ON THE DEFINITION OF C^{*}-ALGEBRAS II

ZOLTÁN MAGYAR AND ZOLTÁN SEBESTYÉN

0. Introduction. The theory of noncommutative involutive Banach algebras (briefly Banach *-algebras) owes its origin to Gelfand and Naimark, who proved in 1943 the fundamental representation theorem that a Banach *-algebra \mathscr{B} with C^{*}-condition

$$
\left(C^{*}\right) \quad\left\|a^{*} a\right\|=\|a\|^{2} \quad \forall a \in \mathscr{B}
$$

is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of all bounded operators on a suitable Hilbert space.

At the same time they conjectured that the C^{*}-condition can be replaced by the B^{*}-condition.
$\left(B^{*}\right) \quad\left\|a^{*} a\right\|=\left\|a^{*}\right\|\|a\| \quad \forall a \in \mathscr{B}$.

In other words any B^{*}-algebra is actually a C^{*}-algebra. This was shown by Glimm and Kadison [5] in 1960.

Further weakening of the axioms appeared in a paper [2] by Araki and Elliott in 1973 by proving that the C^{*}-condition and the B^{*}-condition also, if continuity on involution assumed, imply the submultiplicativity of a linear and complete norm on a ${ }^{*}$-algebra. They asked if it is enough to assume (C^{*}) and (B^{*}) only for normal elements and the continuity of $*$ in the second case. A recent survey of some developments is presented by Doran and Wichmann in [4].

The second named author proved in [9] that

$$
\left(S C^{*}\right) \quad\left\|a^{*} a\right\| \leqq\|a\|^{2} \quad \forall a \in \mathscr{B}
$$

together with $\left(C^{*}\right)$ for normal elements imply $\left(C^{*}\right)$; in [11, 12] that every C^{*}-seminorm is automatically submultiplicative. For further weakening ([11]) see Theorem 5. It was also claimed to prove ([10]) that continuity of the involution can be dropped with respect to the $\left(B^{*}\right)$ assumption and that
$\left(S B^{*}\right) \quad\left\|a^{*} a\right\| \leqq\left\|a^{*}\right\|\|a\| \quad \forall a \in \mathscr{B}$

[^0]together with $\left(B^{*}\right)$ for normal elements are enough as well. However, G. A. Elliott has pointed out in his review an error in the proof in [10], namely on line 4 of page 212.

Our purpose is to give a complete proof of these statements in a rarely detailed manner so that this paper serves as a continuation of [10] without any reference to that. The ground of our treatment is [11] where further localization of these properties appeared, namely to commutative selfadjoint *-subalgebras, which are generated by one selfadjoint element, say $h=h^{*} \in B$, denoted by $\langle h\rangle$. Denote by \mathscr{P} the complex polynomials in one variable and without constant term, thus
$\left(L C^{*}\right)\left\|a^{*} a\right\|=\|a\|^{2} \quad \forall a=P(h), h=h^{*} \in \mathscr{B}, P \in \mathscr{P}$,
$\left(L B^{*}\right) \quad\left\|a^{*} a\right\|=\left\|a^{*}\right\|\|a\| \quad \forall a=P(h), h=h^{*} \in \mathscr{B}, P \in \mathscr{P}$
are the corresponding local $\left(C^{*}\right)$ and local $\left(B^{*}\right)$ properties of a norm (or seminorm) on a ${ }^{*}$-algebra \mathscr{B}. Note that a norm (or seminorm) on a *-algebra denotes always a linear norm (or seminorm) except its submultiplicativity is assumed separately, for example in case of a Banach (or C^{*})-algebra. Moreover, we use [3] without any reference.

The remainder of this paper consists of five distinct sections. Section 1 is due to the first named author and contains a detailed analysis on the spectrum of a selfadjoint element h, actually that it is purely real, in a Banach *-algebra provided such a norm p exists for which

$$
p\left(a^{*}\right) p(a)=r\left(a^{*} a\right)
$$

holds for any a in $\langle h\rangle$, where r denotes the spectral radius (Theorem 1). Section 2 is a simple reformulation of results in [2] with some simplification in its proof (in Theorem 2).

Theorem 3 of Section 3 is taken from [11] and is a strengthened version of a statement included in [2] which serves as a ground for our main result obtained in Theorem 4 of Section 4. Section 5 is an application of Theorem 4 to the seminorm case and contains a simple counterexample for B^{*}-seminorms.

1. Hermiticity in a Banach *-algebra.

Theorem 1. Let h be a selfadjoint element in a Banach *-algebra \mathscr{B} with spectral radius r. Assume there is a norm p on $\langle h\rangle$, the ${ }^{*}$-subalgebra generated by h in \mathscr{B}, such that

$$
\begin{equation*}
p\left(a^{*}\right) p(a)=r\left(a^{*} a\right) \quad \forall a \in\langle h\rangle \tag{i}
\end{equation*}
$$

Then h has purely real spectrum, that is

$$
\mathrm{Sp}(h) \subseteq \mathbf{R}
$$

The proof will consist of two different parts. Part I contains
independent propositions, while in Part II we shall prove the statement utilizing the result of Part I.

In what follows we shall say that a set K in \mathbf{C}, the complex plane, is a cross if there is a real number s so that

$$
K \subseteq \mathbf{R} \cup\{s+i t: t \in \mathbf{R}\}
$$

A set K of \mathbf{C} is said to be symmetric if it is stable under conjugation, that is $\bar{z} \in K \forall z \in K$.

Part I. Let K be throughout this part a symmetric non-void compact subset of the complex plain. Denote the customary sup-norm in $C(K)$ the complex valued continuous functions on K, by r. Define an involution (*) on $C(K)$ by setting

$$
f^{*}(z)=\overline{f(\bar{z})} \quad \forall z \in K
$$

which is correct because of the symmetry of K and norm-preserving as well. Let

$$
A=\left\{p_{\mid K}: p \in \mathscr{P}\right\}
$$

be the ${ }^{*}$-subalgebra in $C(K)$ of the complex polynomials on K without constant term. Suppose further that a seminorm p is given on A with
(P1) $\quad p\left(f^{*}\right) p(f)=r\left(f^{*} f\right) \quad \forall f \in A$.
We shall prove that the existence of such a seminorm implies that the shape of K is very special.

