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A TOPOLOGY FOR THE SOLID SUBSETS 
OF A TOPOLOGICAL SPACE 

ROBERTO LUCCHETTI, ANNA TORRE AND ROGER J.-B. WETS 

ABSTRACT. A new topology for the closed subsets of a topological space X which 
are the closure of their interiors is defined and investigated. Some applications to con
vergence of regular measures are also given. 

1. Introduction. In [LSW] a convergence notion TB on c(X), the set of the closed 
subsets of a metric space (X, d), was introduced with the aim of identifying classes of 
(closed) sets where narrow convergence of probability measures implies their uniform 
convergence. This issue, which is of great importance in applications, was already con
sidered in [BT, S W]. 

A generic version of this result would read: narrow convergence to a TB -continuous 
measure implies uniform convergence on every Te-compact subclass of sets. The aim 
of this paper is to define and study a topology rr on c(X) which is compatible with TB-
convergence on the subspace s(X) of the solid sets of X, namely the sets that are the 
closure of their interiors. This subclass of c(X) has a relevant meaning in economics, 
representing the space of (continuous preferences of) economic agents [Ch, KS]. The 
topology we introduce can be naturally defined on c(X), but we show that it has poor 
separation properties there. Instead, it behaves well on s(X). 

There is another motivation that led us to the study of this topology. In [Ch], 
Chichilniski introduced the so called order topology on s(X), which is shown to enjoy 
the following property: a a-finite measure m is continuous at a closed set F which is an 
m-continuity set {i.e. its boundary has null m-measure), if s(X) is endowed with the order 
topology. Here, stating the topological version of Theorem 4 in [LSW], we show that 
the same result (and its converse too) holds true for a finite measure, if the space s(X) is 
endowed with the much weaker rr-topology. Also, we argue that a new topology, inter
mediate between the order and rr topologies, provides the same result if we are given a 
a-finite or a locally finite measure. 

The paper is organized as follows: section two gives the notations, assumptions, and 
definitions of the hyperspace topologies we shall use in the paper. The following section 
intends to give an idea of the rr-topology, by comparing it with other, better known, 
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hyperspace topologies. In particular, it is shown that in c(X) the rr-topology behaves 
differently from other topologies, even in the compact case, while on the subset s(X) 
some useful comparisons can be offered. Section four nails down the basic topological 
properties of rr; for instance, it is shown that, when X is a metrizable locally compact 
space, then rr can be characterized as a weak topology. Furthermore, if X is separable 
too, (,s(X),rr) is metrizable, while the regularity of the hyperspace fails if X is not locally 
compact. The final section offers some applications. 

In closing this introduction, we observe that, when X is locally compact, then the study 
of the rough topology fits in the theory of the continuous lattices, in the following sense: 
c(X) is an upper continuous lattice and the upper rough topology is in such a case the so 
called Scott topology, while o(X), the set of the open subsets of X, is a lower continuous 
lattice and can be provided by the Scott topology, generated by the sets {G G o(X) : 
K CG}, where K is a compact set. By means of the weak topology generated by the 1 -1 
function int: s(X) —• o(X) defined as int(F) = intF, then one can see the rough topology 
as the join of the two Scott topologies on s(X) and also on the set {G G o(X) : intcl G = 
G} (for more about the Scott topology and continuous lattices, the reader can consult 
[GH]). 

2. Notations and assumptions. Let X be a set with at least two points and let r be 
a topology on X, which is always supposed to be at least Hausdorff. c(X) indicates the 
set of the closed subsets of X, which will be called the hyperspace ofX, when endowed 
with some topology [Mi]. The closure of a set A is denoted by cl A, its complement by 
Ac, its boundary by dA and its interior by int A. Given a closed set F we denote by S£[F] 
the set {x e X : d(x,F) < e}. S(x, r) will be the open ball centered at x with radius r. 
The set of the accumulation points of X will be indicated by A(X). We shall consider the 
following families of subsets of c(X): 

G~ = {Fe c{X) such that F H G ^ 0}, and 

G+ = {Fe c(X) such that F C G}, for a subset G of X. 

