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H-FINITE IRREDUCIBLE REPRESENTATIONS OF
SIMPLE LIE ALGEBRAS

F. LEMIRE AND M. PAP

Let L denote a simple Lie algebra over the complex number field C with H
a fixed Cartan subalgebra and C(L) the centralizer of H in the universal
enveloping algebra U of L. It is known [cf. 2, 5] that one can construct from
each algebra homomorphism ¢:C(L) — C a unique algebraically irreducible
representation of L which admits a weight space decomposition relative to H
in which the weight space corresponding to ¢ | H € H* is one-dimensional.
Conversely, if (p, V) is an algebraically irreducible representation of L admit-
ting a one-dimensional weight space I/, for some N € H*, then there exists a
unique algebra homomorphism ¢:C(L) — G which extends A such that
(p, V) is equivalent to the representation constructed from ¢. Any such
representation will be said to be pointed. The collection of all pointed represen-
tations clearly includes all dominated irreducible representations and is
included in the family of all Harish-Chandra modules which are H-finite
(cf. 2, 3].

In this paper we present a detailed study of the family of pointed represen-
tations—in particular, we shall provide a complete description, up to equiva-
lence, of all pointed representations of the simple Lie algebras sl(n, C) for
n = 2, 3 and 4. Our approach will be to label the equivalence classes of pointed
representations of L by elements from the family of algebra homomorphisms
¢:C(L) — Cin analogy to the technique of labelling the dominant irreducible
representations by their ‘“‘highest weight function””.

Section 1. Aut (L : H). In order to simplify our study of the family F;, of
all algebra homomorphisms ¢:C(L) — C and their associated pointed repre-
sentations we shall introduce an equivalence relation on F,. Let Aut(L:H)
denote the group of all automorphisms ¢ of L such that ¢(H) C H. If one
considers the weight space decomposition of U relation to H, viewed as an
L-module under the adjoint representation, we have

U = ZEEH* @ Ug.

Then for any ¢ € Aut (L:H) we have ¢(U;) € Ugo,-1 where ¢ = o | H. In
particular Uy, = C(L) and o(Uy) = Up;ite. if ¢ € Fy then poo | C € Fy
forall ¢ € Aut(L:H). (Note that we also denote by ¢ the natural extension of
¢ to an automorphism of U).

Received May 30, 1978 and in revised form October 4, 1978.
1084

https://doi.org/10.4153/CJM-1979-100-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-100-5

IRREDUCIBLE REPRESENTATIONS 1085

Definition. If ¢1, ¢ € Fp we say that ¢, is weakly equivalent to ¢, if and only
if there exists ¢ € Aut (L:H) such that ¢; = ¢2 0 ¢. This is clearly an equiva-
lence relation on F;.

Let M, denote the unique maximal left ideal of U containing ker ¢ for
¢ € Fp.Then [cf. 1] the left regular representation of L on U/ M, is the pointed
representation constructed from ¢. If ¢, ¢2 € F are weakly equivalent then
their associated pointed representations are related in the following way:

PROPOSITION 1. Let ¢1, 2 € Fp with ¢1 = ¢2 0 a for some o € Aut (L:H);
then there extists a linear space isomorphism o : U/ My — U/ M, which preserves
weight spaces in the sense that

5((U/M¢>1))\) = (U/M‘bz))\oﬁ*l-
Proof. Recall that for any ¢ € F;, we have
My = Deen ® (UsN\ M,) and u € UgMN M, if and only if
U_:u C ker ¢.

Now we observe that ¢(My,) © M,,. This follows since for any « € UM
My, o(u) € Ugz-1 and

¢2(U—tor-10 (1)) = ¢2(a(U—)o (1)) = ¢p200(U_su) = ¢:1(U_gu) = 0.
Thus we can define a map ¢ : U/ My, — U/ M, by setting
o(u + My,) = a(u) + My,

Since ¢(My,) = My, and ¢ is an automorphism of U, ¢ is a well-defined, linear
isomorphism from U/My, onto U/ M,,.
Finally, if u + My, € (U/My,)x then foreach h € H

W) + Mas) = 3o (0 + M) = 3(\0 o= (W)u + M)
= Noo " h)e(u + My,) = Noa ' (h)(o(u) + M,,).
That is,
&((U/Mm))\) = (U/MM))\Q;—L

Remark. It should be emphasized that the representations of L on U/M,,
and U/ M,, are not, in general, equivalent. However, we do have the following
result:

ProposiTiON 2. If ¢y, ¢2 € Fp with U/My, = U/M,, then for any
o € Aut (L:H) we have U/ My,00 = U/ M4,00.

Proof. As an intermediate step we first show that U/M,, = U/M,, if and
only if for ¢ = (¢1 — ¢2) | H there exists ug € U\ My, such that ¢, (c)ps(wuy)
= ¢a(wcuy) for all ¢ € C(L) and all w € U_,.
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In fact if U/My, = U/ M, then there exists an L-module homomorphism
v U/My, — U/M,,. If y(1 + My,) = ug + M, then clearly uy € U\ My,
and for w € U_g, ¢ € C(L) we have
V(we + My,) = weuy + My, = da(weuy) (1 + My,)

and also

Y(we + My,) = (i (c) (w + M) = d1(c)yp(w + My,)
= ¢1(c) (wuo + My,) = ¢1(c)d2(wuo) (1 + M,,).
Comparing, we have ¢1(c)ds(wio) = ¢a(wcuy).

Conversely if ¢, ¢» € Fand there exists ug € U\ M, such that é,(c)¢2(wu,)
= ¢o(weny) forall ¢ € C(L) and all w € U_; we claim U/ My, = U/ M,,. Let

M = Ann (uy + My,) = {u € Uluuy € M,,}.

Clearly M is a maximal left ideal of U and U/M = U/M,,. It remains only
to show that M = M,,. Since My, is the unique maximal left ideal of U
containing ker ¢; it suffices to show that ker ¢ C M. Take ¢ € C(L) with
¢1(c) = 0. Then we have that ¢s(wcuy) = 0 for all w € U_. This implies that
cug € My,. That is, ¢ € M as required.

Returning now to the proposition we assume U/M,, = U/M,, and fix
uo € Ug with properties as noted above. Then for any ¢ € Aut (L:H) we have

$100(a7(c))p20 a(c™ (w)o™ (1)) = 20 a(e ™ (w)a (c)a~" (1y)).