Proposition 1.1. Let B be the norm-closure of A in $C(K)$ then p has a unique continuous extension to B, denoted by p too such that $(P 1)$ remains valid and
(P2) $\quad p(h)=r(h) \quad \forall h=h^{*} \in B$
(P3) $\quad p(a) \leqq 2 r(a) \quad \forall a \in B$
will also hold.
The easy proof is omitted.
Proposition 1.2. K is a cross.
Proof. Suppose the contrary. We shall show

$$
p(f)+p(g)<p(f+g) \text { for some } f, g \text { in } B
$$

contradicting the subadditivity of p. Denote by C (resp. β) the maximum of K of $|z|(\operatorname{resp} . \operatorname{Im} z)$. Note that $C, \beta>0$ because K is symmetric and is not a cross. Let $\alpha \in \mathbf{R}$ be such that $\alpha+i \beta \in K$ and denote $w_{1}=\alpha+i \beta$, $w_{2}=\bar{w}_{1} \in K, m=\left|w_{1}\right|$.

Lemma 1.3. For any $n \in \mathbf{R}$ there are a, b in B such that
(1) $\quad r\left(a^{*} a\right), r\left(b^{*} b\right) \leqq C^{2}$
(2) $r(a)=r(b)>n$
(3) $\quad\left|b\left(w_{1}\right)\right|=\left|b\left(w_{2}\right)\right|=m$
(4) $\left|a\left(w_{1}\right)\right| \geqq \frac{m}{C} r(a)$
(5)

$$
\left|a\left(w_{2}\right)\right|<\frac{m}{2} .
$$

Proof. Put

$$
\begin{aligned}
& a_{t}(z)=z \cdot \exp (-i t(z-\alpha)), \\
& b_{t}(z)=z \cdot \exp \left(-i t(z-\alpha)^{2}\right),
\end{aligned}
$$

where t is real. Then $a_{t \mid K}, b_{t \mid K}$ are in B for any t. Since K is not a cross there are real γ and $\delta \neq 0$ such that

$$
\begin{aligned}
& \alpha \neq \gamma, 0 \neq u_{1}=\gamma+i \delta \in K, \\
& \left|b_{t}\left(u_{1}\right)\right|=\left|u_{1}\right| \exp (2 t(\gamma-\alpha) \delta)
\end{aligned}
$$

while

$$
\left|b_{t}\left(\bar{u}_{1}\right)\right|=\left|u_{1}\right| \exp (-2 t(\gamma-\alpha) \delta)
$$

where $(\gamma-\alpha) \delta \neq 0$ and $\bar{u}_{1} \in K$. Hence there is a $t \in \mathbf{R}$ with $r\left(b_{t \mid K}\right)>n$ and let $b=b_{t \mid K}$ with such a t. Since

$$
\begin{aligned}
& \left|a_{t}\left(w_{1}\right)\right|=m \cdot \exp (t \beta), \\
& \left|a_{t}\left(w_{2}\right)\right|=m \cdot \exp (-t \beta)
\end{aligned}
$$

there is a real t with

$$
\left|a_{t}\left(w_{2}\right)\right|<\frac{m}{2}, \quad r\left(a_{t \mid K}\right)>r(b)
$$

With such a t, let

$$
a=\frac{r(b)}{r\left(a_{t \mid K}\right)} a_{t \mid K} .
$$

It is easy to prove (1)-(5) for these a, b because of

$$
r\left(a_{t \mid K}\right) \leqq C \exp (t \beta)
$$

Lemma 1.4. Assume for an $a \in B$ that
(6) $\quad r\left(a^{*} a\right)^{1 / 2} \leqq C \leqq \frac{r(a)}{2}$
holds. Then we have
(7) $\quad \min \left(p(a), p\left(a^{*}\right)\right) \leqq \frac{4 C^{2}}{r(a)}$.

Proof. Since p is seminorm ($P 2$) implies

$$
p(a)+p\left(a^{*}\right) \geqq p\left(a+a^{*}\right)=r\left(a+a^{*}\right)
$$

Choosing z in K with $r(a)=|a(z)|$ we have by (6)

$$
\begin{aligned}
& \left|a^{*}(z)\right| r(a)=\left|a^{*}(z) \| a(z)\right|=\left|\left(a^{*} a\right)(z)\right| \leqq C^{2}, \\
& \left|a^{*}(z)\right| \leqq \frac{C^{2}}{r(a)} \leqq \frac{C}{2} \leqq \frac{r(a)}{4},
\end{aligned}
$$

and thus

$$
\begin{aligned}
r\left(a+a^{*}\right) & \geqq\left|a(z)+a^{*}(z)\right| \geqq|a(z)|-\left|a^{*}(z)\right| \\
& \geqq r(a)-\frac{r(a)}{4} \geqq \frac{r(a)}{2} .
\end{aligned}
$$

We have then

$$
p(a)+p\left(a^{*}\right) \geqq \frac{r(a)}{2}, p\left(a^{*}\right) p(a)=r\left(a^{*} a\right) \leqq C^{2}
$$

by using (P1) and (6) too. Hence

$$
\min \left(p(a), p\left(a^{*}\right)\right) \leqq \frac{C^{2}}{\max \left(p(a), p\left(a^{*}\right)\right)} \leqq \frac{4 C^{2}}{r(a)}
$$

since

$$
\max \left(p(a), p\left(a^{*}\right)\right) \geqq \frac{r(a)}{4}
$$

follows from the first inequality.
To prove Proposition 1.2 let $a, b \in B$ be such that (1)-(5) hold with

$$
n=2 \cdot C+(10 C)^{3} \cdot m^{-2}
$$

Let further f (resp. g) be that from a and a^{*} (resp. b and b^{*}) for which p is less. Lemma 1.4 implies then

$$
p(f)+p(g) \leqq 2 \cdot \frac{4 C^{2}}{n} \leqq \frac{8 m^{2}}{1000 C}<\frac{m^{2}}{100 C} .
$$

On the other hand (P1) and (2) - (5) give us

$$
p(f+g) p\left(f^{*}+g^{*}\right)=r\left(\left(f^{*}+g^{*}\right)(f+g)\right)
$$

$$
\begin{aligned}
& \geqq\left|\left(f^{*}+g^{*}\right)(f+g)\left(w_{1}\right)\right| \\
& \geqq\left(\frac{m}{C} r(f)-m\right)\left(m-\frac{m}{2}\right) \geqq \frac{m^{2}}{4 C} r(f)
\end{aligned}
$$

while (P3) and (2) imply

$$
p\left(f^{*}+g^{*}\right) \leqq 2 r\left(f^{*}+g^{*}\right) \leqq 4 r(f)
$$

and thus

$$
p(f+g) \geqq \frac{m^{2}}{16 C}>\frac{m^{2}}{100 C}>p(f)+p(g),
$$

the desired contradiction follows. The proof of Proposition 1.2 is complete.

