6

Formation of kinks

In this chapter we study the formation of kinks and domain walls during a phase
transition. We start by describing the effective potential for a field theory at finite
temperature. This sets up a useful framework for discussing phase transitions and
defect formation.

6.1 Effective potential

The effective potential is a tool that is often used to study phase transitions in
field theory [89, 179, 90, 47, 100]. The idea is to consider the interaction of
a scalar degree of freedom (“order parameter”) with a thermal background of
particles. Such processes induce additional temperature dependent terms in the
potential for the order parameter, leading to an “effective potential.” The shape
of the effective potential varies as a function of temperature and new minima
might appear. The global minimum defines the vacuum of the model. If a new
global minimum appears at some temperature, it indicates that the system makes
a transition to a new expectation value of the order parameter and there is a
phase change. We now describe the (one loop) effective potential in a little more
detail.
We consider a field theory of scalar, spinor and vector fields

L=Lg+Lr (6.1)
with the bosonic Lagrangian
1 1
Ly = E(D/LCI>i)D“CI>i - V() — ZF:”FWQ (6.2)
where ®; are the components of the scalar fields,
D, =0, —ieA}T" (6.3)
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the T¢ are group generators, and
Fl, = 0,A% — 0,A% +ef™ AV A (6.4)

where A} are the gauge fields.
The Lagrangian for a fermionic multiplet ¥ is

Lg = iUy"D, ¥ — UT, W, (6.5)

where I'; are the Yukawa coupling matrices. The quantity W denotes a collection of
fermionic fields and the Yukawa coupling term may be written more explicitly as
we Ff‘f , Wi ®; where a, B label the various fermionic fields, the superscripts o, p
on the fermion fields are spinor indices, and i labels the interaction term with the
scalar field ®;. I'; has spinor indices because it could contain the unit matrix (vector
coupling) and/or the ¥ matrix (axial coupling) defined in Eq. (5.17).

If the expectation values of the scalar fields are denoted by ®;, then the mass

matrices of the various fields are written as

5 ?v
Kij = 7o , scalar fields (6.6)
000D, [p_g,
m = T';®y;, spinor fields (6.7)
M2, = X(T,Ty)ij®o; Do;, vector fields (6.8)

where a, b are gauge field group indices.
Then the finite temperature, one loop effective potential is!

M,
Veit(®o, T) = V(Po) + HT — %N T (6.9)
where
7
N =Np+ gNF (6.10)

is the number of bosonic and fermionic spin states, and
1
M? = Tr(u?) + 3Tr(M?) + 5Tr(y“myom) (6.11)

where ¥ is defined in Eq. (5.15). Note that M? depends on the expectation value
®(, through the defining equations for the mass matrices given above. For example,
M? contains a term proportional to Tr(dD%).

An important feature of the effective potential is that it can show the presence
of phase transitions. If there are scalar fields with negative mass squared terms in

I Radiative corrections and spontaneous symmetry breaking are discussed in [33, 178].
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Figure 6.1 Sketch of effective potential for first-order phase transition (left) and
second-order phase transition (right). In the first-order case, the global minimum of
the potential at high temperature (®y = 0 in illustration) becomes a local minimum
at low temperature. In the second-order case, the global minimum of the potential
at high temperature becomes a local maximum at low temperature. The effective
potential at &y = 0 decreases with increasing temperature because of the last term
proportional to —NT* in Eq. (6.9).

V (®), the contributions from the M2T? term in the effective potential, Eq. (6.9),
can make the effective mass squared positive for these fields if the temperature
is high enough (see Fig. 6.1). Therefore when the system is at high temperature,
the effective mass squared can be positive and the minimum of the potential at
dy = 0. As the system is cooled, the effective mass squared becomes negative and
the minimum of the effective potential occurs at non-zero values of @, and the
lowest energy state has shifted from ®y = 0 to ¢ # 0. The order parameter, ,
acquires a non-zero “vacuum expectation value” at some critical temperature. This
is the phenomenon of spontaneous symmetry breaking and manifests itself as a
phase transition. The phase at high temperature had a certain symmetry dictated by
the invariance of the field theory with ®y = 0 and at low temperature the symmetry
is changed because now @ # 0.