But ¢='(C(L)) = C(L), 6= (1to) € Utoor\Mps00 and ¢~ (U_¢) = U_to,. There-
fore for ¢ 00, ¢p200 € F; where ¢;00 — ¢, 00 = £ 0o there exists an
element 7' () € Utos\My,0s such that for all ¢/ € C(L) and all w’ € U_g,
we have

¢100(c")p200(wa " (uy)) = ¢2 0 a(wco(uy))
which implies that U/ My,00 =2 Mysoo-

We now single out a finite subgroup of Aut (L :H) which will be of impor-
tance in this paper. Calling liberally on the results of chapters 14 and 25 of
[4] we let A C H* be a root system of L with basis A, and select a Chevalley
basis

{Xp ha|lB € A a0 € Ay}
of L. Toeacha € A, we define a map S, : H* — H* by setting

2(\, @)

(@a) @
where (, ) denotes the symmetric, non-degenerate Killing form on H*. The
maps S, are automorphisms sending A into itself and one can induce, via the
Killing form, an automorphism (again denoted by .S,) of the Cartan subalgebra
H. By Theorem 14.2 [4] there exists a unique automorphism, denoted by a.,

Sa(A) = N —
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of L such that ¢, extends S, and
0'a<So[oz’) = XSa(oz')

for all ' € Ay,. Let A(L) denote the subgroup of Aut (L:H) generated by
{0l @ € Ayi}. From the definition of the maps g, we can show that

ga(Xy) = £Xoym

for all v € A. Since {0, | Hla € A,;} generates a group isomorphic to the
Weyl group we can conclude that 4 (L) is a finite group. In the particular case
of L = A, the group 4 (L) is isomorphic to the Weyl group of 4,.

Section 2. The family F;. By combining the results of two previous papers
[6,7] we construct a family of algebra homomorphisms ¢ : C(L) — C as
follows. In |7] we constructed for each fixed s € C and each fixed linear func-
tional X in the dual of the Cartan subalgebra of 4, an explicit representation
(p, Vsn) of A4,. The representation space V,, is the complex linear space
having basis

oK)k = (ky, ..., k) € ZX ... XZ}

and the representatives of elements x,; = ¢;,;41and Y., = e;41,;in 4, are given
by the formulas

p(xa)vK) = (s = N4+ ... F himy) — ki + EJuk + )

p (Yai)v (K) (s =N+ ...+ h) —ki+ ky)ok — &)
where &; is the n-tuple having 1 in its ¢ component and zeroes elsewhere. By
convention hy, = 0 and ky = k,y1 = 0. Since {4, Yai| 2 = 1,2, ..., n} gener-
ates 4, these formulas completely specify the representation (p, V). For any

such representation we obtain an algebra homomorphism ¢ : C(4,) — C by
setting

$(c)v(0) = p(c)v(0) (Ve € C(4,)).
Any algebra homomorphism defined as above will be called standard. As is
easily checked for n = 2 the parameters s and ) of a standard algebra homo-
morphism are uniquely determined.

To construct algebra homomorphisms ¢ : C(L) — C for an arbitrary simple
Lie algebra L we first require some notation. Let A C H* be the root system of
L with basis A, and set A, as the positive roots of L relative to A,,. Let
{T:}i=1.2, ..., 1 be a collection of disconnected complete subsets of A relative to
Aiy. Recall [cf. 6] that this means:

1) —TI,CTr; (Vi)

2) a,B€T, a+BEcA=a+pcT; (Vi)
3) a,B€ A, a+BET;=aBcT: (Vi)
4) Ay N Tiisabasisof T'; (V1)

5 «a€ T, BET, i#ji=a+pBdA
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Note that such a collection can be constructed by selecting any subset of
A, and forming the closure in A of this set under =+.

Select a Chevalley basis of L say {ys, x5, #a| 8 € A4, @ € Ay} and apply the
Poincarré-Birkhoff-Witt Theorem to obtain a linear basis of U(L) consisting
of all monomials

[ Lses,vs'® [ Lsen s [ Tacay ha's ()

where the exponents are non-negative integers and each product preserves a
fixed order. A linear basis of C(L) then consists of all monomials of the form
(*) where

D sen, (rs — 15)8 = 0.

Denote by C(U; T';) (resp. C(T';)) the linear subspace of C'(L) generated by
all basis elements of C(L) for whicht; = 75 = 0 for all 8 € A, \U,; I'; (resp.
B € A\T)). Also set C(\U; T';) (resp. C(T;)) equal to the linear subspace of
C(L) generated by all basis elements of C(L) not in C(\U T,) (resp. C(L;)).
By the properties of the T'/'s one can readily see that C( U, I';) and C(T;)
are subalgebras of C(L) and C(\UJ, T;) and C(T,) are two-sided ideals of C(L)
with

C(L) = C(U Fi) @ C(U r,) = C(Pi) @ C—(Fi)

as linear spaces.

From now on we assume that the I')'s are isomorphic to root systems of
algebras 4,; (for positive integers #n;). Then the subalgebra U(T;) of U
generated by

{1, hay x5, ysla € Apy M T3, 8 € AL M Ty
is isomorphic to the universal enveloping algebra of 4,; and C(L) M U(T;)
=~ (C(A4,,). Identifying C(4,,) with C(L) M U(T;) and observing that

C(Ty) = {C(L) N Uy - UH),

any algebra homomorphism ¢ : C(4,,) — C can be extended to an algebra
homomorphism & : C(T';) — C by setting ¢(h,) to an arbitrary value for
a € A++\Fi-

Finally if ¢;: C(T;) — C are constructed as above starting from standard
algebra homomorphisms ¢;: C(4,,) — G such that ¢, | U(H) = ¢; | U(H)
for all 7, j then by Theorem 6 [6] there exists an algebra homomorphism ¢:
C(L) — C such that

1) ¢] C(T,) =&, forall 7 and
2) ¢~LC(UiFi)=0-

Any such algebra homomorphism will be called a generalized (or g-) standard
algebra homomorphism relative to U ;T";.
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CoNJECTURE 1. Every algebra homomorphism ¢ : C(L) — G is weakly equiv-
alent to a g-standard one. More precisely, there exists ¢ € A (L) such that ¢ 0 ¢
15 g-standard.

We now proceed to verify this conjecture for the algebras 4;, 4, and 4.

Case 1. The Algebra A; = s1(2, C). A Chevalley basis of 4, is given by
h = e — ey, x = e12 and y = ey (where ¢;; denotes the 2 X 2 matrix with
(i, 7)™ component 1 and zero elsewhere). Fix C - & as the Cartan subalgebra
and observe that C(4,) is generated, as an algebra, by {1, &, yx}. Clearly C(4,)
is commutative and has a linear basis given by

{ (yx) k2| gy, g2 € ZH}.

Any algebra homomorphism ¢ € F4, is then completely determined by speci-
fying arbitrary values for ¢ (%) and ¢(yx) and extending. In particular, we may
select arbitrary scalars s, A € G and set ¢(h) = Nand ¢(yx) = s(s — X — 1).
Hence any algebra homomorphism ¢ € F 4, is standard.