Proposition 1.5. If $\operatorname{card}(K \backslash \mathbf{R})=2$ then

$$
K \cap \mathbf{R} \subseteq\{0\}
$$

Proof. Suppose $K \backslash \mathbf{R}=\{w, \bar{w}\}$. Since $\mathbf{C} \backslash K$ is connected, by Runge's theorem there are polynomials P_{k} converging in $C(K)$ to $\frac{1}{w} \cdot 1_{\{w\}}$, where $1_{\{w\}}$ denotes the characteristic function of the one point set $\{w\}$. Hence $z P_{k}(z)$ converges in $C(K)$ to $1_{\{w\}}, 1_{\{w\}}$ is in B.

Then by ($P 1$)

$$
0=r(0)=r\left(1_{\{w\}} 1_{\{w\}}^{*}\right)=p\left(1_{\{w\}}\right) p\left(1_{\{w\}}^{*}\right)
$$

and hence one of the functions $1_{\{w\}}$ and $1_{\{w\}}^{*}$, say f, is such that $p(f)=0$. This implies

$$
p(f+g)=p(g) \quad \forall g \in \mathscr{B} .
$$

Applying this to $g=f^{*}$ we infer by $(P 2)$ that $p\left(f^{*}\right)=1$. Let $h(z) \equiv z$ on K and

$$
k=\frac{1}{3 r(h)}\left(h-w 1_{\{w\}}-\bar{w} 1_{\{w\}}^{*}\right) .
$$

Then k is self-adjoint and $r(k) \leqq 1 / 3$. Further,

$$
k \cdot f=k \cdot f^{*}=0
$$

Thus

$$
r\left((k+f)^{*}(k+f)\right)=r\left(k^{2}\right)=r(k)^{2} \leqq \frac{1}{3} \cdot r(k) .
$$

On the other hand by the above observation

$$
p(k+f)=p(k)=r(k)
$$

while

$$
p\left(k+f^{*}\right) \geqq p\left(f^{*}\right)-p(k)=1-r(k)>\frac{1}{3} .
$$

Thus we infer by $(P 1)$ that $r(k)=0$. But it is equivalent to $K \cap \mathbf{R} \subseteq\{0\}$ (by the definition of K).

Corollary. 1.6. If p is a norm and

$$
\operatorname{card}(K \backslash \mathbf{R}) \leqq 2
$$

then $K \subseteq \mathbf{R}$.
Proof. Suppose to the contrary that

$$
K \backslash \mathbf{R}=\{w, \bar{w}\} .
$$

Then by Proposition 1.5, K is finite and therefore there is an f in A (namely $f=1_{\{w\}}$) such that $f \neq 0, f^{*} \neq 0$ but $f f^{*}=0$ contradicting ($P 1$) in case of a norm.

Part II. Observe that if $g \in\langle h\rangle, g^{*}=g$ then $\langle g\rangle \subseteq\langle h\rangle$ and therefore the conditions assumed for h (in the theorem) also hold for g. Thus the consequences of these conditions (formulated with h) remain true for g, too.

If $P \in \mathscr{P}$, we write

$$
\begin{equation*}
P^{*}(z)=\overline{P(\bar{z})} . \tag{8}
\end{equation*}
$$

In other words if

$$
P(z)=\sum_{1}^{n} a_{i} z^{i}
$$

then

$$
P^{*}(z)=\sum_{1}^{n} \bar{a}_{i} z^{i}
$$

Hence it is clear that $P(h)^{*}=P^{*}(h)$.
In each ${ }^{*}$-algebra $\operatorname{Sp}\left(a^{*}\right)=\overline{\operatorname{Sp}(a)}$ for any a; hence $\operatorname{Sp}(h)$ is symmetric. (i) easily implies that $p(g)=r(g)$ if $g^{*}=g \in\langle h\rangle$ and $p \leqq 2 r$ on $\langle h\rangle$ because (${ }^{*}$) is isometric with respect to r. Hence r is a norm on $\langle h\rangle$. Let

$$
\phi:\langle h\rangle \mapsto C(\mathrm{Sp}(h)), \phi(P(h))=P_{\mid \mathrm{Sp}(h)} .
$$

This definition is correct, moreover ϕ is norm-preserving with respect to ($\langle h\rangle, r$). Indeed, it follows from the well-known fact

$$
\operatorname{Sp}(P(h))=P(\operatorname{Sp}(h)) .
$$

Furthermore ϕ is a *-homomorphism onto

$$
A=\left\{P_{\mid \mathrm{Sp}(h)} ; P \in \mathscr{P}\right\}
$$

(endowed with involution (8)).
Thus $p \circ \phi^{-1}$ is a norm on A satisfying (P1). Therefore Proposition 1.2 and Corollary 1.6 are available and we have

$$
\begin{equation*}
\mathrm{Sp}(h) \text { is a cross } \tag{9}
\end{equation*}
$$

Suppose that $\operatorname{Sp}(h) \subsetneq \mathbf{R}$. Then by (9) and (10) there are w_{1}, $w_{2} \in \operatorname{Sp}(h) \backslash \mathbf{R}$ so that $w_{2} \neq w_{1}, w_{2} \neq \bar{w}_{1}$, and $\operatorname{Re} w_{1}=\operatorname{Re} w_{2}$. Then $\forall s \in$ $\mathbf{R} \backslash\{0\}$

$$
\operatorname{Re}\left(s w_{1}^{2}\right) \neq \operatorname{Re}\left(s w_{2}^{2}\right)
$$

and if s is small enough then

$$
w_{1}+s w_{1}^{2}, \quad w_{2}+s w_{2}^{2} \in \mathbf{C} \backslash \mathbf{R} .
$$

Thus $\operatorname{Sp}\left(h+s h^{2}\right)$ is not a cross with suitable real s, contradicting (9) (which is available to $g=h+s h^{2}$). Thus $\operatorname{Sp}(h) \subseteq \mathbf{R}$, and the proof of Theorem 1 is complete.