As asimple example of an effective potential, consider the A¢* model of Eq. (1.2)
with

my A A
V(g) = ——2¢* + Z¢* 4+ “n 6.12
) AR AL (6.12)
Then u? of Eq. (6.6) is given by
u? = —mi 4 30¢2 (6.13)
and since there is only one scalar field in this model

M? = —md + 3% (6.14)
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Therefore, up to a term that is independent of ¢, the effective potential becomes

=2
me o, Aoy
Veti(¢o, T) = 7450 + Z% (6.15)
with
) 2, Ao
m° = —mgy+ ZT (6.16)

Note that the masses of small excitations around the true vacuum are given by
V.is(¢o) with ¢ being the vacuum expectation value. By minimizing Ve (Eq. (6.15))

we get
Pomin(T) =0, i* >0 (6.17)
)
—m .
=4/ 0 6.18
. < (6.18)
leading to the mass squared for small excitations (particles) in the true vacuum
, A
mgff = Vyi(Bo.min) = Z(Tz - Tcz), T>T. (6.19)
A
=5(I-1°), T<T. (6.20)
where T is the critical temperature
2m0
I.=—F (6.21)

NG

In cosmology, since the universe is expanding, it is also cooling. Therefore
we can have one or many cosmological phase transitions and the particle-physics
symmetries at high temperatures (early universe) and low temperatures (recent
universe) are different. The symmetry after the phase transition can be smaller
or larger than the symmetry before the phase transition. In other words, lowering
the temperature can spontaneously break or restore a symmetry. We will mostly
consider symmetry breaking during the phase transition but examples of symmetry
restoration are also easy to construct. A system in which symmetry restoration is
observed is Rochelle salt [85, 179].

6.2 Phase dynamics

The effective potential V (g, T') is calculated for a system that is in thermal equi-
librium, assuming a homogeneous vacuum expectation value of the order parameter
®y. Yet thermal equilibrium is not maintained during the phase transition and also
the phase change occurs in an inhomogeneous manner. The dynamics are clear
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Figure 6.2 A schematic diagram of bubbles nucleating in a first-order phase
transition. The two types of bubbles correspond to the two different values of the
order parameter. The bubbles grow and collide, and new bubbles nucleate as well.
Eventually the whole system is in the new phase.

for a first-order phase transition in which the high temperature phase becomes a
metastable state (see Fig. 6.1) at some critical temperature. Now the system can be
stuck in this metastable state even when the temperature drops significantly below
the critical temperature. An external perturbation can cause the system to transition
to the global vacuum. In the absence of an external perturbation, quantum tunneling
can trigger the transition. In either case, bubbles of a critical size of the true vacua
(®y # 0) nucleate in the false vacuum (®y = 0) background (see Fig. 6.2). These
bubbles grow and eventually merge thus filling space and completing the phase
transition. Clearly this process is not homogeneous and cannot be described by an
effective potential.

In a second-order transition, in contrast to a first-order transition, there is no
metastable state in which the system can be trapped. Thus &, evolves continuously
(“spinodal decomposition”) from ®y = 0 to &y # 0. However, different spatial
regions evolve at different rates owing to thermal and quantum fluctuations, and ®
is not spatially uniform. Once again, since the effective potential assumes constant
®, it can indicate the existence of a second-order phase transition but cannot
be expected to accurately describe the dynamics of the transition. Since defect
formation crucially depends on the inhomogeneities of the order parameter during
the transition, new ideas have been needed to predict the statistical properties of
defects formed in a second-order phase transition.

In one spatial dimension, the distribution of kinks is described by the number
density of kinks, and correlators of kink locations. In higher dimensions, the prob-
lem becomes richer because domain walls are extended and can curve and have
complicated topology. In addition to the mass density in domain walls, we are
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interested in the statistical distribution of shapes and sizes of domain walls formed
at the phase transition.

6.3 Kibble mechanism: first-order phase transition

At a first-order phase transition, the order parameter has to change from &3 = 0 to
its non-zero vacuum expectation value. We are interested in the case when there is
more than one possible non-zero value for ®(. Then the dynamics in a small spatial
region select a vacuum. However the vacuum selected in different spatial regions
can be different. For example, in the case of the Z, model, the field in a certain
region might relax into the ¢ = +n vacuum, whereas in another region it might
relax into ¢ = —n (see Fig. 6.2).

In a first-order phase transition, each bubble is filled with constant @ i.e. a
fixed vacuum is chosen within a bubble but it can be different for different bubbles.
With time, the bubbles grow and collide and fill up the volume. Let us denote by
& the characteristic size of a region where the same vacuum is selected, after the
phase transition is over. Then £ is the typical size of bubbles when they percolate.
If I denotes the bubble nucleation rate per unit volume and v is the velocity of
the growing bubble walls, then we can define a length scale and a time scale on
dimensional grounds (in D spatial dimensions) by

_ v\ /DD 3 1 \/Prh
&= (F) , 7= (UD—F) (6.22)

The domain size & is a numerical factor times & and in practice we take & ~ £.
Similarly 7 is related to the time that it takes to complete the phase transition.>

The process of bubble percolation has been studied both analytically and nu-
merically [95]. Taking the centers of the bubbles as the vertices of a lattice and
connecting only the centers of bubbles that collide, we obtain a random lattice (see
Fig. 6.3). We would like to determine the characteristics of such a random lattice
since this plays a role in determining the network of defects that form. For example,
the typical number of bubbles with which any given bubble collides, also known
as the “coordination number” of the random lattice, plays a role in the fraction of
closed topological defects (closed domain walls, loops of string, or closely paired
monopole-antimonopole pair) that are formed.