Case 2. The algebra A, = sI(3, C). A Chevalley basis for 4. is given by the
elements

the = €11 — €99, hg = €29 — €33, Xa = €13, Xg = €23, Xaps = €13,
Ya = €21, Vg = €32, Yatp = €31}

where ¢,; denotes the 3 X 3 matrix with 1in the (¢, j) * component and zeroes
elsewhere. Let H = Ch, + Chg be the fixed Cartan subalgebra. As in [1] we
observe that C(4,) is generated, as an algebra, by

{1, hay b, €1 = YaXa, C2 = YoXg, €3 = YarfXatsr C1 = Yaif¥aXs, €5 = YgYaXats}
and has a linear basis given by
{ (c5 or €4)9'¢372co%3¢194h,?5h5%%|q s are non-negative integers}.

If one sets ¢(hy) = N1, ¢(hg) = Ny and ¢(¢;) =z, fori =1,2,...,6 then ¢
can be extended to a linear map on C(4.) using the above linear basis. This
linear map ¢ is an algebra homomorphisms if and only if ¢ preserves the
multiplication of the generators. This gives rise to the following four equations:

1. Since ¢1¢s = cac1 + ¢5 — ¢s we must have
24y = Zs.

2. Since ¢1¢4 = 401 + €361 — 261 + ¢5 — ¢3 — (¢4 — ¢3) (he + 1) we must have
M(za — 23) = 21(z3 — 22).

3. Since ¢acs = caca + 261 + ¢5 — €362 — cihg — ¢4 we must have

)\224 = 22(21 — 23).
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4. Since ¢ic5 = ¢36901 + C302ha + C361hs + Cihahs + cics + 2c360 + 230 + 2cy
— 2¢3¢90 — C3he — C3hs — 2¢5 + cacy — cic1 — ¢,h, Wwe must have
(24 - 53)(22 — 21— N — 24) + 23(32 + >\2) (21 + )\1) = 0.

The conditions imposed by multiplication of all other pairs of generators
yield equations which are dependent on those above. Provided z; # 0, —N\;
for ¢ = 1, 2 any solution of this system of equations is also a solution of the
following system:

. z,=2;

= (21 + M — 22)2122

3. Nzz = (A + \o)z1ze

4. NN+ N) = (Ga—z14+ M) (e — 20 — M)

1y
5
|

where N = z1\y + 20\ + MAo. This latter system of equations has been
solved by Bouwer [1] under the tacit assumption that \; 4+ X\, # 0. Since every
such solution of 1" — 4" is also a solution of 1 — 4 in order to determine all
solutions of 1 — 4 it remains only to solve this system under each of the above

mentioned restrictions separately. Solving we obtain the following complete
list of solutions to 1 — 4 and hence all algebra homomorphisms ¢ : C(4.) — C.

Table I. Algebra Homomorphisms ¢ : C(<s) — C.

Ty Ty T Ts T, T T
Jia At A1 At At A A N
hg A2 s A2 A2 A2 A2 As
1 S(S e 1) /) 0 —N 0 —M P
Ca =MGE-="NM—N—1) 0 —X\2 P P 0 — A2
C3 S(S — A1 — Ag — 1) 0 P — A1 — A2 0 P — A — A2
4 SC=MGE =N =X —1) 0 p P 0 0 —AN—Aa—p
Cs S(S - )\1)(5 — )\1 — )\2 - 1) 0 p [) 0 0 —)\1—)\2—17

(The symbols N1, Xy, s and p denote fixed but arbitrary complex numbers).

Note that the solutions of type 1, Ty and 7'y are g-standard algebra homo-
morphisms relative to A, { a} and { £8} respectively. We claim that the other
solutions are weakly equivalent to 7, or 7'. In fact recall that 4 (4.) is
generated by the two elements o, and o3 where the explicit definition of these
automorphisms is given by

he hg Xq xg Xt Ya ye Vais
Oa —he he + hg Vo Yot8 Xp Y Yai8 Y
] ha + hs —hy Xatp Vg Xa ot xp a
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Extending these maps to automorphisms of C(4.) a direct computation verifies
that if ¢ is a solution of type 7', then ¢ 0 g4 is a solution of type 7'y and if ¢ is
of type T3 then ¢ 0 ¢, 0 o is of type 7. In addition if ¢ is a solution of type 17
(resp. type 1) then ¢ 0 g, (resp. ¢ 0 03 0 a,) is a solution of type T's. Thus we
have shown that conjecture I is valid for the algebra A4.,.

Remark. Solutions of type 7 and 7T are also weakly equivalent using the
automorphism & defined by ®(h,) = hs, P(hg) = hay, P(x.) = —x3 and
®(x5) = —x,. Note however that ® 7 4 (A4,).

Case 3. The algebras A, = sl(n + 1, G) for n
is given by the following set of elements:

1\%

3. A Chevalley basis for 4,

ha, = € 7 €4 i1 for 1=1,2,. , 1
Xajtai it . 4a; = €1 j+1 for 1=7=j=
Va;4aiy1+..4a; = €j41,i for 1=271=5j=

where e;; denotes an (n + 1) X (n 4+ 1) matrix with 1 in the (7, 7)™ com-
ponent and zeroes elsewhere. We fix

H= i Ch,,

as a Cartan subalgebra. By the Poincaré-Birkhoff-Witt Theorem there exists
a linear basis of U(4,) given by

n
ti,j+1 | | T+l | | U
yai+...+a] xa,‘+...+a,‘ ha,‘
1=4i2jsn 1=izj=n i=1

where the products preserve a fixed order on the basis elements of 4, and the
exponents are non-negative integers. By the degree of any such monomial we
mean

21§i§j§n (i o+ 75 00) + Z';=1 [y
ProrosiTioN 3. The algebra C(A,) 1s generated by the set

{1,ha1,...,han}u;C(M)= IT stie T =0t

1= )0 1i<jsn
M= (m;) #0isan (n + 1) X (n + 1) matrix of 0's and 1's withm;; = 0
and
Srtiimi, = DEime =0 orl for euch k

and M cannot be expressed as « nontrivial sum of two such matricesz.

Proof. The automorphisms o,;, € A(A,) can be realized by setting o, (x)
= P,7' X P;forall x € 4, where P, is the permutation matrix of the trans-
position (z, 7 + 1).

To prove this proposition it sufhces to show that every basis monomial
¢ € C(A,) can be expressed as a linear combination of products of the given
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generators. We assume inductively that the theorem is true for 4,_; and that
the above statement is valid for basis monomials of C(4,) of degree <k. Now
if ¢ € C(4,) is a basis monomial of degree k and contains some , as a factor
then we can express ¢ as a product of two basis monomials of C(4,) of degree
strictly less than k and then the result follows from the inductive hypothesis.