2. The commutative case.

Theorem 2. Let (\mathscr{A}, r) be a commutative C^{*}-algebra, and let p be a seminorm on it satisfying
$(P 1) \quad p\left(a^{*}\right) p(a)=r\left(a^{*} a\right) \quad \forall a \in \mathscr{A}$.
Then $p=r$.
Proof. It is easy to infer from (P1) that
$(P 2) \quad p(h)=r(h) \quad \forall h=h^{*} \in \mathscr{A}$
(P3) $\quad p(a) \leqq 2 r(a) \quad \forall a \in \mathscr{A}$.
We treat first the finite dimensional case. Consider \mathbf{C}^{n} as a C^{*}-algebra $C(T)$, where $T=\{1, \ldots, n\}$ is a discrete space. In this special case we write q (resp. s) instead of p (resp. r) and one bracket instead of double bracket, e.g.,

$$
s\left(x_{1}, \ldots, x_{n}\right)=r\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\max \left\{\left|x_{i}\right| ; i=1, \ldots, n\right\} .
$$

Case 1. $\mathscr{A}=\mathbf{C}^{2}$. Let

$$
\begin{aligned}
& D=\{z \in \mathbf{C} ;|z| \leqq 1\} \text { and } \\
& f: D \mapsto \mathbf{R}^{+}, f(z)=q(z, 1) .
\end{aligned}
$$

It is enough to prove that $f(z)=1 \quad \forall z \in D$, because that implies

$$
q(x, y)=s(x, y) \quad \text { for }|x| \leqq|y|
$$

(since q is a seminorm) and it is enough by the symmetry. Let $0 \leqq \lambda \leqq 1$, $\mu=1-\lambda$, then

$$
\begin{aligned}
f\left(\lambda z_{1}+\mu z_{2}\right) & =q\left(\lambda z_{1}+\mu z_{2}, \lambda+\mu\right) \\
& \leqq \lambda f\left(z_{1}\right)+\mu f\left(z_{2}\right) \quad\left(z_{1}, z_{2} \in D\right) .
\end{aligned}
$$

By $(P 2) q(1,0)=s(1,0)=1$ and hence

$$
q(z, 0)=|z| \quad \text { for every } z \in \mathbf{C}
$$

thus

$$
\begin{aligned}
f\left(z_{1}\right)+f\left(z_{2}\right) & =q\left(z_{1}, 1\right)+q\left(-z_{2},-1\right) \\
& \geqq q\left(z_{1}-z_{2}, 0\right)=\left|z_{1}-z_{2}\right| .
\end{aligned}
$$

From $(P 1)$ we have $f(z) \cdot f(\bar{z})=1$. Thus the following situation stands:
(1) f is a non-negative convex function on D
(2) $f\left(z_{1}\right)+f\left(z_{2}\right) \geqq\left|z_{1}-z_{2}\right|$
(3) $f(\bar{z}) \cdot f(z)=1$.

We will show that (1), (2), (3) imply $f \equiv 1$.
Step 1. $f(z)=1$ if z is real. This is clear from (3) and the non-negativity of f.

Step 2. $f(z) \leqq 1+2(\operatorname{Im} z)^{2}$ if $|\operatorname{Im} z|$ is small (e.g. $|\operatorname{Im} z| \leqq 1 / 2$ is enough). Let

$$
\begin{aligned}
& \operatorname{Im} z=b \quad\left(|b| \leqq \frac{1}{2}\right), \\
& z_{1}=-\sqrt{1-b^{2}}+i b, \\
& z_{2}=\sqrt{1-b^{2}}+i b .
\end{aligned}
$$

Let $d=\left|1-\bar{z}_{1}\right|$. Then by (2) and step 1 ,

$$
f\left(\bar{z}_{1}\right) \geqq d-1
$$

as well as

$$
f\left(\bar{z}_{2}\right) \geqq\left|\bar{z}_{2}+1\right|-f(-1)=d-1,
$$

and hence by (3)

$$
f\left(z_{1}\right), f\left(z_{2}\right) \leqq \frac{1}{d-1}
$$

But z is a convex combination of z_{1} and z_{2}, hence

$$
f(z) \leqq \frac{1}{d-1} .
$$

Thus our statement follows from

$$
\frac{1}{d-1} \leqq 1+2 b^{2}
$$

which is true for small b.
Step 3.f $f \geqq$. Suppose to the contrary that $f(w)<1$ where $w=a+i b$. By step $1, b \neq 0$. Then by the convexity and $f(a)=1$ (step 1) we infer

$$
f(a-i \lambda b) \geqq 1+\lambda(1-f(w)) \quad(\lambda \in[0,1])
$$

and this contradicts step 2 for small positive λ.
(3) and step 3 clearly imply $f=1$.

Case 2. $\mathscr{A}=\mathbf{C}^{n}$. If

$$
\begin{aligned}
& t=\left(t_{1}, \ldots, t_{n-1}\right) \in \mathbf{R}^{n-1} \text { and } \\
& r=\left(r_{1}, \ldots, r_{n-1}\right) \in[0,1]^{n-1}
\end{aligned}
$$

then we write

$$
f(t, r)=q\left(r_{1} \exp \left(i t_{1}\right), \ldots, r_{n-1} \exp \left(i t_{n-1}\right), 1\right) .
$$

It is enough to prove that $f=1$. Since q is a seminorm f is convex in r. By $(P 1)$ we have

$$
f(t, r) f(-t, r)=1
$$

It follows from these facts that the set

$$
H_{t}=\left\{r \in[0,1]^{n-1} ; f(t, r)=1\right\}
$$

is convex. Indeed, if

$$
f(t, u)=1=f(t, v),
$$

then

$$
f(-t, u)=f(-t, v)=1
$$

and hence if $w=\lambda t+\mu \nu$ then

$$
f(-t, w) \leqq 1, \quad f(t, w) \leqq 1,
$$

thus $f(t, w)=1$.
We will show that if $r \in[0,1]^{n-1}$ and $\lambda r \in H_{t}(0<\lambda \leqq 1)$ then $r \in H_{r}$ Suppose the contrary. Then one of $f(t, r)$ and $f(-t, r)$ is less than 1. On the other hand $f(t, 0)=1$ for every $t($ by $(P 2))$. Thus, by convexity, $f(t, \lambda r)$ or $f(-t, \lambda r)$ is less than 1 contradicting $\lambda r \in H_{r}$.

