equivalent modulo $A(L)$ to an element in \hat{F}_{L}.

Since the group $A(L)$ is finite we would thus associate with each $\phi \in \hat{F}_{L}$ a finite number of non-equivalent pointed representations of L.

Definition. A standard algebra homomorphism $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ with parameters $s \in \mathbf{C}$ and $\lambda \in H^{*}$ is said to be complete if and only if

$$
\begin{array}{r}
s-\phi\left(\sum_{i=0}^{p} h_{\alpha i} \forall \mathbf{Z} \text { for } p=0,1, \ldots, n \text { and } \quad 0 \leqq \operatorname{Re} \phi\left(h_{\alpha_{i}}\right)<1\right. \\
\text { for } \quad i=1,2, \ldots, n
\end{array}
$$

where $\left\{\check{\alpha}_{i}\right\}$ is the dual basis of $\left\{\alpha_{i}\right\}$ relative to the Killing form.
(Note that if $\phi \downarrow H=\sum_{j=1}^{n} S_{j} \alpha_{j}$ then $\left.\phi\left(h_{\check{\alpha}_{i}}\right)=S_{i}\right)$.
Definition. A g-standard algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ defined relative to $\bigcup_{i=1}^{l} \Gamma_{i}$ is said to be extreme if and only if $\phi \downarrow\left\{C(L) \cap U\left(\Gamma_{i}\right)\right\}$ is complete for each i.

Remark. In particular any algebra homomorphism $\phi: \mathrm{C}(L) \rightarrow \mathrm{C}$ which is identically zero on the ideal $\bar{C}(\emptyset)$ is an extreme g-standard algebra homomorphism.

Conjecture II. The family of all extreme g-standard algebra homomorphisms $\phi \in F_{L}$ labels the pointed representations of L.

Our aim in this section will be to prove that any two distinct extreme g-standard algebra homomorphisms give rise to non-equivalent pointed representations and that if ϕ is a g-standard algebra homomorphism then there exists an extreme g-standard algebra homomorphism $\bar{\phi}$ such that $U / M_{\bar{\phi}}$ $\cong U / M_{\phi \circ \sigma}$ for some $\sigma \in A(L)$. This will imply that for any algebra L satisfying Conjecture I, Conjecture II is also valid.

We first give an explicit description for the pointed representations associated with standard and g-standard algebra homomorphisms. Let $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ be the standard algebra homomorphism parametrized by $s \in \mathbf{C}$ and $\lambda \in H^{*}$. For each $u \in U_{\xi}$ where $\xi=\sum_{i=1}^{n} k_{i} \alpha_{i}\left(k_{i} \in \mathbf{Z}\right)$ we define a scalar $\mu(u)$ by setting

$$
\rho(u) v(\mathbf{0})=\mu(u) v\left(k_{1}, \ldots, k_{n}\right) .
$$

We claim that $\mu(u)=0$ implies $\mu \in M_{\phi}$. In fact, it suffices to show that for any $w \in U_{-\xi}$ we have $\phi(w u)=0$ and this follows since

$$
\phi(w u) v(\mathbf{0})=\rho(w u) v(\mathbf{0})=\rho(w) \rho(u) v(\mathbf{0})=\rho(w) \mu(u) v\left(k_{1}, \ldots, k_{n}\right)=0 .
$$

By construction of U / M_{ϕ} every weight function must be of the form

$$
\eta=\left(\phi+\sum_{i=1}^{n} l_{i} \alpha_{i}\right) \downarrow H
$$

where the coefficients l_{i} 's are integers. Setting $\xi=\sum_{i=1}^{n} l_{i} \alpha_{i}$ we know that $\left(U / M_{\phi}\right)_{\eta} \cong U_{\xi} /\left(U_{\xi} \cap M_{\phi}\right)$ as H-modules. Taking $u_{1}, u_{2} \in U_{\xi}$ we claim that
the set $\left\{u_{1}+M_{\phi}, u_{2}+M_{\phi}\right\}$ is always linearly dependent. Without loss of generality we may assume that $\mu\left(u_{2}\right) \neq 0$ and hence consider the element

$$
u_{1}=\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2} .
$$

For all $w \in U_{-\xi}$ we have

$$
\begin{aligned}
\phi\left(w\left(u_{1}-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2}\right)\right) v(\mathbf{0}) & =\rho\left(w\left(u_{1}-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2}\right)\right) v(\mathbf{0}) \\
& =\rho(w) \rho\left(u_{1}-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2}\right) v(\mathbf{0}) \\
& =\rho(w)\left(\mu\left(u_{1}\right)-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} \mu\left(u_{2}\right)\right) v\left(l_{1}, \ldots, l_{n}\right) \\
& =0 \quad \text { or } \\
\phi\left(U_{-\xi}\left(u_{1}-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2}\right)\right)= & 0 \quad \text { and hence } u_{1}-\frac{\mu\left(u_{1}\right)}{\mu\left(u_{2}\right)} u_{2} \in M_{\phi} .
\end{aligned}
$$