These subsets of c(X) allow to define topologies on c(X); for example the upper 
Vietoris topology has as a base the family of sets V+, where V ranges over the open 
sets of X, and the lower Vietoris topology has as a subbase the family of sets V~, where 
V ranges over the open sets of X. The lower Fell topology agrees with the lower Vietoris 
topology and the upper Fell topology has as a base the family of sets (Kc)+, where K 
ranges over the compact sets of X. The corresponding Vietoris and Fell topologies V 
and F are defined as the supremum of their lower and upper parts: V = V+ • V~, and 
F — F* F~. Thus a base for the Vietoris topology V is given by G+ H Vf Pi • • • Pi V~ and 
for the Fell topology F is given by (Kc)+ D Vf D • • • Pi V~, where Vt and G range over 
the open sets of X and K over the compact subsets of X. The paper mainly deals with the 
so called rough topology, which is defined as the supremum of two parts: the upper part, 
which we shall call the T*-topology, agrees with the upper Fell topology, and the other 
topology, called the r~ -topology, has as a base the sets of the kind: 

{H)r~ = {Fe c(X) such that c l ^ ) C Hc} = {F e c(X) such that int F D / / } , 
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where H ranges over the compact sets of X. Thus a base for the rr-topology is given 
by (Kc)+ n (H)r~, where K and H range over the compact subsets of X. Observe that 
the r~ -topology is a lower topology, in the sense that an open neighborhood of a set 
F automatically contains all the (closed) supersets of F. We shall frequently use in the 
sequel the following facts, easy to prove: K\ C K2 if and only if {K^f C {K\Y and 
H{ C H2 if and only if (H2)

r~ C (#i)r~\ 
In terms of converging nets, it can be shown that, if X is completely regular, a net {Fn }, 

n G T, T a directed set, converges in the 7>-topology to a set F provided the following 
conditions hold: 

i) for each net ak,k G S, S a set cofinal to T, such that ak G Fk and there is n such 
that, for all k> n,ak G K, where £ is a compact set, and a = \imak, then a e F. 

ii) for each net ak, k G S, S cofinal to 7, such that ak G {Fk)
c and there is n such that, 

for all k > n, ak G /£, where K is a compact set, and a = limak, then a G c l ^ ) . 
This follows from the known equivalence between i) and convergence of nets for the 

upper Fell topology [KT, Theorem 3.3.10, p. 32], then applying the result to the closure 
of the complements. 

If (X, T) is locally compact, condition i) of Proposition 4.2 is equivalent to F D Ls Fn, 
where Ls Fn denotes the topological superior limit of a net of sets [KT, Definition 3.1.4, 
p. 24], because every converging net eventually belongs to a compact set. One can also 
prove that convergence of nets in the following sense: 

(*) {Fn} converges to F if F D Ls Fn and cKF) D Ls((F„)c) 

is not topological, unless X is (completely regular and) locally compact. Finally the con
vergence (*) for sequences characterizes converging sequences in (c(X),rr) [LT]. 

We do not want to exclude, at least in principle, the empty set from our analysis. 
This is motivated by the fact that we think of the applications of the rr-topology mainly 
in probability, where the impossible event cannot be ignored. However, this creates a 
problem with the definition of those hyperspace topologies specifically depending from 
the metric d on X (and not only from the topology engendered by d), as we need to 
define d(x, 0), for every x G X. Some authors define d(x, 0) = oo for each x G X [LL, 
AF], supposedly with the motivation that for a nonempty set A, d(x, A) is always defined 
as inf {d(x, a) : a G A} and that it seems natural that inf 0 = oo. Here we make a different 
choice, already proposed in [Be2]. We set d(jc,0) =: sup{d(x,y) : y G X}. The reason 
for this choice is mainly to accommodate some equalities between hyperspaces that were 
proved with nonempty sets only. 