In one spatial dimension, every bubble trivially collides with two other bubbles.
In two spatial dimensions the average number of collisions is the same as the
coordination number of a fully triangulated lattice of infinite extent. From purely

2 Equation (6.22) relates & to the nucleation rate ', but it is very hard to measure I" in any experiment. In fact, it
may be easier to measure properties of the defect network, then &, and from it infer I'.
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Figure 6.3 If two bubbles collide, their centers are joined by straight lines. The
figure then shows the “random bubble lattice” expected in a first-order phase
transition in two spatial dimensions.

geometrical constraints that we describe next, the coordination number is six (see,
for example, [129]).

The lattice is infinite in extent and by identifying the points at infinity we can
view the lattice as lying on a two-dimensional sphere. Then Euler’s formula relates
the number of vertices (V), edges (E) and faces (F') of the lattice

V—E+F=2 (6.23)

Let the coordination number be n. Therefore for every vertex there are n edges
but every edge is bounded by two vertices. This relates the number of edges to the
number of vertices: E = nV /2. Also, every face is a triangle, giving three edges
to every face. But an edge is shared by two faces. So E = 3F /2. Putting together
these relations in Euler’s formula gives

V—nV/24nV/3=2 (6.24)

In the limit of V — o0, this yields n = 6.

In three spatial dimensions, similar arguments have been given [95] to show
that the average coordination number is 13.4. This result is not completely fixed
by geometrical constraints as in two dimensions and the result can vary a little
depending on the details of the bubble size distribution.

Returning to the A¢* model, each bubble either has the phase ¢y = +1 or ¢ =
—n within it. If bubbles of different phases collide, a domain wall forms between the
centers of those bubbles. If bubbles of the same phase collide, a wall does not form,
though it is possible that a closed domain wall or a wall-antiwall pair forms owing
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to the energetics of the bubble collision. We expect small closed walls and closely
separated walls and antiwalls to annihilate. Hence the distribution of domain walls
after the phase transition is simply described by the locations of bubble collisions
when the bubbles carry different phases. Since the phase in the bubbles is &7 with
equal probability, the phase transition is simulated by assigning £ to each of the
vertices of the random bubble lattice as in Fig. 6.3. We shall further discuss the
properties of the wall network at formation during a first-order phase transition in
Section 6.6.

As we have seen, a first-order phase transition is relatively simple to conceptual-
ize. A second-order phase transition is harder to understand. To discuss second-order
phase transitions, it is useful to first define an equilibrium correlation length.

6.4 Correlation length

The “equilibrium correlation length,” £, is defined as the distance over which field
correlations are significant. Generally the field correlations at two spatial points
fall off exponentially with increasing separation between the points, exp(—r/€),
and the exponent defines the equilibrium correlation length, &. Hence we need to
evaluate the correlation function

G(r) =(T|p(t. x)¢(z, YIT) (6.25)

where G only depends onr = |x — y| because the system is translationally invariant.
The thermal state is denoted by |7') and is defined as the state containing the
equilibrium number density distribution (Fermi-Dirac or Bose-Einstein) of particles

|T) = |{nx}) (6.26)

1
(6.27)

k= Chor £ 1

where B = 1/T and wy is the energy of particles in the k mode.?
With the Z, model in mind, we have only one scalar field and the quantum field
operator can be expanded in modes about the true vacuum

de 1
(27)3 2wy
where ¢y(T) is the vacuum expectation value of the field at temperature 7', and ay
and a, are annihilation and creation operators. The dispersion relation is that for

a free particle with temperature dependent mass m(7T') (see Eq. (6.20) for the rp*
model; we have dropped the subscript “eff” for convenience)

P(t,x) = ¢o(T) + / [eionrtikxg, 4 etlon—ikxg Il (6.28)

wp = k> +m? (6.29)

3 The chemical potential vanishes in the present case.
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The thermal state |T") contains a Bose-Einstein distribution of the particle exci-
tations and the number of scalar particles at momentum Kk is given by
1

= ST (6.30)

nk
where § = 1/T (Boltzmann constant has been set to 1).
By inserting the expansion in Eq. (6.28) in the correlator, we find
¢k 1 dp 1
Qr) V2ar J @2n) 2w,

where K is a constant which is independent of temperature and proportional to
8§ (x —y). Then

G(r) = ®XPY (T gl a)|T) + K 6.31)

d3k e—ik-(x—y)

G = | Gy oo —1

+K

T
= eI g (6.32)
Amr

where, in doing the integral, we have assumed m(7T') < T'. From the final expression
we get the equilibrium correlation length

1

E= —— 6.33
§= oD (6.33)
For the Z, model (Eq. (6.20))
A
m? = Z(T2 -T2, T>T. (6.34)
A
= E(Tf -T%), T<T (6.35)