Thus without loss of generality we assume ¢ € C(4,) is a basis monomial of
degree & where

c= J] yaiiie 11 Xald s
1< 550 1S9<j<n

and we associate with ¢ the matrix A = (/;;) where [;; = 0. If A is one of the
matrices described in the statement of the proposition then ¢ itself is a generator
and we are finished. If not, we note that since ¢ € C(4,) we have

n41 _ n4-1
i=1 li,k = Zi=1 i i
for all & and hence we must have for some %
n4-1 n4-1
Zillli,k = Zzil lk,i = 2.

In fact we may assume that this is true for &k = n + 1. (This follows since we
have g.;(c) = ¢’ + terms of degree <k where ¢’ is a basis monomial of C(4,)
with associated matrix P,~1AP,).

We now factor ¢ into generating elements of C(A4, 1{ai,...,a,1}) by
suppressing the index a,, say ¢ = cics. . . ¢, + terms of lower degree. (Note
that this factorization is not unique and whenever y,, or x,, occur as factors in
¢ they are treated as separate factors in this product). Since each factor ¢, is a
generating element of C(4,_i{ai, ..., a,—1}) or one of the terms v,, or x,,
we have that it can contain at most one factor of the form y,. ;.. 1a.. Thus for
each,¢; € C(A4,) or U(A,) 1an. By assumption

n41 _ n+41
Dl = 2 bz 2

and hence the above factorization must contain at least two factors. If there
are exactly two factors then each factor must contain exactly one term of the
form y..4...+a, and one term of the form x,,;.. 44, and hence both factors are
in C(4,) and we may apply out inductive hypothesis on each factor. If there
are more than two factors, then either all are in C(4,) in which case we are
finished or at least one, say ¢, is in U(A4,)1., and at least one, say ¢y, is in
U(A4,)—anr. Then ¢ = (ci1¢4)(c2...) + terms of lower degree and cicyy ¢o. . . €
C(A4,) and again we may apply our inductive hypothesis to complete the
proof.

We now return to the problem of constructing the family of algebra homo-
morphisms F,, and prove the following reduction:

ProrosITION 4. Any algebra homomorphism ¢: C(A,) — G is completely
determined by its values on the generators of C(A,) of degree £3. In particular, ¢
is trivial on C(A,) if ¢ = 0 on all generators of degrees 1 and 2.
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Proof. We proceed by induction on 7, noting that the cases n = 1 and 2 are
trivially true. For the inductive step we observe that every generator of
C(A4,) of degree <u is contained in a subalgebra isomorphic to C(4,_:). Thus
it suffices to verify that the value of ¢ on the generators of degree n 4 1 are
determined by the values of ¢ on the generators of degree <.

The problem is further reduced by observing that ¢ is completely determined
on all generators of degree n 4+ 1 provided ¢ is known on all generators of
degree <7 and one generator of degree n 4+ 1. In fact consider the following
identities in C(4,):

a) [yanxam ya1+-..+an«1xa1xﬂ~z LR xan—l:l
= Yort.. 4an¥er + + + Yoy = YanVar4..tan-1%¥ar + + + Xan_j4an
b) b’alxan Yas+.. +anXag - - - Xoen)
= Yast . tanYarXar+aoXay « + « Xay = Vot tan¥ay -+ + Kag
C) Iyaixuiv Var+...+an¥ar « + + Xy _1%aitai 1 ¥ain - - xan] = Nar+...4an¥ay -+« Xay,
— Vart..AandaiXar + + Xaj o 14aiXaitaigiXaie o - 0 Xay
— Yart..4an¥ar + -+ Yoy -1 XaitaipiXaigs « -« Xag fOr 1= 2,3, ..., n — 1.

Setting My = e,41.1 + 2 i=1 €1,101 and applying the algebra homomorphism
¢ to the above identities we have

a)and b) = ¢(c(My)) = ¢(c(P," ' MP,)) = ¢(c(P1MP,))

c) = ¢(c(My)) = ¢(c (P, MP,)) + ¢(a degree n term)
fort =2,3,...n— 1.

If ¢(M) is an arbitrary degree n 4+ 1 generator of C(4,), we have M =
P~'MP where P is a product of transposition matrices P;. By sequentially
applying the corresponding product of automorphisms o,; ¢ A(4,) to the
above identities we may conclude that

o (c(M)) = ¢(c(My)) + ¢ (terms of degree = n).

Thus ¢ is completely determined if one knows the image of ¢ on all generators
of degree =% and on one generator of degree n + 1.

Assume now that ¢ is zero on all generators (#1) of degree =n. Con-
sidering the identity

(yanya1+~..+an7lxa1 . xa,.,,,+a,,)(ya1+.“+a"xal e xan)
= (yal+‘..+anA1xa1 c o Koy tanYait .. Aan¥ay - - - xa"_l)(ya"xa")
+ Var+...4an¥ay + + » Xan_14an — Var+...tan-1%ay + + + xa,.Al)
X (yaH-...+a,.xa1 v Xap

and applying the map ¢ we obtain ¢ (c(P,~'MP,))¢(c(M,)) = 0. But by a)
above this implies ¢(c(M;))? = 0; ie. ¢p(c(M,)) = 0. Thus ¢ is identically
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zero on all degree n + 1 generators. From Table I we note that any algebra
homomorphism ¢ : C(4,) — C for which ¢ = 0 on degree 1 and 2 generators
is also zero on all degree 3 generators and hence the second statement of the
proposition is verified.

We may now assume that ¢ is non-zero on some generator of degree =<2;
in fact, without loss of generality we may assume that ¢ 0 ¢ (Va,Xs,) # O for
some ¢ € 4(A4,). Now consider the identity

Yart ... +anart.ran) Yart .. an—1%arXay « -« Xan_1)
= (Varst.tanVart. . tan—1%Xa1+..tan¥ay « + - Xan—1) VarXai)
+ Yaot . tandarXart...+an) (3’a1+‘..+an_1xa1+a2xa3 o Xaoy)
t Yast . tanXart . tan) Yot ban—1Xar¥as « - Xay_1)-

Applying the homomorphism ¢ o ¢ to this identity we have that the value of
¢ on one generator of degree n + 1, namely the degree n + 1 generator
associated with

U(yaz+...+anya1+.‘.+an_1xa1+.-.+anxa2 L xan—l)y

can be expressed as a rational function of the values of ¢ on generators of
degree =n.