Now we briefly describe some other topologies. The Choquet-Wijsman topology CW, 
on the hyperspace of a metric space (X, d), is defined as the supremum of a lower part, 
which agrees with the lower Vietoris topology, and an upper part, which has as a local 
base at a nonempty set A the family {F G c(X) : d{xt,A) < d(xi,F) + e, je,- G X, i = 
1, . . . , k\ e > 0}. The same definition holds for the empty set, provided (X, d) is bounded. 
If (X, d) is unbounded, a local base at 0 is given by the family {F G c(X) : e < d(X[, F), 
xt; GX, i = !, . . . ,&; e > 0}. 
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Equivalently, a net An converges to a set A in the Choquet-Wijsman topology if 

lim d(x, An) — d(x, A), for each x E X. 
n—+oo 

A net An converges to the empty set in the Choquet-Wijsman topology if 

lim d(x, An) = sup{d(x, y) : y G X}, for each x G l 
n—KX> 

It is clear that the upper part of the Choquet-Wij sman topology agrees with the weakest 
topology making lower semicontinuous the family {A —> dx(A) =: d(x, A),x G X}, and it 
is not difficult to see that the lower part agrees with the weakest topology making upper 
semicontinuous the family {A —» dx(A) =: d(x,A),x G X}. 

The bounded Hausdorff (or Attouch-Wets) metric topology AW, on the hyperspace 
of a metric space is defined, by means of converging sequences, in the following way: 
A — AW — rimn_+oo^n if: 

lim sup{|d(x,An) — d(x,A)\ : x G B,B a bounded set} = 0. 
n—+00 

In the case A = 0, and if (X, d) is unbounded, then 0 = AW — lim^oo An if: 

lim inf {d(x, An) : x E B,B SL bounded set} = 00. 
n—>oo 

Our analysis will mainly concern the subspace s(X) of c(X) of the solid sets, namely 
the sets that are the closure of their interior. This subspace has been considered in an eco
nomical setting, for instance in [Ch, KS], where the order topology TO has been defined. 
A base for this topology is given by: G+ D (H)r~, where G ranges over the open sets of 
X and H ranges over the (closed) sets in s(X). 

We refer to [En, Ku] as standard texts of general topology. For more about hyperspace 
topologies the reader can consult [Mi, KT, BL2, BLLN, FLL, LT]. 

3. Comparisons. In order to give some flavor to the 17-topology, we shall start our 
analysis by comparing it with other hyperspace topologies. This will be also useful to 
derive some of its topological properties. As it was already remarked in [Lu], the rr-
topology behaves rather differently with respect to other topologies. 

EXAMPLE 3.1. Even in the compact case, the rr-topology need not agree with the 
Vietoris topology on c(X). For, consider the following sequences, on the interval [—1,1]: 
Mn — {1}' Mn+i = {—1}' anc* Fn = [—1,—£] U [ ,̂ 1]. The first one has a rr-limit 
but not a V-limit; the opposite happens with the second. More generally, observe that 
all the singletons which do not correspond to isolated points have as the only r~-open 
neighborhood all of the space c(X), while the element {X} is always r~ -isolated in the 
hyperspace, when X is compact. • 

The previous example shows that the ry-topology is not comparable with other hyper
space topologies as well, as the Hausdorff metric, Fell, Choquet-Wijsman, and Attouch-
Wets topologies. 

The situation changes on s(X). 
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PROPOSITION 3.2. On s(X), the rr -topology is finer than the V topology. IfA(X) is 
nonempty, then the r~ -topology is strictly finer than the V~ -topology. 