Therefore the equilibrium correlation length is

_ 4 1
§(T) = \/;\/ﬁ, T>T1: (6.36)
— \/E—Tzl_ = T < T, (6.37)
or
E(T) o |T — T2 (6.38)

The essential feature in € is the singularity at T = T, that occurs at a time that
we denote 7. Assuming that the cooling (quench) occurs at a constant rate 7t/ Tex
(in a range of temperature around 7;), we have

I

T—-T.=——(t—1t) (6.39)

Text
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3

1 t

Figure 6.4 Sketch of equilibrium correlation length as a function of time as given
in Eq. (6.40).

hence we write
E~IT =T o |t —t]" (6.40)

for T close to T,. The exponent v is called a “critical exponent” and the mean
field theory calculation described above gives v = 1/2. However, the mean field
theory ignores particle interactions and renormalization group methods give v =
2/3, which is closer to experiment. A sketch of the shape of £ (Eq. (6.40)) is shown
in Fig. 6.4.

One shortcoming of the mean field calculation of £ is that we have quantized
the field ¢ in a fixed true vacuum so that ¢o(7) in Eq. (6.28) is independent of x.
This assumes that the same vacuum is chosen everywhere below 7;. On the other
hand, we are precisely interested in the spatial extent of a region in a single vacuum.
Hence a more suitable expansion of ¢ would be

o
Q2m)3 2wy

instead of Eq. (6.28). The vacuum expectation value, ¢y, is now allowed to depend
on both ¢ and x since the background domain walls may be non-static. The second
term in the expansion describes small fluctuations (particles) with mode functions
fi in the classical background ¢y(¢, x, T') at x.

The expansion in Eq. (6.41) is not as obvious as might appear at first sight. We
have seen in Chapter 4 that a kink can itself be written in terms of particles via the
Mandelstam operator. This was done in the sine-Gordon model but it is conceivable
that such an operator also exists in other models. So the above expansion only makes
sense for a state in which there is a clear separation between the particle degrees
of freedom appearing in the sum and the soliton degrees of freedom included in
¢o. For example, if the walls are very close to each other the separation of the two

¢, X) = ¢o(t,x, T) + / filt, Y+ £t x)al]  (641)
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terms may not be justified. Hence the phenomenon of defect formation is closely
tied to the separation of classical (soliton) and quantum (particle) variables.
We are interested in

o = (Tlgo(t, x, T)o(t, y, T)|T) (6.42)

However, we have no way of calculating this equal time “domain correlation func-
tion” since (i) the thermal state refers to a thermal distribution of particles, not of
domains, and (ii) the defects do not remain in thermal equilibrium with the par-
ticles. This impasse is made less severe by realizing that the calculation of & for
T > T, does not suffer from this problem since then ¢y = 0 is the unique vacuum.
We expect the correlations for T < T, to be determined by those for T > T, and so
it might be sufficient to know the correlation length for 7 > 7;. (We discuss this
further in Section 6.5.) To emphasize this point, the two branches of the sketch in
Fig. 6.4 correspond to two different quantities — the equilibrium correlation length
for t < 1. is for excitations in a different vacuum from that for r > #.. So, while
Eq. (6.40) describes the correlations of particle excitations in a given true vacuum
for T < T. (¢t > t.), we cannot expect that this has anything to do with the size of
domains of constant vacuum.

The next subtlety is that the divergence of the equilibrium correlation length at
T = T. should not be taken too literally. The reason is that there is an external
agency (refrigerator) driving the phase transition on a time scale given by Tey. As
the system gets closer to the critical temperature, it takes longer for equilibrium
to be established, while the external agency continues to cool the system at a rate
determined by external factors. At some temperature above the critical temperature
the time taken to maintain equilibrium becomes larger than the time scale at which
the external conditions are changing.

Assume that the external temperature is being lowered at a constant rate

t

T =T, (1 — —) (6.43)
Text

where T is the critical temperature and we have chosen 7, = 0 for convenience.

The equilibrium correlation length has the form
E(T) =nlel™ (6.44)

where v is a critical exponent, 7 is some unspecified length scale, and
T

=1—-— 6.45
€ T. (6.45)
The rate of change of £ is
i _
& _ e e Y (6.46)
dr |€| Text Text€
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This equation shows that as € — 0—, & must change at an ever faster rate if equi-
librium is to be maintained.