Let

$$
a_{k}^{j}=\delta_{j k}, \quad a^{j}=\left(a_{1}^{j}, \ldots, a_{n-1}^{j}\right) .
$$

We know from Case 1 that $a^{j} \in H_{t}$ for every t, j. Now if $r=\left(r_{1}, \ldots\right.$, $\left.r_{n-1}\right) \in[0,1]^{n-1}$ then

$$
r=\left(1-\sum r_{j}\right) 0+\sum_{1}^{n-1} r_{j} a^{j}
$$

shows $r \in H_{t}$ if $\sum r_{j} \leqq 1$, and

$$
\frac{1}{\sum r_{j}} r=\sum_{1}^{n-1} \frac{r_{j}}{\sum r_{j}} a^{j}
$$

shows it if $\sum r_{j}>1$.
General case. By the commutative Gelfand-Naimark theorem we consider \mathscr{A} as $C_{0}(T)$, where T is locally compact T_{2} space. Let y_{1}, \ldots, $y_{n} \in \mathscr{A}$ so that

$$
y_{j} \geqq 0, \quad r\left(y_{j}\right)=1, \quad r\left(\sum y_{j}\right)=1
$$

Fixing them let

$$
q\left(x_{1}, \ldots, x_{n}\right)=p\left(\sum x_{j} y_{j}\right)
$$

where $x_{j} \in \mathbf{C}$. This q is a seminorm on \mathbf{C}^{n}. We assert that

$$
s\left(x_{1}, \ldots, x_{n}\right)=r\left(\sum x_{j} y_{j}\right)
$$

From the conditions about y_{j} 's it follows that

$$
\sum x_{j} y_{j}(t) \in \operatorname{co}\left(0, x_{1}, \ldots, x_{n}\right)
$$

in \mathbf{C} for every t and that there is t_{k} such that $y_{j}\left(t_{k}\right)=\delta_{j k}$ and hence

$$
\sum x_{j} y_{j}\left(t_{k}\right)=x_{k}
$$

Thus

$$
\begin{aligned}
r\left(\sum x_{j} y_{j}\right) & =\max \left\{\left|x_{j}\right|, j=1, \ldots, n\right\} \\
& =s\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Since y_{j} is self-adjoint,

$$
\sum \bar{x}_{j} y_{j}=\left(\sum x_{j} y_{j}\right)^{*}
$$

Thus

$$
\begin{aligned}
q(x) q\left(x^{*}\right) & =p\left(\sum x_{j} y_{j}\right) p\left(\left(\sum x_{j} y_{j}\right)^{*}\right) \\
& =r\left(\sum x_{j} y_{j}\left(\sum x_{j} y_{j}\right)^{*}\right) \\
& =r\left(\sum x_{j} y_{j}\right)^{2}=s(x)^{2}=s\left(x^{*} x\right)
\end{aligned}
$$

Therefore by case $2, q(x)=s(x)$, that is

$$
p\left(\sum x_{j} y_{j}\right)=q(x)=s(x)=r\left(\sum x_{j} y_{j}\right) .
$$

Because of the continuity of p it is enough to show that $\forall \epsilon$ and $\forall w \in C_{0}(T) \exists x_{j}, y_{j}$ (with properties above) for which

$$
r\left(w-\sum x_{j} y_{j}\right) \leqq \epsilon
$$

Let G_{0}, \ldots, G_{n} be an open covering of the compact set $\operatorname{Sp}(w)$ in \mathbf{C} so that
(a) $0 \in G_{0}, 0 \notin G_{k}$ for $k>0$
(b) $\exists x_{i} \in G_{i}, x_{0}=0$ such that if $z \in G_{i}$ then $\left|z-x_{i}\right| \leqq \epsilon$
(c) $\forall k>0 \exists z_{k} \in \operatorname{Sp}(w) \quad z_{k} \notin \cup\left\{G_{i} ; i \neq k\right\}$
(that is, each G_{k} is "necessary"). Let f_{0}, \ldots, f_{n} be a partition of unity under the covering G_{0}, \ldots, G_{n} on $\operatorname{Sp}(w)$, and

$$
y_{k}=f_{k} \circ w \quad(k=1, \ldots, n) .
$$

Then it is clear $y_{k} \in \mathscr{A}$ for $k>0$ (from (a)) $y_{k} \geqq 0$,

$$
\sum_{1}^{n} y_{k} \leqq 1
$$

and, for $k>0, r\left(y_{k}\right)=1($ from (c)),

$$
w-\sum_{1}^{n} x_{k} y_{k}=\left(z-\sum_{1}^{n} x_{k} f_{k}\right) \circ w
$$

and

$$
\begin{aligned}
\left|z-\sum_{1}^{n} x_{k} f_{k}\right| & =\left|z\left(\sum_{0}^{n} f_{k}\right)-\sum_{0}^{n} x_{k} f_{k}\right| \\
& =\left|\sum_{0}^{n} f_{k}\left(z-x_{k}\right)\right| \leqq \epsilon
\end{aligned}
$$

(from (b)).

3. Continuity of seminorms on C^{*}-algebras.

Theorem 3. Let $(\mathscr{B},\|\cdot\|)$ be a C^{*}-algebra and let p be a seminorm on it satisfying
(i) $\quad p(P(h)) \leqq\|P(h)\| \quad \forall h=h^{*} \in \mathscr{B}, P \in \mathscr{P}$.

Then p is contractive on \mathscr{B}, that is

$$
\begin{equation*}
p(a) \leqq\|a\| \quad \forall a \in \mathscr{B} \tag{ii}
\end{equation*}
$$

Proof. Consider a new norm on \mathscr{B} defined by
(iii) $\quad q(a)=\max (p(a),\|a\|) \quad \forall a \in \mathscr{B}$,
and observe that
(i) $\quad q(P(h))=\|P(h)\| \quad \forall h=h^{*} \in \mathscr{B}, P \in \mathscr{P}$.