PROOF. It is finer: given F e Vf D • • • n V~, observe that there are jq, . . . ,xn such 
that X( G Vt H intF. Then F G ({-^i})r_ n---D ({jt„})r~ C Vf H • • • H V~. Now, take 
x G A(X). We shall show that there is no basic open set of the form Vf D • • • Pi V~ such 
that Vf PI • • • H V~ C ({x}y~. As x G A(X), there are points yi , . . . ,y„ such that yt ^ x 
and yi G V; for each /. Take an open set G containing y i , . . . , yn and such that its closure 
does not contain x. Then cl G G Vf H • • • D V~, but cl G fi ({x})r~. m 

From Proposition 3.2 we easily get the following results concerning the hyperspace 
s(X): the rr-topology is always finer than the Fell topology and it is finer than the Vietoris 
topology when the space X is compact, as the complement of each open set is a compact 
set (strictly finer: remember that {X} is isolated in (s(X),rr)). When (X, d) is a metric 
space the Tr-topology is finer than the Choquet-Wijsman topology if the upper Fell topol
ogy is finer than the upper Choquet-Wijsman topology, i.e. when each ball in X is either 
compact or all the space. All the previous relations are strict when A(X) is nonempty. 

The following proposition further highlights connections between the rr and Choquet-
Wijsman topologies. Denote by CWC the following topology on s(X), described by open 
neighborhoods of a set F: *B is a CWc-open neighborhood of F if the set (Bc =: {A : 
c\Ac G *B} is an open neighborhood of cl(Fc) in the Choquet-Wijsman topology. 

The following theorem shows that CW • CWC is always finer than rr and gives condi
tions on the metric space (X, d) to ensure that the two topologies agree on s(X). 

THEOREM 3.3. Let (X,d) such that every closed ball is either compact or all the 
space. Then (s(X),rr) = (s(X),CW-CWc). 

PROOF. We study separately later the case of the empty set, because the results we 
refer to in the first part of the proof apply to the subspace of the (closed) nonempty subsets 
of X. At first, observe that rr < CW • CWC (without assumptions on X). For, r^ < CW+ 

[FLL, Proposition 2.3] and, by symmetry, r~ < (CWC)+, hence rr = r+ • r~ < CW+. 
(CWC)+ < CW • CWC. From the assumptions on the space X, rr

+ > CW+ [Bel, Theo
rem 2.3], hence rr > CW, from Proposition 3.2. Now, using the homeomorphic charac
ter of the function c: (s(X),Tr) —> (S(X),T^) defined by c(F) — c\(F°), we conclude that 
rr > CW • CWC. Next, we prove the theorem for the open neighborhoods of the empty 
set. If (X, d) is compact, then 0 is isolated in both topologies. This is evident for r^. Let us 
show it for CW+. Set diamX =: 5a > 0. There are x\,...,xn such that U"=i S(xt, a) = X. 
We want to show that the CW+-open set Â  =: {F G s(X) : d{xt,F) > 2a for each 
/} = {0}. 0 G M because d(xi9 0) > 2a for each /, due to the triangle inequality. Suppose 
F E N and F nonempty. Take y G F. Then d(xj, y) > 2a, i.e. y fi ULi £(**> a)> a contra
diction. We provide the rest of the proof in the case X bounded (but not compact), the 
case X unbounded being similar (and more standard). To begin with, we show that, given 
a basic r^-open neighborhood of 0 of the form (Kc)+, there is a basic CW+-open neigh
borhood Af of 0, such that TV C (Kc)+ (with the only assumption X being metric). Take 
any compact set K. There is x G X such that d(x, K) — 3a > 0. Then there are k\,..., kn 
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such that K C (J?=i S(k> a). Consider the following basic CW+-open neighborhood N of 
0: N = {F G s(X) : d(kh F) > la}. Suppose F e N. Then FHSfa; a) = 0 for each /, and 
hence F G (Kc)+. Finally, suppose (X, d) is bounded, noncompact and such that all the 
closed proper balls are compact. Take any basic CW+-open neighborhood TV of 0. TV is of 
the form N =: {F G s(X) : d(xt, F) > at — le}, where we set a, = sup{d(xt, y) : y G X}. 
Since cl S(JC,-, a, — e) is not all of the space, it is compact. Set K = U"=i ^te,<*/ — £X a 

compact set. It is not difficult to show that (Kc)+ C N and the proof is complete. • 
Observe that the function c, defined in the proof of the previous proposition, is not 

usually continuous on all of c(X): for the sequence [—£,£] C R T>-converges in c(X), 
while the sequence of the closures of the complements does not. • 

Now, let (X, d) be a normed linear space: we want to compare the AW and rr-
topologies, on the subspace conv(X) of c(X) of the convex sets of X. 