We now particularize these results to the case of # = 3 where we construct,
up to weak equivalence, all members of I, . Take an arbitrary algebra homo-
morphsm ¢ € F,, and assume first that ¢, restricted to one of the four
naturally embedded copies of C(4.), is of type 1'; for ¢ = 1,2,...,6 (cf.
Table I). Applying an appropriate automorphism from Aut (4;) we may
assume that ¢ restricted to C(4s{a, 8 + v}) is of Type T';. This places restric-
tions on the other values of ¢ as shown in the following table:

Table I1

1. 2a) b) ) d) 3a) b) ) d)
& (ha) A
¢'(h6) Az
¢(h'y) Ai{
¢(ar) 4
#(c2) 0 q —X g
o(cs) q 0 q — N3 0 r r — N3
#(cs) r 0 —N—A2 r
o(c5) 0 0 0 0 0
#(co) 0 0 0 0 0
o(c7) = ¢(co)
@(cs) = ¢(cr0) 0 0 q —q
() = ¢(as) 0 0 r —7
o(c2) = plaaa) 0
#(cs) = ... = ¢(c20)
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Remarks. 1. For convenience we have labelled the generators of C(43;) by
setting

€1 = YaXo; C2 = YpXg; C3 = YXy; C4 = Yoif¥atfs €5 = Vo+yX8+y;
C6 = Yatptr¥atBtvs €1 T YatsXaXs; Cs = Vp4r¥pXy; Co = YgVaXats;
C10 = WYVXp+ys €11 = Yatptr¥etsXy; €12 = YaiftrXaXpiy;

€13 = W Vaip¥atBtys  C14 = YotyYaXatftyy C15 = VatpirXaXpXy;

C16 = Yy¥VYaXarptv: C17 = YatpYa+r¥atpiv¥Xs;

C18 = YpVetBtrXatBXptys €19 = VydatpXaXpty; €20 = VptyYaXatsXy.

2. The values in column 1 result from the assumption that ¢ |
C(Asfa, B + v}) is of type 1.

3. The values in columns 2a)-d) represent the four possible solutions for
¢ | C(4:{8,v}) consistent with ¢(cs) = 0. In columns 2¢) and d) we also
must have ¢ (hg) + ¢ (hy) = No + N3 = 0.

4. The values in columns 3a)-d) represent the four possible solutions for
¢ | C(4dsf{a + B, v}) consistent with ¢(cs) = 0. In columns 3c) and d) we also
must have ¢ (ha + hg) + ¢ (hy) = N+ N+ Ny = 0.

If ¢ satisfies conditions 2a) and 3a) then ¢ = 0 on all generators of C(43;)
in C{+a, £8, + (o + B8)} of degree £3. Thus ¢ must coincide with the trivial
extension of an algebra homomorphism ¢ : C(4.{«, 8}) — C. By the previous
analysis of F,,, there exists ¢ € A (A4.:{a, B}) such that ¢ 0 ¢: C(42{e, B}) — G
is g-standard. Since any ¢ € 4 (4.{a, 8}) has a natural extension to a map
7 € A(A3) with the property that

7 (Cl*a, £8, £ (o, B)}) S ClEa, £8, £(a, B)}

we conclude that ¢ o ¢ agrees with a g-standard algebra homomorphism of
Iy, on all generators of degree =3 and hence by Proposition 3, ¢ o ¢ is itself
g-standard.

If ¢ satisfies conditions 2a) and 3b) then ¢ = 0 on all generators of C(43;)
in C{+a, v} of degree <3. Thus ¢ is a trivial extension of algebra homo-
morphisms ¢;: C(£a) — G and ¢.: C(£y) = C and hence is g-standard
relative to {a} U {£v}.

In each of the other cases, by using identities from C(43;), and automor-
phisms from 4 (4;) we can show that ¢ is weakly equivalent to a g-standard
algebra homomorphism.

It remains now to consider those algebra homomorphisms ¢ € F,, such that
the restrictions of ¢ to each of the four copies of C(A4,) in C(A43) are standard;
ie. of type 7' from Table I. We parametrize ¢ separately on each restriction
as follows:
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Table 111

C(Axla, BY) C(A42{B, v1) C(Azfe + 8, v} C(4z2la, B + 1)
¢ (ha) A A A1 A1
o (hg) Az A2 e A2
o (hy) A3 A3 A3 A3
o(c1) sc—xn—1) uu — N — 1)
(c2) (=M —M—2r—1) tt— N — 1)
¢(c3) (t—N)(t — A2 — A3 — 1) (=N — X))@ — N — A2 — A3 — 1)
¢(ca) s(s — A — X — 1) (v — A — A2 — 1)
#(cs) Ht— A — 23— 1) (@ = M) =N — A — X — 1)
#(ce) wm — N — X — N — 1)

#(cr) = ¢(co)
#(cs) = ¢(ao)
$lcn) = o(as)
(az) = ¢(c1a)

ss—=AM)E =N —A—1)
1t — X))t — N — Ny — 1)

e — M — A2) (@ — A — Az — Az — 1)

Ul — M) — N — N2 — N3 — 1)
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In order that ¢ be well-defined we must have certain relations among the
parameters; in fact, we must have

1. s=u or s=14+N—u

2. s=t+ N or s=1+N+N— ¢

3. t=9—N\N or t=14+N+2N+ N —7v
4. s =y or s=14+N+N—v

b, t=u— N or t=14+ N+ N+ A3 —u
6. v=u or v =144+ N+ N+ N3 — u.

By analyzing each of the distinct combinations of relations and applying
Proposition 3, we may conclude that either ¢ is a standard algebra homo-
morphism in F,, or ¢ is weakly equivalent under 4(4;) to one of the pre-
viously described algebra homomorphisms. Thus to summarize we have that
Conjecture I is valid for the algebra 4.

Although we are as yet unable to verify this conjecture for the algebra 4,
with # = 4 we do have the following first step in this direction:

Prorosition 5. If ¢: C(A,) — C is an algebra homomorphism such that ¢
restricted to each copy of C(A3s) in C(4,) is standard then ¢ utself is standard.

Proof. We proceed by induction on #, noting that the case n = 3 is trivially

true. Assume that the proposition is true for » — 1 = 3 and consider
¢:C(4,) — G as given. By our inductive hypothesis ¢ restricted to the sub-
algebras

C(Anfl{aly A2y . v 1an,71})! C(A”_l{al + Az, Ay - ,a"})' T
(:(AnAI{a‘Zy cee an})

is standard with parameters si, sa, ..., 5,41 respectively. In order that ¢ be
well-defined we must have s; = so = ... =5, = s,41 + ¢(he,). Since every
degree =3 generator of ('(4,) is in at least one of these subalgebras we have
that ¢ agrees on all generators of degree =3 with a standard algebra homo-
morphism of F,, paramerized by s; and ¢ | H. By Proposition 4 we have that
¢ itself is then standard.