Therefore $\operatorname{dim}\left(U / M_{\phi}\right)_{\eta} \leqq 1$ for all η.
To complete our description of the representation U / M_{ϕ} it remains only to indicate which weight spaces are one-dimensional. To this end we set

$$
P_{i}= \begin{cases}s-\lambda\left(h_{\alpha_{1}}+\ldots+h_{\alpha_{i}}\right) & \text { if this is a positive integer } \\ +\infty & \text { otherwise }\end{cases}
$$

and

$$
q_{i}= \begin{cases}s-\lambda\left(h_{\alpha_{1}}+\ldots+h_{\alpha_{i}}\right) & \text { if this is a non-positive integer } \\ -\infty & \text { otherwise }\end{cases}
$$

where $i=0,1,2, \ldots, n$ and by convention $h_{\alpha_{0}}=0$. Define

$$
D_{s, \lambda}=\left\{\left(l_{1}, \ldots, l_{n}\right) \in \mathbf{Z}^{n} \mid q_{i} \leqq l_{i}-l_{i+1}<P_{i} \text { for all } i=0,1, \ldots, n\right\}
$$

(note that $l_{0}=l_{n+1}=0$ by convention). We claim then that the linear functional $\left(\phi+\sum_{i=1}^{n} l_{i} \alpha_{i}\right) \downarrow H$ is a one-dimensional weight function of U / M_{ϕ} if and only if $\left(l_{1}, \ldots, l_{n}\right) \in D_{s, \lambda}$. Recall from [7] that if

$$
s-\lambda\left(h_{\alpha_{1}}+\ldots+h_{\alpha_{i}}\right)=m \in \mathbf{Z}
$$

then the subspace of $V_{s, \lambda}$ with basis $\left\{v\left(k_{1}, \ldots, k_{n}\right) \mid k_{i}-k_{i+1} \geqq m\right\}$ is a subrepresentation of $\left(\rho, V_{s, \lambda}\right)$. Suppose now that $u \in U_{\xi}$ with $\xi=\sum_{i=1}^{n} l_{i} \alpha_{i}$ and $\left(l_{1}, \ldots, l_{n}\right) \notin D_{s, \lambda}$ then for any $w \in U_{-\xi}$ we must have

$$
\phi(w u) v(\mathbf{0})=\rho(w u) v(\mathbf{0})=\rho(w) \rho(u) v(\mathbf{0})=0
$$

since there exists a subrepresentation of $V_{s, \lambda}$ to which only one of the vectors $v(\mathbf{0})$ and $v\left(l_{1}, \ldots, l_{n}\right)$ belongs. If, on the other hand, $\left(l_{1}, \ldots, l_{n}\right) \in D_{s, \lambda}$ then one can select elements $u \in U_{\xi}$ and $w \in U_{-\xi}$ such that $\phi(w u) \neq 0$; ie. $u \notin M_{\phi}$. Summarizing we have

Proposition 6. With the notation introduced above, if $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ is a standard algebra homomorphism parametrized by $s \in \mathbf{C}$ and $\lambda \in H^{*}$ then the associated pointed representation of A_{n} is

$$
U / M_{\phi}=\sum_{\left(l_{1}, \ldots, l_{n}\right) \in D_{s}, \lambda} \oplus\left(U / M_{\phi}\right){\underset{\phi+}{\phi=1}}^{\substack{n \\ l_{i} \alpha_{i}}}
$$

where each weight space is one-dimensional.
We now consider a g-standard algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ relative to $\cup \Gamma_{i}$ and make the following observations:

1) For any $v=\Delta_{+} \backslash \cup \Gamma_{i}, x_{v} \in M_{\phi}$. In fact, if $w \in U_{-v}$ then $w x_{v} \in \bar{C}\left(\cup \Gamma_{i}\right)$ and hence $\phi\left(w x_{v}\right)=0$; ie. $x_{v} \in M_{\phi}$.
2) If u is a basis element of U of the form $\left(^{*}\right)$ for which $\exists \beta \in \Delta_{+} \backslash \cup \Gamma_{i}$ with $r_{\beta} \neq 0$ then $u \in M_{\phi}$. This follows from 1) using induction on the degree of u.
3) If $\xi=\sum_{\alpha \in \Delta_{++} \cap\left(\cup \Gamma_{i}\right)} k_{\alpha} \cdot \alpha$ where $(\forall \alpha) k_{\alpha} \in \mathbf{Z}$ then for any basis element $u \in U_{\xi}$ we have either $u \in M_{\phi}$ or $u=u_{1} u_{2} \ldots u_{\imath} z$ where $z \in U(H)$ and, if

$$
\xi_{i}=\sum_{\alpha \in \Delta_{++} \cap \Gamma_{i}} k_{\alpha} \cdot \alpha
$$

$u_{i} \in U\left(\Gamma_{i}\right)_{\xi_{i}}$.
If $u \notin M_{\phi}$ then by 2) we may assume that $r_{\beta}=t_{\beta}=0$ for all $\beta \in \Delta_{+} \backslash \cup \Gamma_{i}$. Then applying induction on the degree of u, we may reorder the terms of u into the required form.
4) For each $i, M_{\phi} \cap U\left(\Gamma_{i}\right)$ is a maximal left ideal of $U\left(\Gamma_{i}\right)$.