PROPOSITION 3.4. On conv(X), AW > rr. 

PROOF. It is clear that AW+ > T^, for instance by comparing both with CW+. It 
remains to show that AW~ > r~. Take A G {H)r~. Then there is a > 0 such that for each 
h G H, S(h, là) C intA. Take h\,...,hk such that |J?=i ^ " a) ^ H- ^ s ^ ^s s n o w n in 

[BLll (S(hi,a))r~ is an AW~ neighborhood S/ofA. Then A G « =: f l t i % C (H)r~. m 

REMARK 3.5. It can be useful to observe that the former result does not apply, in 
general, to the case X SL closed convex subset of a linear space. This happens because, 
usually, the rough topology does not pass to subspaces. This is not surprising, because 
of the complement operation appearing in the definition of T>. Thus, for instance, if / 
is a compact interval of the real line, then it is isolated in (.?(/), T>), but it is not in the 
topology s(I) inherits as a subspace of (s(R), r r) . • 

Finally, we compare the rr-topology with the order topology TO. 

PROPOSITION 3.6. Let X be a regular space. Then (S(X),TO) is finer than (s(X),7>). 
They coincide if and only ifX is compact. 

PROOF. The comparison of the two upper parts is straightforward. As far as the lower 
parts are concerned, take A G (H)r~, where H is a closed set. Then there is an open 
set N inX such that H C TV and clN n (intA)c = 0. Then A G (clAOr" C (H)r~. 
If X is not compact, there is a closed proper non compact set F\. Take x fi F\ and N 
open such that c\N C\F\ = 0. Then c\N e ((Fi)c) . Suppose there is K such that 
cl TV G (Kc)+ C ((Fi)c) . Then Fx C K, which easily gives a contradiction. • 

4. Topological results. We shall briefly analyze here some of the topological prop
erties of the rr-topology on c(X); then we shall focus on the subset s(X). The following 
properties of (c(X),r^) are easy to prove: (c(X),r^) is To, for if a point x belongs to F\ 
and not to F2, then Fi belongs to ({JC}C)+, while F\ does not. (c(X), T+ ) is not T\, like all 
the upper (and lower) topologies. If there are two distinct points x and v which are not 
isolated, then (C(X),T~) is not T0, as it is not possible to separate any pair of sets with 
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empty interiors. Finally, if there are two distinct points x and y which are not isolated, 
(c(X),7>) is To but not T\. 

We start with the analysis of the embedding of X in the hyperspace, to show admissi
bility of the rough topology. Recall that Michael [Mi] calls admissible those hyperspace 
topologies such that /: (X,r) —> (c(X),Tr\ defined as i(x) = {JC} is a homeomorphism 
(onto i(X)). 

PROPOSITION 4.1. i(A(X)) is compact in (c(X), rr). 

PROOF. It is easy to see that (Kc)+ D i(X) = {{x} : JC G Kc}. As far as the lower part 
is concerned, observe that (H)r~ H i(X) = i(X) if H = 0, (H)r~ H i(X) = 0 if H contains 
more than one point and moreover, if H = {JC}, then (H)r~ n /(X) = {JC} if and only if JC 
is an isolated point: otherwise it is again empty. Thus, given a basic open covering V of 
/ (A(X)) , the only case to consider is when V is of the form: 

V={(K<)+ni(A(X))jej}. 