Section 3. Pointed representations. In this section we shall ‘‘label’’ the
pointed representations of a simple Lie algebra L in the following sense. We
wish to specify a set [/, C F having the following properties:

1) If ¢y, ¢2 € F, with ¢, # ¢o then U/M,, & U/M,, as L-modules.

2) If V is a pointed representation of L then there exists ¢ ¢ F such that
V= U/M,and ¢ is weakly equivalent modulo 4 (L) to an element in F .
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Since the group 4 (L) is finite we would thus associate with each ¢ € F,a
finite number of non-equivalent pointed representations of L.

Definition. A standard algebra homomorphism ¢ : C(4,) — G with param-
eterss € Cand N € H* is said to be complete if and only if

s —¢( Dt ohw @ Z for p=0,1,...,n and 0 = Re¢(hs,) <1

for 1=1,2,...,n

where {&,} is the dual basis of {a;} relative to the Killing form.
(Note thatif ¢ | H = 2 1 Sia; then ¢ (hs,) = S,).

Definition. A g-standard algebra homomorphism ¢: C(L) — G defined
relative to \U 1T is said to be extreme if and only if ¢ | {C(L) N U(T,)} is
complete for each 1.

Remark. In particular any algebra homomorphism ¢ : C(L) — C which is
identically zero on the ideal C(@) is an extreme g-standard algebra homo-
morphism.

CongectURg . The fumily of wll extreme ¢g-standard algebra homomorphisms
¢ € Fy labels the pointed representations of L.

Our aim in this section will be to prove that any two distinct extreme
g-standard algebra homomorphisms give rise to non-equivalent pointed rep-
resentations and that if ¢ is a g-standard algebra homomorphism then there
exists an extreme g-standard algebra homomorphism & such that U/M;
=~ U/ Mo, for some o € A(L). This will imply that for any algebra L satisfying
Conjecture I, Conjecture I1 is also valid.

We first give an explicit description for the pointed representations associ-
ated with standard and g-standard algebra homomorphisms. Let ¢ : C(4,) — C
be the standard algebra homomorphism parametrized by s € G and N € H*.
For each u € U where £ = D i1k, (k; € Z) we define a scalar u(u) by
setting

p()v(0) = uw(u)v(ky, ..., k).

We claim that u(z) = 0 implies p € M,. In fact, it suffices to show that for any
w € U_gwe have ¢(wu) = 0 and this follows since

é(wu)v(0) = p(wu)v(0) = p(w)p(u)v(0) = p(w)u(u)vky, ... k) = 0.

By construction of U/ M, every weight function must be of the form
n= (d’ + ZZ:I Liay) l H

where the coefficients /,'s are integers. Setting £ = Zﬁzl l,a; we know that
(U/My)y = U/ (U M My) as H-modules. Taking u,, us € Uz we claim that
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the set {u; + My, us + My} is always linearly dependent. Without loss of
generality we may assume that u(u#2) # 0 and hence consider the element

p (1)

Uy = ——< Uy

w(u2)

For all w € U_; we have

N P R

p(w)p(u1 — ﬁEZS 142)1)(0)

p(w)(u(zu) _ wlm) u(ltz))v(h, vy ly)

w(1e2)
=0 or
¢(U (u — u(i) u )) =0 and hence u; — (i) uy € M
AT () ‘ ) v

Therefore dim (U/ M), < 1 for all 7.
To complete our description of the representation U/M, it remains only to
indicate which weight spaces are one-dimensional. To this end we set

P — {5 — AN(hay + ...+ ha) if thisis a positive integer

+o0 otherwise
and
_ {s — N(hay + ... + hoy) if this is a non-positive integer
EAT S otherwise
where ¢ = 0, 1, 2,. .., n and by convention A,, = 0. Define

Doy={l,....L0)eZlqg =Il,—1ln<P; forall 1=0,1,...,n}

(note that I, = /,;1 = 0 by convention). We claim then that the linear func-
tional (¢ + Z?:llla,«) | H is a one-dimensional weight function of U/M,
if and only if (I}, ...,1,) € D, Recall from [7] that if

S —=Nbhay + ...+ hyy)) =m € Z

then the subspace of V, with basis {v(ky, ..., k,)| ki — ki1 = m} is a sub-
representation of (p, V). Suppose now that « € U with £ = > %y l,a; and
(Liy ..., 1) ¢ Dy, then for any w € U_; we must have

b (wu)v(0) = p(wu)v(0) = p(w)p(u)r(0) = 0

since there exists a subrepresentation of 17, to which only one of the vectors
v(0) and v(ly, ..., [,) belongs. If, on the other hand, (/;,...,/l,) € D, then
one can select elements u € Ugand w € U_;such that ¢ (wu) = 0;ie. u ¢ M.
Summarizing we have
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ProrositioN 6. With the notation introduced above, if ¢:C(4,) — G s «
standard algebra homomorphism parametrized by s € G and N € H* then the
associated pointed representation of A, 1s

U/M, = > ® (U/My)
[0 In) €EDs N o+ 2 lLiag

7=1
where each weight space is one-dimensional.

We now consider a g-standard algebra homomorphism ¢ : C(L) — C relative
to U I'; and make the following observations:

1) Foranyv = A \U T';, x, € My Infact,ifw ¢ U_, then wx, ¢ C(U T'y)
and hence ¢ (wx,) = 0;1e. x, & M,.

2) If u is a basis element of U of the form (*) for which 3 g € A, \\U I'; with
rg # 0 then u € M,. This follows from 1) using induction on the degree of «.

3) If & = D aea,.n (U ka-a where (Va) k, € Z then for any basis element
u € Ugwehaveeitheru € Myoru = s ... ugwherez € U(H) and, if

& = ZaEA++(\ rka @,

iy € U(T ),

If u ¢ My then by 2) we may assume thatrg = 3 = Oforall 8 € A, \U T..
Then applying induction on the degree of u#, we may reorder the terms of u«
into the required form.

4) For each 7, My, M U(T;) is a maximal left ideal of U(T).

Itis clear that Ny, M U(T';) is a left ideal of U(T';) and since ker ¢ M U(T';)
C M N U(Ty) itremains only to show that forany u € U(T,),\ M,, where nisan
integral linear combination of roots from A, M T, there exists v ¢ U(T',)_,
such that ¢(vu) # 0. Since M, is maximal in U there exists w € U_, with
o (wi) #£ 0. If wy is a basis element of U of minimal degree such that ¢ (wyu) # 0
then wy, € U(T;)_, In fact w, does not contain any factors of type A, since in
this case we have wy = w'h, + lower degree terms and hence a contradiction;

0 # ¢(wo) = ¢(Whet) = ¢ (W) (hye) + n(h)p(w'n) = 0.