Furthermore we can state

$$
\begin{equation*}
\|a\| \leqq q(a) \leqq 2\|a\| \quad \forall a \in \mathscr{B} \tag{1}
\end{equation*}
$$

in other words that q and $\|\cdot\|$ are equivalent norms on \mathscr{B}. Our goal is to prove that q and $\|\cdot\|$ are the same. For this reason fix an element a in \mathscr{B} and denote by \mathscr{A} the C^{*}-subalgebra in \mathscr{B} generated by a and a^{*}. Taking $\left(\mathscr{A}^{* *},\|\cdot\|\right)$ and $\left(\mathscr{A}^{* *}, q\right)$ we get isomorphic Banach spaces being the norms $\|\cdot\|$ and q equivalent. Moreover, $\left(\mathscr{A}^{* *},\|\cdot\|\right)$ as the second dual of the C^{*}-algebra $(\mathscr{A},\|\cdot\|)$ is a W^{*}-algebra and isomorphic to the weak closure $\overline{U(\mathscr{A})^{w}}$ of $U(\mathscr{A})$ where U is the universal *-representation of \mathscr{A} on a Hilbert space, say \mathscr{H}. Here the weak operator topology on $\overline{U(\mathscr{A})^{w}}$ is identical with the weak* topology of $\mathscr{A}^{* *}$ (see [8]).

On the other hand we shall consider q as a norm on $\left(\mathscr{A}^{* *},\|\cdot\|\right)$ equivalent to the ground norm $\|\cdot\|$. To prove the identity of these norms on $\mathscr{A}^{* *}$ (and hence on \mathscr{A}) it is enough to show (see [6]) this:
(iv) $\quad q(\exp (i h)) \leqq 1 \quad \forall h=h^{*} \in \mathscr{A}^{* *}$.

Assume first $0 \leqq h \in \mathscr{A}$ and consider

$$
h_{n}=h+\frac{a^{*} a+a a^{*}}{n}
$$

a sequence of strictly positive elements in \mathscr{A} with a being a generating element. Hence $U_{h_{n}}$ has a dense range in $\mathscr{H}[\mathbf{1}]$ and $U_{h_{n}}^{1 / m}$ converges as $m \rightarrow \infty$ strongly (hence weakly) to the identity operator (as well identity element 1 in $\mathscr{A}^{* *}$) of the Hilbert space \mathscr{H}. Now $\left(\left(\overline{\left\langle h_{n}\right\rangle}\right)^{* *},\|\cdot\|\right)$ is identical with the weak* closure of $\overline{\left\langle h_{n}\right\rangle}$ in $\mathscr{A}^{* *}$, whence 1 is in $\left(\overline{\left\langle h_{n}\right\rangle}\right)^{* *}$, the norms $\|\cdot\|$ and q are identical on which such that

$$
q\left(\exp \left(i h_{n}\right)\right)=1
$$

follows for any $n=1,2, \ldots$ Since

$$
q\left(h-h_{n}\right)=\frac{1}{n} q\left(a^{*} a+a a^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

we have

$$
q(\exp (i h))=\lim _{n \rightarrow \infty} q\left(\exp \left(i h_{n}\right)\right)=1
$$

If $0 \leqq h \in \mathscr{A}^{* *}$ we can choose a net h_{j} in \mathscr{A} with strong limit h and such that

$$
0 \leqq h_{j} \leqq\|h\| \cdot 1 .
$$

Thus $\exp \left(i h_{j}\right)$ tends to $\exp (i h)$ strongly, hence weakly and thus finally in the weak* topology.

Since $q\left(\exp \left(i h_{j}\right)\right) \leqq 1$ as before, we have

$$
q(\exp (i h)) \leqq 1
$$

also.
Finally in case $h=h^{*} \in \mathscr{A}^{* *}$, we write

$$
k=h+2 n \pi \cdot 1,
$$

with such integer n for which

$$
-2 n \pi \leqq \min (t ; t \in \operatorname{Sp}(h)) .
$$

Then we have

$$
0 \leqq k \in \mathscr{A}^{* *} \quad \text { and } \quad \exp (i h)=\exp (i k)
$$

whence

$$
q(\exp (i h))=q(\exp (i k)) \leqq 1 .
$$

Proving (iv) we get $q(a)=\|a\|$ and thus the equality of q and $\|\cdot\|$ since a was an arbitrary chosen element in \mathscr{B}. The proof is complete.

Corollary 3.1. Let p be a seminorm on the C^{*}-algebra $(\mathscr{B},\|\cdot\|)$ satisfying (i) with equality for $P(h) \equiv h$ and
$\left(S C^{*}\right) \quad p\left(a^{*} a\right) \leqq p(a)^{2} \quad \forall a \in \mathscr{B}$.
Then $p=\|\cdot\|$.
Proof. Using Theorem 3 we have at once

$$
p(a)^{2} \leqq\|a\|^{2}=\left\|a^{*} a\right\|=p\left(a^{*} a\right) \leqq p(a)^{2} \quad \forall a \in \mathscr{B}
$$

proving the statement.

4. The general case.

Theorem 4. Let \mathscr{A} be a^{*}-algebra, and let p be a norm on it satisfying $\left(S B^{*}\right) \quad p\left(a^{*} a\right) \leqq p\left(a^{*}\right) \cdot p(a) \quad \forall a \in \mathscr{A}$ $\left(L B^{*}\right) \quad p\left(a^{*} a\right)=p\left(a^{*}\right) \cdot p(a) \quad \forall a=P(h), h=h^{*}, P \in \mathscr{P}$.

Then (\mathscr{A}, p) is a pre-C*-algebra (that is, its completion is a C^{*}-algebra).
Proof. The following identity holds in a ${ }^{*}$-algebra:

$$
\begin{align*}
4 y x & =\left(x+y^{*}\right)^{*}\left(x+y^{*}\right)+i\left(x+i y^{*}\right)^{*}\left(x+i y^{*}\right) \tag{1}\\
& -\left(x-y^{*}\right)^{*}\left(x-y^{*}\right)-i\left(x-i y^{*}\right)^{*}\left(x-i y^{*}\right) .
\end{align*}
$$

This and $\left(S B^{*}\right)$ and the subadditivity of p imply

$$
\begin{equation*}
4 p(y x) \leqq 4\left(p\left(x^{*}\right)+p(y)\right)\left(p(x)+p\left(y^{*}\right)\right) \tag{2}
\end{equation*}
$$

Writing

$$
\begin{aligned}
& x=\left(p\left(v^{*}\right)^{1 / 2}+\frac{1}{n}\right)\left(p(v)^{1 / 2}+\frac{1}{n}\right) u, \\
& y=\left(p\left(u^{*}\right)^{1 / 2}+\frac{1}{n}\right)\left(p(u)^{1 / 2}+\frac{1}{n}\right) v
\end{aligned}
$$

in (2), we get by $n \rightarrow \infty$

$$
\begin{equation*}
p(v u) \leqq\left(p\left(u^{*}\right)^{1 / 2} p\left(v^{*}\right)^{1 / 2}+p(u)^{1 / 2} p(v)^{1 / 2}\right)^{2} \tag{3}
\end{equation*}
$$