It is clear that $\mathrm{M}_{\phi} \cap U\left(\Gamma_{i}\right)$ is a left ideal of $U\left(\Gamma_{i}\right)$ and since ker $\phi \cap U\left(\Gamma_{i}\right)$ $\subseteq M_{\phi} \cap U\left(\Gamma_{i}\right)$ it remains only to show that for any $u \in U\left(\Gamma_{i}\right)_{\eta} \backslash M_{\phi}$, where η is an integral linear combination of roots from $\Delta_{++} \cap \Gamma_{i}$, there exists $v \in U\left(\Gamma_{i}\right)_{-\eta}$ such that $\phi(v u) \neq 0$. Since M_{ϕ} is maximal in U there exists $w \in U_{-\eta}$ with $\phi(w u) \neq 0$. If w_{0} is a basis element of U of minimal degree such that $\phi\left(w_{0} u\right) \neq 0$ then $w_{0} \in U\left(\Gamma_{i}\right)_{-\eta}$. In fact w_{0} does not contain any factors of type h_{α} since in this case we have $w_{0}=w^{\prime} h_{\alpha}+$ lower degree terms and hence a contradiction;

$$
0 \neq \phi\left(w_{0} u\right)=\phi\left(w^{\prime} h_{\alpha} u\right)=\phi\left(w^{\prime} u\right) \phi\left(h_{\alpha}\right)+\eta\left(h_{\alpha}\right) \phi\left(w^{\prime} u\right)=0 .
$$

We also know that $w_{0} \in U\left(\cup \Gamma_{i}\right)$ as otherwise $w_{0} u \in C\left(\cup \Gamma_{i}\right)$. Thus by 3$)$ we have $w_{0}=c v+$ lower degree terms where $c \in C(L)$ and $v \in U\left(\Gamma_{i}\right)_{-\eta}$. By the minimality of the degree of w_{0} we must have c is a non-zero scalar and hence $w_{0} \in U\left(\Gamma_{i}\right)_{-\eta}$, as required.

With the help of these observations we can now prove the following result:
Proposition 7. Let

$$
\xi=\sum_{\alpha \in \Delta_{++} \cap\left(\cup \mathrm{\Gamma}_{i}\right)} k_{\alpha} \cdot \alpha \quad \text { and } \quad \xi_{i}=\sum_{\alpha \in \Delta_{++\cap} \Gamma_{i}} k_{\alpha} \cdot \alpha
$$

where $k_{\alpha} \in \mathbf{Z}$ for all α. Then $\operatorname{dim}\left(U / M_{\phi}\right)_{\lambda} \leqq 1$ for $\lambda=(\phi+\xi) \downarrow H$ and moreover $\operatorname{dim}\left(U / M_{\phi}\right)_{\lambda}=1$ if and only if

$$
\operatorname{dim}\left(U\left(\Gamma_{i}\right) /\left(M_{\phi} \cap U\left(\Gamma_{i}\right)\right)\right)_{\phi+\xi_{i}}=1 \text { for all } i=1,2, \ldots, l .
$$

Proof. Since for each $i, U\left(\Gamma_{i}\right) \cong U\left(A_{n i}\right)$ and $\phi \downarrow\left(C(L) \cap U\left(\Gamma_{i}\right)\right)$ is a standard algebra homomorphism, Proposition 6 implies that

$$
\operatorname{dim}\left(U\left(\Gamma_{i}\right) /\left(M_{\phi} \cap U\left(\Gamma_{i}\right)\right)\right)_{\phi+\xi_{i}} \leqq 1
$$

and gives explicit conditions when it is exactly 1 .
Assume first that there exists i_{0} such that

$$
\operatorname{dim}\left(U\left(\Gamma_{i_{0}}\right) /\left(M_{\phi} \cap U\left(\Gamma_{i_{0}}\right)\right)\right)_{\phi+\xi \xi_{0}}=0
$$

This implies that

$$
U\left(\Gamma_{i_{0}}\right)_{\xi_{i_{0}}} \subseteq M_{\phi}
$$

We claim that in this case $U_{\xi} \subseteq M_{\phi}$ and hence $\operatorname{dim}\left(U / M_{\phi}\right)_{\lambda}=0$. In fact if $u \in U_{\xi}$ is a basis element we may assume by remark 3 that $u=u_{1} u_{2} \ldots u_{i} z$ where $z \in U(H)$ and $u_{i} \in U\left(\Gamma_{i}\right)_{\xi_{i}}$. Then

$$
u=u_{1} u_{2} \ldots u_{i} z=u_{1} \ldots \hat{u}_{i_{0}} \ldots u_{l} z u_{i_{0}}+\xi_{i_{0}}(z) u_{1} \ldots \hat{u}_{i_{0}} \ldots u_{l} u_{i_{0}} \in M_{\phi} .
$$