The relaxation rate can be obtained by perturbing the system and finding
how long it takes for the perturbation (“sound”) to equilibrate. The result is the
“relaxation time”

Trel = Tol€| ™" (6.47)
where u is another critical exponent. Then the “speed of relaxation” is the sound
speed

(T = 2 = Dy (6.48)
Trel To

Note that 7, diverges as T approaches 7. This is called “critical slowing down.”
When the system cannot keep up with the external changes, equilibrium is lost.
Denoting the temperature at which 1) becomes equal to 7.y by T, we find

V7o 1/(n+1)
T.=T. |1+ (t—) (6.49)
ext

Vo 1/(uA+1)
Ly = _Text<_> (650)
t

€X

which occurs at

So we expect the correlation length £ for T > T. to be equal to the equilibrium
correlation length & until time t,, after which & departs from & and grows more
slowly (see Fig. 6.5). The behavior of & between ¢, and f. is not known and it
is generally assumed that & does not change very much in this interval. After ¢,
there are two distinct vacua, and we need to consider both the correlation scale of
chosen vacua (denoted by &y) and the correlations of excitations within a chosen
vacuum, £. As time goes by, walls annihilate and the domain size with a given
vacuum grows. We discuss & in the next section.

6.5 Kibble-Zurek mechanism: second-order phase transition

The domain correlation length, &), over which the same vacuum is chosen, is dif-
ferent from the equilibrium correlation length denoted by £ (Eq. (6.40)). It is also
different from the correlation length £ obtained for particle excitations, including
the phenomenon of critical slow down, since &y has nothing to do with particle
excitations. We now discuss different approaches to estimating & (for a review see

[10]).
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1 tc t

Figure 6.5 The correlation length at high temperature (¢ < f.) increases as the
critical temperature is approached, departing from the equilibrium correlation
length when critical slowing down becomes important at 7. Below the critical
temperature, there are two correlation length scales of interest. The domain cor-
relation length, &y, relates to the extent of the spatial domains that are in the same
vacuum. This is precisely the spacing of domain walls. Wall-antiwall annihilations
cause &, to grow with time. The particle correlation length, &£, however, decreases
with time since the mass of the particles grows, and eventually approaches the zero
temperature value. The dynamics of how & separates from & are not understood
and are denoted by the shaded region.

To estimate & in the case of a second-order phase transition, Kibble [87] used
two different criteria. First, he obtained an upper bound to &, in the cosmological
context based on causality considerations. If the phase transition takes place at a
certain cosmic time t, then the vacua at points separated by more than ct, where ¢
is the speed of light, must have been selected independently since ct is the size of
the cosmic horizon. Hence & < ct. This is the “causality bound.”

The second estimate is based on finding the Ginzburg length. This is the length
over which the choice of vacuum cannot change owing to thermal fluctuations. For
concreteness, let us imagine that there is a domain of size / in which ¢ = +¢o(7T')
(T < T,) in the Z, model. In one spatial dimension this corresponds to a wall-
antiwall separated by a distance [/, and in three dimensions it corresponds to a
closed domain wall of characteristic size /. The idea is that, if / is small, thermal
fluctuations can spontaneously change the phase within the domain from ¢ = +¢g
to ¢ = —¢y. However, if [ is large, the phase in the domain is frozen, and the
distribution of defects does not change spontaneously owing to thermal fluctuations.
The smallest length / for which a domain is frozen defines the distance between
closest defects and hence predicts the number density of defects.

The energy required to change the phase in a volume R is given by R*AV(T)
where AV is the free energy density difference between the minimum and maximum
of the potential at a temperature 7. The thermal fluctuation energy available per
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excitation mode is T according to equipartition. Equating the required and the
available energies gives

RAV(T)~T (6.51)

Therefore, at temperature 7 < T, a region that is smaller than

T 1/3
R~ (AV(T)) (6.52)

will have enough thermal energy to fluctuate from one vacuum to the other. For
example, in the Z, model (see Eq. (6.15))

=4
m A 2
AV(T)= —=—(T*-T} 6.53
) 4 64( C) (6.33)
Therefore, at temperature T < T, the length scale below which regions are still
fluctuating are

4 T REE 77"
R(T) = ~—_——1—- = .54
() A3 (T2 - Tz)2 AMBT, [ Tj (6>4)

where the last approximation holds for 7 ~ T-.

For a region to fluctuate from one vacuum to another, not only does it need
the energy to jump over the barrier, but all different parts of the region need to
jump together. This means that all the particles in the domain should be activated
coherently. The particle coherence scale is described by the correlation length,
which is approximated by the equilibrium correlation length, &. Therefore, at a
temperature T, regions of size less than I = min(R(7T'), £(T)) (subscript “f” stands
for “fluctuating”) can actively change vacua. The Ginzburg temperature, Tg, is
defined by the condition R(7g) = £(Tg), and the Ginzburg length is defined by

lg = &(1g). For the Z, model, this gives

T. — Tg ~ AT, (6.55)

_ 1
l = Te) ~
c =&(Tc) T

C

(6.56)

Early estimates took the Ginzburg temperature to be the epoch when domain walls
are formed. The number density of walls then follows by dimensional analysis as
~1/18.

The relevance of the Ginzburg temperature for defect formation is not clear. As
discussed in the previous section, the correlation length & is calculated for particle
excitations in a given vacuum, whereas we are interested in the correlation length
of the vacuum domains denoted by &. In fact, experiments in He-3 find that defects
are produced at a temperature below 7; but above T, implying that the Ginzburg
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criterion is not a necessary condition for defect formation. A discussion of the
relevance of the Ginzburg criterion in the context of vortex formation in He-3 and
He-4 may be found in [86].