Define a new norm on \mathscr{A} by setting

$$
\begin{equation*}
\|a\|:=4 \max \left(p(a), p\left(a^{*}\right)\right) \quad \forall a \in \mathscr{A} \tag{4}
\end{equation*}
$$

such that we infer

$$
\begin{equation*}
\|a b\| \leqq\|a\| \cdot\|b\|,\left\|a^{*}\right\|=\|a\|, p(a) \leqq\|a\| \quad \forall a \in \mathscr{A} . \tag{5}
\end{equation*}
$$

Let \mathscr{B} be the completion of \mathscr{A} with respect to $\|\cdot\|$. There are then unique continuous extensions of ${ }^{*}$ and p to \mathscr{B}. Denote these extensions by ${ }^{*}$ and p, too. This p is now a seminorm on \mathscr{B}. The multiplication, the involution and p are continuous on $(\mathscr{B},\|\cdot\|) .\left(S B^{*}\right),\left(L B^{*}\right)$ and (4) remain valid on \mathscr{B}; furthermore we can sharpen ($L B^{*}$) into
(LB1) $p\left(a^{*} a\right)=p\left(a^{*}\right) p(a) \quad \forall a \in \overline{\langle h\rangle}, h=h^{*} \in \mathscr{B}$.
Let r be the spectral radius in \mathscr{B}. Since \mathscr{B} is a Banach algebra, we have

$$
\begin{equation*}
r(a)=\lim \left\|a^{n}\right\|^{1 / n} \quad \forall a \in \mathscr{B} \tag{6}
\end{equation*}
$$

Consider a self-adjoint h in \mathscr{B}. Then by ($L B^{*}$)

$$
p\left(h^{2^{n}}\right)=p\left(h^{2^{n-1}}\right)^{2}=\ldots=p(h)^{2^{n}}
$$

and hence (by (4))

$$
\left\|h^{2^{n}}\right\|=4 \cdot p(h)^{2^{n}}
$$

so that by (6) we have

$$
\begin{equation*}
r(h)=p(h) \quad \forall h=h^{*} \in \mathscr{B} \tag{7}
\end{equation*}
$$

This and (LB1) give

$$
\begin{equation*}
p\left(a^{*}\right) p(a)=r\left(a^{*} a\right) \quad \text { if } a \in \overline{\langle h\rangle}, h=h^{*} \in \mathscr{B} \tag{8}
\end{equation*}
$$

If $h=h^{*} \in \mathscr{A}$ then p is a norm on $\langle h\rangle$ and hence by (8) we can apply Theorem 1, and infer that $\operatorname{Sp}(h) \subseteq \mathbf{R}$.

Therefore $r(\sin h) \leqq 1, r(\cos h-1) \leqq 2$ via the functional calculus. But $\sin h, \cos h-1$ are selfadjoint since \mathscr{B} is a star-normed algebra and hence by (7), (4) we have

$$
\|\sin h\| \leqq 4,\|\cos h-1\| \leqq 8
$$

hence also

$$
\begin{equation*}
\left\|e^{i h}-1\right\| \leqq 12 \quad \forall h=h^{*} \in \mathscr{A} \tag{9}
\end{equation*}
$$

Since the selfadjoint part of \mathscr{A} is dense in that of \mathscr{B}, (9) remains valid for \mathscr{B} too. This implies that $\|a\|_{c}=r\left(a^{*} a\right)^{1 / 2} \quad(a \in \mathscr{B})$ is a C^{*}-norm on \mathscr{B}, equivalent to $\|\cdot\|$ (see [7]). But

$$
r\left(a^{*} a\right)=p\left(a^{*} a\right) \quad \forall a \in \mathscr{B}
$$

by (7) and hence
(10) $\quad\|a\|_{c}=p\left(a^{*} a\right)^{1 / 2} \quad \forall a \in \mathscr{B}$.

If $h=h^{*} \in \mathscr{B},\left(\overline{\langle h\rangle},\|\cdot\|_{c}\right)$ is a commutative C^{*}-algebra and Theorem 2 is available by (8) and hence we have $p=\|\cdot\|_{c}$ on $\overline{\langle h\rangle}$. Thus Theorem 3 shows that

$$
\begin{equation*}
p(a) \leqq\|a\|_{c} \quad \forall a \in \mathscr{B} \tag{11}
\end{equation*}
$$

Then by (10), (11), ($S B^{*}$) we have

$$
\|a\|_{c}^{2}=p\left(a^{*} a\right) \leqq p\left(a^{*}\right) p(a) \leqq\left\|a^{*}\right\|_{c}\|a\|_{c}=\|a\|_{c}^{2}
$$

that is

$$
\begin{equation*}
p\left(a^{*}\right) p(a)=\left\|a^{*}\right\|_{c}\|a\|_{c} . \tag{12}
\end{equation*}
$$

This shows that $p(a)<\|\mathrm{a}\|_{\mathrm{c}}$ would imply $\left\|a^{*}\right\|_{c}=0$, but

$$
\left\|a^{*}\right\|_{c}=\|a\|_{c}>p(a) \geqq 0
$$

a contradiction.

5. Applications to seminorms.

Theorem 5. Let p be a seminorm on the ${ }^{*}$-algebra \mathscr{B} satisfying
$\left(S C^{*}\right) \quad p\left(a^{*} a\right) \leqq p(a)^{2} \quad \forall a \in \mathscr{B}$
$\left(L C^{*}\right) p\left(a^{*} a\right)=p(a)^{2} \quad \forall a \in\langle h\rangle, h=h^{*} \in \mathscr{B}$.
Then p is a (submultiplicative) C^{*}-seminorm.
Proof. Define a new seminorm by
(1) $\quad q(a)=\max \left(p(a), p\left(a^{*}\right)\right) \quad \forall a \in \mathscr{B}$
we have at once $\left(S C^{*}\right),\left(L C^{*}\right)$ for q because $p=q$ locally (see [12]) and moreover

$$
\begin{equation*}
q\left(a^{*}\right)=q(a) \quad \forall a \in \mathscr{B} . \tag{2}
\end{equation*}
$$