That is, $U_{\xi} \subseteq M_{\phi}$ as required.
Assume now that for all $i=1,2, \ldots, l$ we have

$$
\operatorname{dim}\left(U\left(\Gamma_{i}\right) /\left(M_{\phi} \cap U\left(\Gamma_{i}\right)\right)\right)_{\phi+\xi_{i}}=1
$$

and hence there exists $g_{i} \in U\left(\Gamma_{i}\right)_{\xi_{i}} \backslash M_{\phi}$ such that for any $u_{i} \in U\left(\Gamma_{i}\right)_{\xi_{i}}$, u_{i} is a non-zero scalar multiple of g_{i} modulo M_{ϕ}. Since $\left[U\left(\Gamma_{i}\right), U\left(\Gamma_{j}\right)\right]=\{0\}$ for $i \neq j$ we have that $g_{1} \ldots g_{l} \in U_{\xi} \backslash M_{\phi}$ and for any $u \in U_{\xi}, u$ is a scalar multiple of $g_{1} \ldots g_{l}$ modulo M_{ϕ}. That is, $\operatorname{dim}\left(U / M_{\phi}\right)_{\lambda}=1$.

We now make use of these descriptions of pointed representations to complete our labelling programme.

Lemma. If $\phi: C(L) \rightarrow \mathbf{C}$ is an extreme g-standard algebra homomorphism relative to $\cup_{i} \Gamma_{i}$ then the set of weight functions of U / M_{ϕ} is contained in the set

$$
\left\{\phi+\sum_{\alpha \in \Delta_{+}+} k_{\alpha} \cdot \alpha \mid(\forall \alpha) k_{\alpha} \in \mathbf{Z} ; \quad\left(\forall \alpha \in \Delta_{++} \backslash \cup \Gamma_{i}\right) \quad k_{\alpha} \leqq 0\right\} .
$$

Proof. Set $\lambda=\phi+\sum_{\alpha \in \Delta_{+}} k_{\alpha} \cdot \alpha$ and $\xi=\sum k_{\alpha} \cdot \alpha$ where $(\forall \alpha) k_{\alpha} \in \mathbf{Z}$ and consider any basis element $u \in U_{\xi}$. If $k_{\beta}>0$ for some $\beta \in \Delta_{++} \backslash \cup \Gamma_{i}$ then there must exist some $\beta^{\prime} \in \Delta_{++} \backslash \cup \Gamma_{i}$ such that $\gamma_{\beta^{\prime}} \neq 0$ in u and hence by remark 2 we have $u \in M_{\phi}$. That is, $\operatorname{dim}\left(U / M_{\phi}\right)_{\lambda}=0$. Thus in order for λ to be a weight function of U / M_{ϕ} we must have $k_{\alpha} \leqq 0$ for all $\alpha \in \Delta_{++} \backslash \Gamma_{i}$.

Proposition 8. If $\phi_{1}, \phi_{2}: C(L) \rightarrow \mathbf{C}$ are two distinct extreme g-standard algebra homomorphisms then $U / M_{\phi_{i}} \nsubseteq U / M_{\phi_{2}}$ as L-modules.

Proof. Assume that ϕ_{1} and ϕ_{2} are as given and $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$. We claim that $\phi_{1}=\phi_{2}$. Since equivalent representations have the same set of weight functions we must have that $\phi_{1} \downarrow H$ is a weight function of $U / M_{\phi 2}$ and hence

$$
\phi_{1} \downarrow H=\phi_{2} \downarrow H+\sum_{\alpha \in \Delta_{+}+} l_{\alpha} \cdot \alpha
$$

where $(\forall \alpha) l_{\alpha} \in \mathbf{Z}$. We also note that if ϕ_{1} is g-standard relative to $\cup \Gamma_{i}{ }^{(1)}$ and ϕ_{2} is g-standard relative to $\cup \Gamma_{i}{ }^{(2)}$ then $\cup \Gamma_{i}{ }^{(1)}=\cup \Gamma_{i}{ }^{(2)}$. Indeed if $\beta \in \cup \Gamma_{i}{ }^{(1)}$ and $\beta \forall \cup \Gamma_{i}{ }^{(2)}$ then $\phi_{1} \downarrow H+l \cdot \beta$ is a weight function of $U / M_{\phi_{1}}$ and therefore of $U / M_{\phi_{2}}$ for all $l \in \mathbf{Z}$. But then

$$
\phi_{1} \downarrow H+l \beta=\phi_{2} \downarrow H+\sum_{\alpha \in \Delta_{+}} l_{\alpha} \cdot \alpha+l \cdot \beta
$$

is a weight function of $U / M_{\phi_{2}}$ for all $l \in \mathbf{Z}$ and since $\beta \notin \Gamma_{i}{ }^{(2)}$ this contradicts the lemma above.