Zurek estimated the domain size, &z, by considering the time scales involved
during the phase transition [187, 188, 93]. As discussed at the end of Section 6.4, the
system cannot keep up with external changes at r = ¢, (Fig. 6.5). Zurek postulated
that the correlation length at the instant when the system can no longer keep up
with the external changes determines the size of the domains that get frozen. This
in turn determines the number of defects.

To estimate & at t. we know & at the time critical slowing down becomes im-
portant. To this we add the distance that a perturbation can propagate from the
slow-down time, t,, to the phase transition time, #. (see Fig. 6.5). That gives us

Eolte) = E(1,) + f dt ey(1) (6.57)
RN
_nw—_v(v_m) (6.58)

The crucial part of this relation is

Text v/(1+p)
) (6.59)

éO(tc) X (
To

This relation gives the dependence of the number density of domain walls in D
spatial dimensions on the external time

Text —vD/(1+un)
n « (—X) (6.60)
To

We can control 7. in experiments and hence this is a testable prediction.

The above analysis can be improved yet further. For example, we have calculated
&y att = t.. Yet thermal fluctuations after t = ¢, (i.e. T < 7.) may be important and
the domain structure may freeze out at yet lower temperatures, as in the discussion
of the Ginzburg length scale above. So the relevant time at which & is stable to
thermal fluctuations is somewhat after 7., in agreement with the analysis of [8].

There is yet another view of defect formation at a phase transition first proposed
in [5]. In numerical simulations of a U(1) field theory, the authors found that
there is a distribution of vortices even at temperatures above the phase transition.
However, these vortices are small, closed structures. At the critical temperature,
the vortices link up and form infinite, open structures. Thus the phase transition is
coincident with a percolation transition of the vortices. If this feature is generally
true, we expect a population of small, closed domain walls to exist above the critical
temperature. As the temperature is lowered, the walls connect and grow larger and
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Table 6.1 Size distribution of black clusters found by simulations
on a cubic lattice.

Cluster size 1 2 3 4 6 10 31082

Number 462 84 14 13 1 1 1

at the critical temperature, the walls percolate, giving walls of infinite extent. The
percolation picture has not been checked by simulating the domain wall forming
phase transition. However, we can still study the statistical properties of the network
of walls formed after a phase transition using some simple arguments that we now
describe.

The topic of defect formation and, more generally, phase transition dynamics is
still under active investigation.

6.6 Domain wall network formation

The previous sections focused on the density of domain walls that can be expected
to form during a suitable phase transition. In this section we focus on a somewhat
different aspect of the problem: what are the statistical properties of the domain
walls formed at a phase transition? Are the domain walls formed as little closed
spherical structures? Or are they infinite and planar? First we discuss the simple
case of a network of Z, walls and then the more complicated case of SU(5) x Z,
walls.

6.6.1 Z, network

The properties of the network of Z, domain walls at formation have been determined
by numerical simulations implementing the “Kibble mechanism.” The vacuum in
any correlated region of space is determined at random. Then, if there are only two
degenerate vacua (call them black and white), there are spatial regions that are in the
black phase with 50% probability and others in the white phase. The boundaries
between these regions of different phases are the locations of the domain walls
(see Fig. 6.6).

Numerical simulations of the Kibble mechanism on a cubic lattice gave the
statistics shown in Table 6.1 [74, 159]. The data show that there is essentially one
giant connected black cluster. By symmetry there is one connected white cluster.
In the infinite volume limit, these clusters are also infinite and their surface areas
are infinite. Therefore the topological domain wall formed at the phase transition
is infinite.

https://doi.org/10.1017/9781009290456.007 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290456.007

106 Formation of kinks

Figure 6.6 The distribution of two phases (black and white) on a square lattice
in two spatial dimensions. Domain walls lie at the interface of the black and white
regions.

6.6.2 SU(5) network

What does the Kibble mechanism predict for SU(5) x Z, domain walls? Just as in
the Z, case, we have to throw down values of the Higgs field on a lattice, assuming
that every point on the vacuum manifold is equally likely, and then examine the
walls that would form at the interface. In Section 2.2 we have found that there are
three kinds of wall solutions in this model and we have labeled the walls by the
index ¢, which can take values 0, 1, or 2. Each kind of wall has the same topology
but they have different masses. Each wall type is formed with some probability.
Based on the Kibble mechanism, the probability that a certain wall forms is directly
related to the number of boundary values that result in the formation of that kind of
wall. So we need to evaluate all the boundary conditions that lead to domain walls
with a certain value of ¢.