The polarization identity (1) in Section 4 gives now

$$
4 q(y x) \leqq 4\left(q(y)+q\left(x^{*}\right)\right)^{2}=4(q(x)+q(y))^{2}
$$

such that replacing y (and x) with

$$
\frac{a}{q(a)+\frac{1}{n}}\left(\text { and } \frac{b}{q(b)+\frac{1}{n}}\right)
$$

and tending with n to infinity, we get

$$
\begin{equation*}
q(a b) \leqq 4 q(a) q(b) \quad \forall a, b \in \mathscr{B} . \tag{3}
\end{equation*}
$$

The kernel

$$
K_{q}=\{a \in \mathscr{B}: q(a)=0\}
$$

is now a ${ }^{*}$-ideal of \mathscr{B} such that the quotient space $\mathscr{B}_{q}=\mathscr{B} / K_{q}$ is a *-algebra with norm

$$
\begin{equation*}
\left\|a+K_{q}\right\|=q(a) \quad \forall a \in \mathscr{B} \tag{4}
\end{equation*}
$$

preserving $\left(S C^{*}\right),\left(L C^{*}\right)$ and (2) such that $\left(S B^{*}\right)$ and $\left(L B^{*}\right)$ are trivially satisfied. Theorem 4 says that \mathscr{B}_{q} is a pre- C^{*}-algebra and in other words that q has the C^{*}-property and is submultiplicative. But

$$
p(a)^{2} \leqq q(a)^{2}=q\left(a^{*} a\right)=p\left(a^{*} a\right) \leqq p(a)^{2} \quad \forall a \in \mathscr{B}
$$

implies that $p=q$ and the theorem is proved.
Theorem 6. Let p be a seminorm on the *-algebra \mathscr{B} satisfying
$\left(S B^{*}\right) \quad p\left(a^{*} a\right) \leqq p\left(a^{*}\right) p(a) \quad \forall a \in \mathscr{B}$
$\left(L B^{*}\right) \quad p\left(a^{*} a\right)=p\left(a^{*}\right) p(a) \quad \forall a \in\langle h\rangle, h=h^{*} \in \mathscr{B}$
$(N I) \quad p(a)=0$ implies $p\left(a^{*}\right)=0 \quad \forall a \in \mathscr{B}$.
Then p is a (submultiplicative) C^{*}-seminorm.
Proof. The polarization identity gives us as before (3) in Section 4

$$
\begin{align*}
& p(a b)^{1 / 2} \leqq p\left(a^{*}\right)^{1 / 2} p\left(b^{*}\right)^{1 / 2}+p(a)^{1 / 2} p(b)^{1 / 2} \tag{5}\\
& \forall a, b \in \mathscr{B} .
\end{align*}
$$

It follows that $p(a)=0$ or $p(b)=0$ implies $p(a b)=0$ and thus

$$
K_{p}=\{a \in \mathscr{B}: p(a)=0\}
$$

the kernel of p is a *-ideal in \mathscr{B}. The quotient space $\mathscr{B}_{p}=\mathscr{B} / K_{p}$ has a norm by defining

$$
\begin{equation*}
\left\|a+K_{p}\right\|=p(a) \quad \forall a \in \mathscr{B} \tag{6}
\end{equation*}
$$

which preserves $\left(S B^{*}\right)$ and $\left(L B^{*}\right)$. Theorem 4 shows that \mathscr{B}_{p} is a pre- C^{*}-algebra, that is p is a (submultiplicative) C^{*}-seminorm.

The following example shows that Theorem 6 does not remain true without ($N I$).
Example 7. \mathbf{C}^{2} is ${ }^{*}$-algebra with coordinate-wise multiplication and with involution defined by

$$
\begin{equation*}
(w, z)^{*}=(\bar{z}, \bar{w}) \quad \forall w, z \in \mathbf{C} . \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
p(w, z)=|w| \quad \forall w, z \in \mathbf{C} \tag{8}
\end{equation*}
$$

defines a multiplicative B^{*}-seminorm which is not a C^{*}-seminorm.
Proof. Since p is trivially multiplicative it is B^{*}-seminorm too, but

$$
\begin{aligned}
& p\left((1,0)^{*}(1,0)\right)=p((0,1)(1,0))=0 \neq 1=p((1,0))^{2} \\
& p\left((1,0)^{*}\right)=p((0,1))=0 \neq 1=p((1,0))
\end{aligned}
$$

Remark. The above example shows also that Theorem 1 can not be sharpened by writing " p is a seminorm" instead of " p is a norm". Indeed, the above example satisfies these weaker conditions, but $(-i, i)$ is a self-adjoint in it however its spectrum is not real.

References

1. J. F. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), 749-752.
2. H. Araki and G. A. Elliott, On the definition of C^{*}-algebras, Publ. Res. Inst. for Math. Sci. Kyoto Univ. 9 (1973), 93-112.
3. F. F. Bonsall and J. Duncan, Complete normed algebras, Erg. Math. Bd. 80 (Springer, 1973).
4. R. S. Doran and J. Wichmann, The Gelfand-Naimark theorems for C^{*}-algebras, L'Enseignement Mathém. 23 (1977), 153-180.
5. J. G. Glimm and R. V. Kadison, Unitary operators in C^{*}-algebras, Pac. J. Math. 10 (1960), 547-556.
6. T. W. Palmer, Characterizations of C^{*}-algebras, Bull. Amer. Math. Soc. 74 (1968), 538-540.
7. V. Pták, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.
8. S. Sakai, C^{*}-algebras and W^{*}-algebras, Erg. Math. Bd. 60 (Springer, 1971).
9. Z. Sebestyén, A weakening of the definition of C^{*}-algebras, Acta Sci. Math. (Szeged) 35 (1973), 17-20.
10. - On the definition of C^{*}-algebras, Publ. Math., Debrecen 21 (1974), 207-217.
11. -Axiomatikus vizsgálatok a C^{*}-algebrák köréböl (Investigations in axiomatic C^{*}-algebra theory), Dissertation (1974) (In Hungarian).
12. -Every C^{*}-seminorm is automatically submultiplicative, Periodica Math. Hung. 10 (1979), 1-8.

Eötvös Loránd University, Budapest, Hungary

[^0]: Received June 28, 1982. This paper is dedicated to Professor Béla Szőkefalvi-Nagy on his $70^{\text {th }}$ birthday.