Now fix any $\beta_{0} \in \Delta_{++} \backslash \cup \Gamma_{i}{ }^{(1)}=\Delta_{++} \backslash \cup \Gamma_{i}{ }^{(2)}$ and note that

$$
\phi_{1} \downarrow H=\phi_{2} \downarrow H+\sum_{\alpha \in \Delta_{+}+} l_{\alpha} \cdot \alpha
$$

is a weight function of $U / M_{\phi_{2}}$. Therefore by the above lemma $l_{\beta_{0}} \leqq 0$. But we also have that

$$
\phi_{2} \downarrow H=\phi_{1} \downarrow H+\sum_{\alpha \in \Delta_{++}}\left(-l_{\alpha}\right) \cdot \alpha
$$

is a weight function of $U / M_{\phi_{1}}$ and again applying the lemma we have $-l_{\beta_{0}} \leqq 0$. Therefore we have that $l_{\beta_{0}}=0$ for all $\beta_{0} \in \Delta_{++} \backslash \cup \Gamma_{i}{ }^{(1)}$.

On the other hand assume $\beta_{0} \in \cup \Gamma_{i}{ }^{(1)}=\bigcup \Gamma_{i}{ }^{(2)}$. Then by definition of extreme g-standard we have that $0 \leqq \operatorname{Re} \phi_{i}\left(h_{\breve{\beta}_{0}}\right)<1$ for $i=1,2$. But

$$
\phi_{1}\left(h_{\mathcal{\beta}_{0}}\right)=\phi_{2}\left(h_{\tilde{\beta}_{0}}\right)+l_{\beta_{0}}
$$

and hence $l_{\beta_{0}}=0$. Thus $\phi_{1} \downarrow H=\phi_{2} \downarrow H$ and since $U / M_{\phi_{1}} \cong U / M_{\phi_{2}}$ we have $\phi_{1}=\phi_{2}$ as required.

It remains now only to show that for any g-standard algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ there exists an extreme g-standard $\bar{\phi}: C(L) \rightarrow \mathbf{C}$ such that $U / M_{\phi} \cong U / M_{\bar{\phi} \circ \sigma}$ for some $\sigma \circ A(L)$. We proceed through a series of lemmas.

Lemma 9a. If $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ is a standurd algebra homomorphism parametrized by $s \in \mathbf{C}$ and $\lambda \in H^{*}$ then

1) $\phi \circ \sigma_{\alpha_{1}}$ is standard parametrized by $s-\lambda\left(h_{\alpha_{1}}\right) \in \mathbf{C}$ and $\lambda \circ \sigma_{1} \in H^{*}$.
2) $\phi \circ \sigma_{\alpha_{i}}$ is standard parametrized by $s \in \mathbf{C}$ and $\lambda \circ \sigma_{i} \in H^{*}$ for $i=$ $2,3, \ldots, n$.
3) If $\xi=\sum_{i=1}^{n} l_{i} \cdot \alpha_{i}$ where $l_{i} \in \mathbf{Z}$ and $(\phi+\xi) \downarrow H$ is a 1-dimensional weight function of U / M_{ϕ} then the algebra homomorphism $\phi^{\prime}: C\left(A_{n}\right) \rightarrow \mathbf{C}$ associated with $(\phi+\xi) \downarrow H$ is standard parametrized by $s+l_{1} \in \mathbf{C}$ and $(\phi+\xi) \downarrow$ $H \in H^{*}$.

Proof. 1) Define two representations

$$
\left(\rho, V_{s, \lambda}\right) \text { and }\left(\rho^{\prime}, V_{s-\lambda\left(h_{\alpha_{i}}\right), \lambda o \sigma_{\alpha_{i}}}\right)
$$

as in [7] where the underlying vector space is the same for both. Using the explicit description of these representations one can easily verify that

$$
\left(\rho \cdot \sigma_{\alpha_{1}}, V_{s, \lambda}\right) \cong\left(\rho^{\prime}, V_{s-\lambda\left(h_{\alpha_{i}}\right), \lambda \circ \sigma_{\alpha_{i}}}\right)
$$

where the equivalence map is the identity. Then we have

$$
\phi \circ \sigma_{\alpha_{1}}(c) v(\mathbf{0})=\rho \circ \sigma_{\alpha_{1}}(c) v(\mathbf{0})=\rho^{\prime}(c) v(\mathbf{0}) \quad\left(\forall c \in C\left(A_{n}\right)\right) .
$$