The space of boundary conditions leading to a given type of domain wall is
discussed in Section 2.4. However, similar considerations occur in simpler models
and it is helpful to think of the problem in a discrete case, for example the S5 x Z,
kinks described in Section 2.5. Take a fixed (discrete) vacuum in one domain. The
neighboring domain can be in any other vacuum state with equal probability.
There are ten possible states for the neighboring domain. Only one of these gives
the g = 0 wall, six give the ¢ = 1 wall, and three give the ¢ = 2 wall. Then the
Kibble mechanism implies that the network contains g = 0, 1, 2 walls and their
number densities are in the ratio 1 : 6 : 3. This means that the network is domi-
nantly composed of the ¢ = 1 wall. However, since the ¢ = 2 wall is the lightest
wall, the ¢ = 1 walls formed by the Kibble mechanism during the phase transi-
tion subsequently decay into ¢ = 2 walls. We will show some evidence for this
two-stage process in Section 6.7.
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Similarly we can identify the space of boundary conditions that lead to a particular
kind of kink in the SU(5) x Z, model. We considered this problem in Section 2.4
and listed the spaces in Table 2.1. From the table we read off that the space of
boundary conditions leading to the ¢ = 0 kink is zero dimensional, for the g = 1
kink it is six dimensional, and is four dimensional for the g = 2 kink. Since a six-
dimensional space is infinitely bigger than a 0- or a four-dimensional space, the
probability of a kink being of the ¢ = 0 or ¢ = 2 variety is zero, and the probability
of the kink being of the ¢ = 1 variety is 1.

A subtlety that has not been discussed above is that there is also the possibility
that if we lay down Higgs fields randomly, we may get [®_, @, ] 7 0 (see theorem
in Section 2.2). In this case, as described in Section 2.2, there is no static solution
to the equations. Then the field configuration evolves toward a static configuration.
Our discussion above assumes that such a configuration has been reached, and
neighboring domains always have values of ® that commute. This is not completely
satisfactory since there are time scales that are associated with the relaxation and
these must be compared to other time scales characterizing the phase transition.
This is why a numerical study, such as that in Section 6.7, is needed.

To summarize, the Kibble mechanism predicts that only ¢ = 1 domain walls
are formed at the SU(5) x Z, phase transition. However, we know that the stable
variety of walls have ¢ = 2, and hence the ¢ = 1 walls decay into them. The
formation of walls and the conversion of ¢ = 1 walls into ¢ = 2 walls during
a phase transformation in the SU(5) x Z, model has not been studied. However,
these questions have been addressed in the related S5 x Z; model as we now discuss.

6.7 Formation of S5 x Z, domain wall network

As discussed in the last section, the ¢ = 1 domain wall of the S5 x Z, model
occupies the largest volume in the space of boundary conditions but the g = 2 wall
has least energy. Hence there is a tension between “entropy” (number of states) and
“energy”’ (mass of wall). In a phase transition, based on the Kibble argument, we
might expect the entropy to be more important. However, the higher energy walls
g = 1 cannot survive indefinitely and eventually decay into the ¢ = 2 walls. One
way to study these processes is by direct simulation of the fields as a function of
temperature [123, 6, 7].

The simulations are based on a Langevin equation where thermal effects are
treated as a noise term in the classical equations of motion together with a damping
term. For the S5 x Z; model (Eq. (2.30)) with its four scalar fields, the equations
are

O =V fi+ Vit ADfi=T; (6.61)
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Figure 6.7 Energy density distribution in space at an early time at high temper-
ature (top panel) and then at various times after the phase transition in the lower
panels. The last panel shows that the system has relaxed into a stable lattice of
kinks.

where i = 1,...,4 and V; denotes the derivative of V with respect to f;. If A =
0 = I';, these equations are simply the classical equations of motion for the f;.
In a thermal system, we imagine that the fields are in contact with a heat bath at
temperature 7 with which energy can be exchanged. Then there can be dissipation
which is represented by the A term and thermal noise which is represented by the
I['; term. The dissipation constant A is taken to be independent of the temperature
but the I'; are stochastic and taken to be Gaussian distributed with the following
correlation functions

(Ti(x, 1)) =0,
(Tix, O (y, 1)) =2A T 8;;8(x —y)3(r — t') (6.62)

The procedure is to solve Eq. (6.61) with any initial condition. The noise and
dissipation eventually drive the system to a thermal distribution at temperature 7.
To mimic the phase transition, the noise is then set to zero. All of a sudden the
system has to find a new equilibrium state. This equilibrium state has domain walls
and these are located and tracked in the subsequent evolution.