We also know that w, ¢ U(\U T;) as otherwise wou € C(\U T;). Thus by 3)
we have wy = ¢v 4+ lower degree terms where ¢ € C(L) and v € U(T,)_,. By
the minimality of the degree of w, we must have ¢ is a non-zero scalar and hence
wy € U(T'y)_,, as required.

With the help of these observations we can now prove the following result:

ProrosiTioN 7. Let

= > hkera and E;= Y, ke a

acAi ) (UTD) acAp Ty
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where ko, € Z for all a. Then dim (U/ M) < 1 for N = (¢ + &) | H and more-
over dim (U/My)x = 1 if and only if

dim (U(T)/(My N\ U(T)))oss, = Lforalli = 1,2, ..., 1.

Proof. Since for each ¢, U(T',) =2 U(A4,;) and ¢ | (C(L) N\ U(T,)) is a
standard algebra homomorphism, Proposition 6 implies that

dim (U(T)/(My M U(T9)))gps; =1

and gives explicit conditions when it is exactly 1.
Assume first that there exists 7, such that

dim (U(T,)/(Me M U(T 1)) )ost:, = 0.
This implies that

U(T.)e, S M.

We claim that in this case U; € M, and hence dim (U/My)\ = 0. In fact if
u € Ug is a basis element we may assume by remark 3 that u = wyus ... u,2
where z € U(H) and u; € U(T;)¢;. Then

U= gl .. UE = Uy Uy UGBy + Eq(@)tty o iy by € My.
That is, Us € M, as required.
Assume now that forallz =1, 2, ..., [ we have
dim (U(T2)/(My N U(T)))gse; = 1

and hence there exists g; £ U(T,)¢\Ms such that for any u; ¢ U(T'y)g,,
u,; is a non-zero scalar multiple of g, modulo My. Since [U(T;), U(T;)] = {0}
for 7 & j we have that g;...¢g, € U\M; and for any u € U, u is a scalar
multiple of g; . . . g, modulo M,. That is, dim (U/My)\ = 1.

We now make use of these descriptions of pointed representations to com-
plete our labelling programme.

Lemma. If ¢: C(L) — C is an extreme g¢-standard algebra homomorphism
relative to \J ; T'; then the set of weight functions of U/ My is contained in the set

{¢ + Za€A++ ka~a)(\v/a)ka €Z;, Wa€ A \UT,) k. =0}

Proof. Set A = ¢ + ZaeA++ka -a and ¢ = Zka -a where (Va) ky € Z and
consider any basis element u € Up. If kg > 0 for some 8 € A, ,\\U T'; then there
must exist some 8’ € A, \\UU T'; such that 75 # 0 in u and hence by remark
2 we have u € M,. That is, dim (U/M,), = 0. Thus in order for X\ to be a
weight function of U/M, we must have k, = Oforalla € A \T,.

ProrosiTiON 8. If ¢1, ¢2: C(L) — C are two distinct extreme g-stundard
algebra homomorphisms then U/M,, & U/ My, as L-modules.
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Proof. Assume that ¢; and ¢, are as given and U/ My, = U/ M,,. We claim
that ¢1 = ¢». Since equivalent representations have the same set of weight
functions we must have that ¢, | H is a weight function of U/M,, and hence

o1 | H=¢2] H+ EaEA++/a‘a
where (Va) I, € Z. We also note that if ¢, is g-standard relative to \U T,V
and ¢, is g-standard relative to U T';® then U T;® = U I';®. Indeed if
Be U™ and B¢ UT,® then ¢, H+ -8 is a weight function of
U/ My, and therefore of U/M,, forall [ € Z. But then

G lH+B=¢ | H+ Dwer, lu-a+1-8

is a weight function of U/ My, for all [ € Z and since 8 ¢ T';® this contradicts
the lemma above.
Now fix any 8y € A, \U TI';V = A, \U T';2 and note that

¢1lH= ¢2lH+ ZQEA++[¢1'a

is a weight function of U/M,,. Therefore by the above lemma /5, < 0. But we
also have that

¢2lH = ¢ l H + Zaga++(‘la) T

is a weight function of U/ M, and again applying the lemma we have —I3, < 0.
Therefore we have that /g, = O forall 8, € A, \U T';V.

On the other hand assume 8y, € U T';(® = U T';®. Then by definition of
extreme g-standard we have that 0 < Re ¢;(hy,) < 1for7 = 1, 2. But

¢l(h§o> = ¢2(Il§(1) + ]/30

and hence ls, = 0. Thus ¢, | H = ¢» | H and since U/ My, = U/M,, we have
¢1 = ¢ as required.

It remains now only to show that for any g-standard algebra homomorphism
¢: C(L) — C there exists an extreme g-standard @: C(L) — C such that
U/ My == U/ Mz, for some ¢ 0 4 (L). We proceed through a series of lemmas.

LemMa 9a. If ¢: C(A4,) — C is a standard algebra homomorphism purame-
trized by s € G und N € H* then

1) ¢ 0 a4, 1s standard parametrized by s — N(hay) € G and N 0 o, € H*.

2) ¢ 0 0n; 15 standard parametrized by s € G and Nog; € H* for 1 =
2,3,...,n.

NIf £= > hyli-a; where I, € Z and (¢ + £) | H is a 1-dimensional
weight function of U/ M, then the algebra homomorphism ¢’ : C(4,) — C associ-
ated with (¢ + &) | H is standard parametrized by s + 1, € G and (¢ + &) |
H € H*.
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Proof. 1) Define two representations
(p, Vi) and (o', Vit dory,)

as in [7] where the underlying vector space is the same for both. Using the
explicit description of these representations one can easily verify that

(o gar, Vi) =2 (0", Viokthgy Moog,)
where the equivalence map is the identity. Then we have
¢ 0 0a, (0)0(0) = poaa(c)p(0) = p'(c)v(0) (Ve e C(4,)).
That is, ¢ O g4, is standard, parametrized by s — N(ha,) € Cand y 0 0, € H*.
2) This follows in the same manner as 1) on noting that for 7 = 2
(p 0 aaiy Vi) = (o', Vinorg)
where the equivalence map is the identity.