That is, $\phi \circ \sigma_{\alpha_{1}}$ is standard, parametrized by $s-\lambda\left(h_{\alpha_{1}}\right) \in C$ and $y \circ \sigma_{\alpha_{1}} \in H^{*}$.
2) This follows in the same manner as 1) on noting that for $i \geqq 2$

$$
\left(\rho \circ \sigma_{\alpha_{i}}, V_{s, \lambda}\right) \cong\left(\rho^{\prime}, V_{s, \lambda \circ \sigma_{\alpha i}}\right)
$$

where the equivalence map is the identity.
3) Recall from [7, Proposition 2] that the representations ($\rho, V_{s, \lambda}$) and ($\rho^{\prime}, V_{t, \lambda^{\prime}}$) where $\lambda^{\prime}-\lambda=\sum_{i=1}^{n} l_{i} \cdot \alpha_{i}$ and $t=s+l_{1}$ are equivalent and the equivalence map $\psi: V_{s, \lambda} \rightarrow V_{t, \lambda^{\prime}}$ is given by

$$
\psi\left(v\left(k_{1}, \ldots, k_{n}\right)\right)=v\left(k_{1}-l_{1}, \ldots, k_{n}-l_{n}\right) .
$$

By assumption we also have $U / M_{\phi} \cong U / M_{\phi^{\prime}}$ and this equivalence can be realized by the map $\Phi: U / M_{\phi} \rightarrow U / M_{\phi^{\prime}}$ where $\Phi\left(1+M_{\phi}\right)=u_{0}+M_{\phi^{\prime}}$ with

$$
u_{0} \in U_{\tau} \backslash M_{\phi} \quad \text { where } \tau=\sum_{i=1}^{n} l_{i} \alpha_{i} .
$$

We may also assume that u_{0} has been selected in such a way that

$$
\rho^{\prime}\left(u_{0}\right) v\left(-l_{1},-l_{2}, \ldots,-l_{n}\right)=v(\mathbf{0}) .
$$

In fact for any $u \in U_{\tau} \backslash M_{\phi}$ we have

$$
\rho^{\prime}(u) v\left(-l_{1}, \ldots,-l_{n}\right)=\rho^{\prime}(u) \psi(v(\mathbf{0}))=\psi(\rho(u) v(\mathbf{0}))
$$

and $\rho(u) v(\mathbf{0})$ is a non-zero scalar multiple of $v\left(l_{1}, \ldots, l_{n}\right)$ since $u \notin M_{\phi}$. That is,

$$
\rho^{\prime}(u) v\left(-l_{1}, \ldots,-l_{n}\right)=K v(\mathbf{0})
$$

with $K \neq 0$ and hence we may select $u_{0}=u / K$. Also since $u_{0} \notin M_{\phi}$ we can select an element $w_{0} \in U_{\tau}$ such that $\phi\left(w_{0} u_{0}\right)=1$. Now by Proposition 2 we have $\phi^{\prime}(c)=\phi\left(w_{0} c u_{0}\right)$ for all $c \in C\left(A_{n}\right)$. Finally for all $c \in C\left(A_{n}\right)$ we have

$$
\begin{aligned}
& \rho^{\prime}(c) v(\mathbf{0})=\rho^{\prime}(c) \rho^{\prime}\left(u_{0}\right) v\left(-l_{1}, \ldots,-l_{n}\right)=\rho^{\prime}\left(c u_{0}\right) \psi(v(\mathbf{0})) \\
& \quad=\psi \circ \rho\left(c u_{0}\right) v(\mathbf{0})=\rho\left(w_{0} c u_{0}\right) v(\mathbf{0})=\phi\left(w_{0} c u_{0}\right) v(\mathbf{0})=\rho^{\prime}(c) v(\mathbf{0}) .
\end{aligned}
$$

Thus ϕ^{\prime} is standard, parametrized by $s+l_{1} \in \mathbf{C}$ and $(\phi+\xi) \downarrow H \in H^{*}$.

Lemma 9b. Assume $\phi: C\left(A_{n}\right) \rightarrow \mathbf{C}$ is a standard algebra homomorphism, parametrized by $s \in \mathbf{C}$ and $\lambda \in H^{*}$ such that for some $p=0,1, \ldots, n$,

$$
s-\lambda\left(\sum_{i=0}^{p} h_{\alpha_{i}}\right) \in \mathbf{Z}
$$

Then there exists a g-standard algebra homomorphism $\phi^{\prime}: C\left(A_{n}\right) \rightarrow \mathbf{C}$ relative to the complete subset Γ^{\prime} or $\Gamma^{\prime \prime}$ of Δ generated by $\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}$ or $\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}$ such that $U / M_{\phi^{\prime}} \cong U / M_{\phi \text { oo }}$ for some $\sigma \in A\left(A_{n}\right)$.