In one spatial dimension, the results are shown in Fig. 6.7. At high temperature
the energy distribution is very noisy. After the phase transition, the presence of
kinks is clear. During the evolution, some of these kinks annihilate. In the end we
are left with a kink lattice.
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Figure 6.8 Length in walls (denoted by N) in two spatial dimensions against time
forthe ¢ = 2 wallsin the S5 x Z, model (upper solid curve) and the single field Z,
case (lower solid curve). The dashed curve corresponds to the total S5 x Z, wall
length measured by counting zeros of the diagonal elements of ®(x) and hence
includes walls with any value of ¢g. The difference between the solid and dashed
curves shows that the initial network consists of a large fraction of g # 2 walls but
then later all the walls decay into the ¢ = 2 walls. Comparison with the Z, case
shows that the S5 x Z, network decays more slowly. (The upturn at the very end
in the Z, case is due to the finite simulation box.)

Similar numerical simulations have also been done in two spatial dimensions.
The total energy in all kinds of walls is plotted as a function of time in Fig. 6.8. The
figure also shows the energy in only the ¢ = 2 walls as a function of time. The
difference of these curves shows that not all walls are of the g = 2 variety at
formation. Other kinds of walls are present immediately after the phase transition
but they must then decay into the least massive g = 2 wall.

As discussed in Section 2.8, the S5 x Z;, kinks can have nodes in two spatial
dimensions (see Fig. 2.6). So we expect a network of domain walls to form after a
phase transition in which six or more domain walls are joined at junctions. This is
exactly what is seen in simulations (Fig. 6.9). Another feature that is apparent on a
closer look at the network is that there are many pairs of walls that are very close
to each other. These pairs occur because the unstable ¢ = 1 walls eventually decay
into two g = 2 walls. The forces separating the ¢ = 2 walls are exponentially small
and so they stay close-by during further evolution.

We have seen that the final state of the S5 x Z, phase transition in one spatial
dimension is a lattice of domain walls (Fig. 6.7). In one dimension, it can be argued
that a lattice forms with unit probability provided the size of the simulation box is
much larger than the wall thickness. In two dimensions, if the spatial extent in one
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Figure 6.9 Network of S5 x Z, walls in two spatial dimensions soon after the
phase transition. The picture looks very similar to the network of (one-dimensional)
walls connected to a network of (point-like) strings studied in [130].

direction is smaller than that in the other direction, so that the simulation box is
rectangular with periodic boundary conditions, the evolution is very much like in
one dimension and a lattice forms once again (see Fig. 6.10). Even on a square two-
dimensional simulation box, a domain wall lattice is seen to form with a probability
~ 0.05 [7].

6.8 Biased phase transitions

The existence of domain walls relies only on the existence of discrete vacua. Then
it is possible to imagine situations where the degeneracy of the discrete vacua
is slightly broken (see Fig. 6.11).* Now the probability that the higher energy
vacuum is selected during the phase transition in some region is less than 1/2
and the probability that the lower energy vacuum is selected is larger than 1/2.
This process can again be simulated on a square lattice by throwing down black
squares with probability p < 1/2. If p is very small, there are only a few black
squares and these are disconnected from each other. So the domain walls are small

4 Or perhaps the vacua are exactly degenerate but the likelihood of being in one particular vacuum is slightly
larger because of the way in which the system was prepared.
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Figure 6.10 Three stages for the domain wall network evolution in a toroidal do-
main, with dimensions L, = 500 and L, = 150. The different shades correspond
to the five possible charges of the domain walls (see Section 2.7). Note that in the
bottom figure there is a pair of neighboring wall and antiwall of the same type (the
walls just before and after the 300 mark). These later annihilate, leading to a final

stable lattice consisting of ten walls.

Figure 6.11 An asymmetric well in which the degeneracy of the vacua is slightly

broken.
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and closed. At a critical value of p, call it p., the black squares connect and the
distribution is dominated by one infinite cluster of black squares. Then the black
squares are said to percolate. Therefore the domain wall formation problem reduces
to the classic problem of “percolation theory” [143, 96, 36] where we are interested
in the critical probability and also the critical exponents that appear in various
correlation functions as the critical point is approached. On a triangular lattice in
two dimensions, the critical probability is known to be 0.5 and on a cubic lattice in
three dimensions it is 0.31. The problem may even be studied on a random lattice
as discussed in [95].

The analysis for biased domain walls implies that even if the potential is slightly
asymmetric, infinite domain walls can form. For the SU (5) x Z, potential described
in Eq. (2.5), the asymmetry is due to the cubic term with coupling constant, y . For
small but non-zero values of y, infinite domain walls form.

6.9 Open questions

1. What is the number density of domain walls formed in a second-order phase transition?
The question may need to be sharpened since the density keeps changing with time.
Also, while the number density is important in cosmology, condensed matter physicists
are mainly concerned with scaling laws (critical exponents) since these are expected to
be universal. So a sharper question would be in terms of a critical exponent related to
the number density (e.g. Eq. (6.60)).

2. Is there a condensed matter system which gives a domain wall lattice?

. Is there any role for domain wall lattices in (higher dimensional) cosmology?

4. If a domain wall lattice can be generalized to strings and monopoles, do string and
monopole lattices form during a phase transition?

(O8]
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