3) Recall from [7, Proposition 2] that the representations (p, 1’,,) and
(o', Via) where N — N = D i_yl;-a;and t = s + [; are equivalent and the
equivalence map ¢ : V,\ — V,\ is given by

1l/(v(kly ce ey kn)) = v(kl - [1) ] krl - ln)'

By assumption we also have U/ My = U/M, and this equivalence can be
realized by the map ®:U/M, — U/ M, where ®(1 + My) = u, + My with

uy € U\NM, wherer = > i la,

We may also assume that u, has been selected in such a way that

o' (wo)o(—1l, — Ly, ..., —=1,) = v(0).
In fact for any u € U\M, we have

p)o(=hy .oy =1) = p ()Y (@(0)) = ¥ (p(1)2(0))
and p(#)v(0) is a non-zero scalar multiple of v(ly, ..., /,) since u ¢ M,.
That is,

o (wyw(—=1b,..., —=1,) = Kv(0)

with K # 0 and hence we may select uy = u/K. Also since uy ¢ My we can
select an element w, € U, such that ¢(weu) = 1. Now by Proposition 2
we have ¢’ (¢) = ¢(wocuo) for all ¢ € C(4,). Finally for all ¢ € C(4,) we have

p'(c)v(0) = p'(c)p (o)v(—1y, ..., —1) = p'(cuo)¥ (v(0))
= Y 0 p(cug)v(0) = p(wocuo)v(0) = ¢ (wocuo)v(0) = p'(c)v(0).
Thus ¢’ is standard, parametrized by s + /; € Cand (¢ + ¢) | H € H*.

https://doi.org/10.4153/CJM-1979-100-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-100-5

1104 F. LEMIRE AND M. PAP

LemMa 9b. Assume ¢ : C(4,) = C s a standard algebra homomorphism,
parametrized by s € G and N € H* such that for some p = 0,1,...,n,

s = M2 =0 hay) € Z.

Then there exists a g-standard algebra homomorphism ¢': C(A4,) — G relutive
to the complete subset T’ or T of A generated by {as, ..., a1} or {as, . .., a,)
such that U/ My = U/ Myo, for some ¢ € A(A4,).

Proof. Let m denote the minimum integer, by absolute value, among the
integers in the set

(s = N o ha)l p=0,1,..., 0}

Assume first that
m=s— N2 iz ha) £0.

If r #0 (ie. s # m) then applying parts 1) and 2) of Lemma 9a we have
that if

0 =04 O...00,4 € A(4,)

then ¢ o ¢ is a standard algebra homomorphism parametrized by s" ¢ C and
N € H* where
si =5 — )\(Z:=0 ha,-) = m.

By Proposition 6, (¢ o0 — ma;) | H is a 1l-dimensional weight space of
U/ Myo,. Applying part 3) of Lemma 9a, the algebra homomorphism ¢':
C(4,) — C associated with the 1-dimensional weight function (¢ 0 ¢ — ma;,)
| H is also standard parametrized by s € C and N’ € H* where s/ = ¢’
— m; = 0. It then follows that ¢’ | C(I'") = 0. That is, ¢’ is g-standard
relative to I, Finally we also have U/ My, = U/ M0,

On the other hand, if we assume that m > 0 by a similar argument we can
define an algebra homomorphism ¢’ : C(4,) — G which is g-standard relative
to I and U/ My = U/ Myo, for some o € A(A4,).

LumMa 9c. Let ¢: C(L) — G be a g-standard algebra homomorphism relative
to Uiy Then:

1) For any a € Ay M Ty we have ¢ 0 o, 15 ¢g-standard relutive to \J T,
More precisely we have ¢ 0 oo = ¢ on U(T';) M C(L) for j # i and ¢ 0 0. = 0
on C(U T,).

2) If
E = Za(A++ﬂ Tig la T
with l, € Z for all a such that (¢ + &) | H is a 1-dimensional weight function of
U/M, then the algebra homomorphism ¢’ associated with (¢ + £) | H is g-

standard relative to \J Ty More precisely we have ¢' = ¢ on U(T;) M C(L) for
j# dgand ¢’ = 0on C(U Ty).
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Proof. 1) For any j # iy and 8 € AN T, we have o,(8) = 8. That is, for
any ¢ € C(L) N\ U(Ty), ga(c) = ¢. Hence ¢ 0 0,(c) = ¢(c) for all ¢ € C(L)
N U(T,).

For any 8 € AU Ty, 0,(8) € AU T, and hence for any ¢ ¢ C(U T)),
oa(c) € C(U T,). Therefore ¢ 0 0.(c) = Oforallc € C(U T),).

Finally ¢o0a, | (C(L) M U(T4)) is standard by Lemma 9c and hence
¢ 0 g, is g-standard relative to U T'..

2) Take u € U(T'y)e\M, and note that
(Ve € C(L)) ¢'(c) (u + My) = c(u + My)
for any ¢ € C(L) M U(T;) with j # 1, we have
& ()u 4+ My) = clu + M) = uc + My = ¢(c)(u + M,).
Hence ¢'(c) = ¢(c).

Also for any ¢ € C(U{- T';) we note that U_;cu € C(U T';) € M, and
hence cu € M,. Therefore

& (c)(u + My) = cu+ My, = 0(u + M,).
Thus ¢’(¢) = 0.
Finally ¢’ | (C(L) M U(T,,)) is standard by Lemma 9a and hence ¢’ is
g-standard relative to U T',.

Combining these lemmas we now have the main result of this section.

ProrosiTiON 9. Let ¢: C(L) = G be « g-standard algebra homomorphism
relative to \J !, T';. Then there exists an extreme g-standard algebra homomorphism
¢ : C(L) — Csuchthat U/ Mz = U/ Myo, for some o € A(L).

Proof. We define the order of a g-standard algebra homomorphism relative
to UioiTito be D iy #(A,4 M T,). Every order 0 g-standard algebra homo-
morphism is by definition extreme hence we assume inductively that the
proposition is true for g-standard algebra homomorphisms of order < N. Then
consider a g-standard algebra homomorphism ¢: C(L) — G of order N.

If there exists-ty = 1,2, ...,/ such that ¢ | (C(L) M U(T;,)) satisfies the
conditions of Lemma 9b then by Lemmas 9b and 9c there exists ¢ € A (L)
such that ¢ o ¢ is g-standard of order N-1 and U/M, = U/M4o,. By the
inductive hypothesis then there exists an extreme g-standard algebra homo-
morphism ¢: C(L) — G such that U/ My, = U/ M3o,, for some a1 € A(L).
Hence by Proposition 2 U/ Mz =< U/ Msoses—1 as required.

We may therefore assume that

(6 + D aca,,nwrnla-a) | H

is a 1-dimensional weight function of U/My for all [, € Z. Thus setting
ke = [Re ¢(hg)] for all a € A, M (U T;) (where [ -] denote the greatest
integer function),

(¢ — ZaEA++ﬂ wri ke-a) | H
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is a 1-dimensional weight function of U/M,. If ¢ is the associated algebra
homomorphism then U/M, = U/M;z, & is g-standard by Lemma 9c and is
extreme since 0 < Re (¢(hy) — ko) — 1.
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