Proof. Let m denote the minimum integer, by absolute value, among the integers in the set

$$
\left\{s-\lambda\left(\sum_{i=0}^{p} h_{\alpha_{i}}\right) \mid p=0,1, \ldots, n\right\} .
$$

Assume first that

$$
m=s-\lambda\left(\sum_{i=0}^{r} h_{\alpha_{i}}\right) \leqq 0
$$

If $r \neq 0$ (ie. $s \neq m$) then applying parts 1) and 2) of Lemma 9a we have that if

$$
\sigma=\sigma_{\alpha_{r}} \circ \ldots \circ \sigma_{\alpha_{1}} \in A\left(A_{n}\right)
$$

then $\phi \circ \sigma$ is a standard algebra homomorphism parametrized by $s^{\prime} \in C$ and $\lambda^{\prime} \in H^{*}$ where

$$
s^{\prime}=s-\lambda\left(\sum_{i=0}^{r} h_{\alpha_{i}}\right)=m .
$$

By Proposition 6, $\left(\phi \circ \sigma-m \alpha_{1}\right) \downarrow H$ is a 1 -dimensional weight space of $U / M_{\phi o \sigma}$. Applying part 3) of Lemma 9a, the algebra homomorphism ϕ^{\prime} : $C\left(A_{n}\right) \rightarrow \mathbf{C}$ associated with the 1 -dimensional weight function ($\phi \circ \sigma-m \alpha_{1}$) $\downarrow H$ is also standard parametrized by $s^{\prime \prime} \in C$ and $\lambda^{\prime \prime} \in H^{*}$ where $s^{\prime \prime}=s^{\prime}$ $-m_{1}=0$. It then follows that $\phi^{\prime} \downarrow \bar{C}\left(\Gamma^{\prime}\right) \equiv 0$. That is, ϕ^{\prime} is g-standard relative to Γ^{\prime}. Finally we also have $U / M_{\phi_{1}} \cong U / M_{\phi \circ \sigma}$.

On the other hand, if we assume that $m>0$ by a similar argument we can define an algebra homomorphism $\phi^{\prime}: C\left(A_{n}\right) \rightarrow \mathbf{C}$ which is g-standard relative to $\Gamma^{\prime \prime}$ and $U / M_{\phi^{\prime}} \cong U / M_{\phi \circ \sigma}$ for some $\sigma \in A\left(A_{n}\right)$.

Lemma 9c. Let $\phi: C(L) \rightarrow \mathbf{C}$ be a g-standard algebra homomorphism relative to $\cup_{i=1}^{l} \Gamma_{i}$. Then:

1) For any $\alpha \in \Delta_{++} \cap \Gamma_{i 0}$ we have $\phi \circ \sigma_{\alpha}$ is g-standard relative to $\cup \Gamma_{i}$. More precisely we have $\phi \circ \sigma_{\alpha} \equiv \phi$ on $U\left(\Gamma_{j}\right) \cap C(L)$ for $j \neq i_{0}$ and $\phi \circ \sigma_{\alpha} \equiv 0$ on $\bar{C}\left(\cup \Gamma_{i}\right)$.
2) If

$$
\xi=\sum_{\alpha \in \Delta_{+} \cap \Gamma \Gamma_{i}} l_{\alpha} \cdot \alpha
$$

with $l_{\alpha} \in Z$ for all α such that $(\phi+\xi) \downarrow H$ is a 1 -dimensional weight function of U / M_{ϕ} then the algebra homomorphism ϕ^{\prime} associated with $(\phi+\xi) \downarrow H$ is gstandard relative to $\cup \Gamma_{i}$. More precisely we have $\phi^{\prime} \equiv \phi$ on $U\left(\Gamma_{j}\right) \cap C(L)$ for $j \neq i_{0}$ and $\phi^{\prime} \equiv 0$ on $\bar{C}\left(\cup \Gamma_{i}\right)$.

Proof. 1) For any $j \neq i_{0}$ and $\beta \in \Delta \cap \Gamma_{j}$ we have $\sigma_{\alpha}(\beta)=\beta$. That is, for any $c \in C(L) \cap U\left(\Gamma_{j}\right), \sigma_{\alpha}(c)=c$. Hence $\phi \circ \sigma_{\alpha}(c)=\phi(c)$ for all $c \in C(L)$ $\cap U\left(\Gamma_{j}\right)$.

For any $\beta \in \Delta \cup \Gamma_{i}, \sigma_{\alpha}(\beta) \in \Delta \cup \Gamma_{i}$ and hence for any $c \in \bar{C}\left(\cup \Gamma_{i}\right)$, $\sigma_{\alpha}(c) \in \bar{C}\left(\cup \Gamma_{i}\right)$. Therefore $\phi \circ \sigma_{\alpha}(c)=0$ for all $c \in \bar{C}\left(\cup \Gamma_{i}\right)$.

Finally $\phi \circ \sigma_{\alpha} \downarrow\left(C(L) \cap U\left(\Gamma_{i_{0}}\right)\right)$ is standard by Lemma 9 c and hence $\phi \circ \sigma_{\alpha}$ is g-standard relative to $\cup \Gamma_{i}$.
2) Take $u \in U\left(\Gamma_{i_{0}}\right)_{\xi} \backslash M_{\phi}$ and note that

$$
(\forall c \in C(L)) \phi^{\prime}(c)\left(u+M_{\phi}\right)=c\left(u+M_{\phi}\right)
$$

for any $c \in C(L) \cap U\left(\Gamma_{j}\right)$ with $j \neq i_{0}$ we have

$$
\phi^{\prime}(c)\left(u+M_{\phi}\right)=c\left(u+M_{\phi}\right)=u c+M_{\phi}=\phi(c)\left(u+M_{\phi}\right) .
$$

Hence $\phi^{\prime}(c)=\phi(c)$.
Also for any $c \in \bar{C}\left(\bigcup_{i=1}^{l} \Gamma_{i}\right)$ we note that $U_{-\xi} c u \subseteq \bar{C}\left(\cup \Gamma_{i}\right) \subseteq M_{\phi}$ and hence $c u \in M_{\phi}$. Therefore

$$
\phi^{\prime}(c)\left(u+M_{\phi}\right)=c u+M_{\phi}=0\left(u+M_{\phi}\right)
$$

Thus $\phi^{\prime}(c)=0$.
Finally $\phi^{\prime} \downarrow\left(C(L) \cap U\left(\Gamma_{i_{0}}\right)\right)$ is standard by Lemma 9 a and hence ϕ^{\prime} is g-standard relative to $\cup \Gamma_{i}$.

Combining these lemmas we now have the main result of this section.
Proposition 9. Let $\phi: C(L) \rightarrow \mathbf{C}$ be a g-standard algebra homomorphism relative to $\cup_{i=1}^{l} \Gamma_{i}$. Then there exists an extreme g-standard algebra homomorphism $\bar{\phi}: C(L) \rightarrow \mathbf{C}$ such that $U / M_{\bar{\phi}} \cong U / M_{\phi \circ \sigma}$ for some $\sigma \in A(L)$.

Proof. We define the order of a g-standard algebra homomorphism relative to $\cup_{i=1}^{l} \Gamma_{i}$ to be $\sum_{i=1}^{n} \#\left(\Delta_{++} \cap \Gamma_{i}\right)$. Every order $0 g$-standard algebra homomorphism is by definition extreme hence we assume inductively that the proposition is true for g-standard algebra homomorphisms of order $<N$. Then consider a g-standard algebra homomorphism $\phi: C(L) \rightarrow \mathbf{C}$ of order N.

If there exists $i_{0}=1,2, \ldots, l$ such that $\phi \downarrow\left(C(L) \cap U\left(\Gamma_{i_{0}}\right)\right)$ satisfies the conditions of Lemma 9 b then by Lemmas 9 b and 9 c there exists $\sigma \in A(L)$ such that $\phi \circ \sigma$ is g-standard of order $\mathrm{N}-1$ and $U / M_{\phi} \cong U / M_{\phi \circ \sigma}$. By the inductive hypothesis then there exists an extreme g-standard algebra homomorphism $\bar{\phi}: C(L) \rightarrow \mathbf{C}$ such that $U / M_{\phi o \sigma} \cong U / M_{\bar{\phi} \sigma_{1}}$ for some $\sigma_{1} \in A(L)$. Hence by Proposition $2 U / M_{\bar{\phi}}^{\cong} U / M_{\phi \circ \sigma \sigma \sigma_{1}^{-1}}$ as required.

We may therefore assume that

$$
\left(\phi+\sum_{\alpha \in \Delta_{+}+\cap\left(\cup^{\prime} i\right.} l_{\alpha} \cdot \alpha\right) \downarrow H
$$

is a 1 -dimensional weight function of U / M_{ϕ} for all $l_{\alpha} \in \mathbf{Z}$. Thus setting $k_{\alpha}=\left[\operatorname{Re\phi }\left(h_{\check{\alpha}}\right)\right]$ for all $\alpha \in \Delta_{++} \cap\left(\cup \Gamma_{i}\right)$ (where [•] denote the greatest integer function),

$$
\left(\phi-\sum_{\alpha \in \Delta_{+}+\cap\left(\cup \Gamma_{i}\right)} k_{\alpha} \cdot \alpha\right) \downarrow H
$$

is a 1 -dimensional weight function of U / M_{ϕ}. If $\bar{\phi}$ is the associated algebra homomorphism then $U / M_{\phi} \cong U / M_{\bar{\phi}}, \bar{\phi}$ is g-standard by Lemma 9 c and is extreme since $0 \leqq \operatorname{Re}\left(\phi\left(h_{\alpha}\right)-k_{\alpha}\right)-1$.

References

1. I. Z. Bouwer, Standard representations of simple Lie algebras, Can. J. Math. 20 (1968), 344-361.
2. J. Dixmier, Algèbres enieloppantes (Gauthier-Villars, Paris, 1974).
3. S. G. Gindikin, A. A. Kirillov and D. B. Fuks, The works of I. M. Gel'fand on functional analysis, algebra and topology, Russian Math. Surveys 29 (1974), 3-61.
4. J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate texts in Mathematics 9 (Springer-Verlag, New York, 1972).
5. F. W. Lemire, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192-197.
6. One-dimensional representation of the cycle subalgebra of a semi-simple Lie algebra, Can. Math. Bull. 13 (1970), 463-467.
7. - A new family of irreducible representations of A_{n}, Can. Math. Bull. 18 (1975), 543-546.

Université de Montréal, Montréal, Québec;
University of Windsor, Windsor, Ontario