Then{Jjej(K<j)+m(A(X)) = i(A(X)) and hence f]j£jKjnA(X) = ^ T h e n ^ e / C ^ n A ^ n 
A(X) = 0. Then there is a finite family j u . . . Jn such that flLi (Ki n Kh n A W ) = ®> 
due to the compactness of K\ and closedness of A(X). As a result, 

i(A(X)) C ( ^ r U ( ^ )+ U • • • U (K]n)\ 

Proposition 4.1 is the first step to see under which conditions on the space X the rough 
topology is admissible. In the next theorem, we shall see that the continuity of / holds 
with no assumption on the topology on X; instead, contunuity of its inverse requires 
strong conditions. 

THEOREM 4.2. The rr-topology is admissible in the sense of Michael if and only ifX 
is either compact or discrete. 

PROOF. The continuity of / easily follows from the characterization of the sets 
(Kc)+ n i(X) and (H)r~ D i(X) given in the proof of Proposition 4.1. Then observe that i 
maps isolated points in X into isolated points in (/(X),rr), because, if JC is isolated, then 
Kx) — {*} — ({X}Y~ H/(X). Thus, admissibility follows in both cases. As far as the only 
if part is concerned, suppose X is not discrete, i.e. A(X) is nonempty. Take JC G A(X). 
Take any open set A containing JC and such that Ac ^ 0. From the continuity of i~l it fol
lows that some open basic neighborhood V of {JC} must exist such that / _ 1 (^ ) C A. As 
JC G A(X), V must be of the form (Kc)+, as already observed. Thus, there exists a compact 
set K such that Kc c A, i.e. Ac C K. Summarizing, we have seen that each closed set F 
which does not contain JC is actually compact. It follows that X must be compact. • 

We now switch our attention to (s(X),Tr), where more regularity properties hold, as 
we shall see. We shall assume that X is at least a regular space. We first remark that s(X) 
is a dense, (usually not closed) subset of c(X). Density follows from the following fact: 
take a basic open set (Kc)+ n (H)r~. Take F G (Kc)+ n (H)r~ and consider an open set A 
such that A D F and cl A H K = 0. Then cl A G s(X) H (Kc)+ n (H)r~. 
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PROPOSITION 4.3. (s(X), rr) is T2. 

PROOF. The proof relies on the following fact, which is straightforward to prove: if A 
and F are two distinct sets in s(X), then there is a pointx belonging to int(A\F)Uint(F\A). 
Suppose x G int(A \ F). Then observe that F G ({x}c)+ and A G ({x})r~. m 

PROPOSITION 4.4. Let (X, r) be metrizable and suppose (s(X), r r) is first countable. 
Then (X, r) is a o-compact space, hence it is separable. 

PROOF. We shall show that {X} does not have a countable fundamental system of 
open neighborhoods, unless (X, r) is a-compact. A fundamental system of open neigh
borhoods of X must be of the form {{Ht)r~ \ i EN}, where Ht are compact, and hence 
separable subsets of X. Suppose X is not a-compact. Then there is p G X such that for no 
Up G Ht. Then X G ( M ) r ~ , but for no i, ({/?})r~ D (Ht)*-. m 

Observe that the result concerning separability holds true for all topologies having the 
lower Vietoris topology as their lower parts. 

The following theorem shows that we must impose some conditions on the space X 
in order to get more separability properties on the hyperspace. 

THEOREM 4.5. Let (X, d) be a metric space. If (s(X), r r) is regular, then X is locally 
compact. 

PROOF. Suppose x is a point without compact neighborhoods. Let A— {A G s(X) : 
x G A} and B G s(X) such that x £ B. 

We claim that it is not possible to separate B from A. Let (Kc)+ Pi (H)r~ be a basic 
open neighborhood of B. Observe that A Pi (H)r~ ^ 0. We claim that there is A G 
s(X) such that A Pi K C {x}. This is obvious if x £ K. If x G K, consider a sequence 
xn G S(x, ^) D Kc, such that xn ^ xm for n ^ m. Take an such that d(xn, K) > 2an and 
cl S(xn, an)r\c\ S(xm, am) = 0, for n ^ m. If for all large n, say n > no, cl S(xn, an) = {;cn}, 
then A = \J™=nQc\ S(xn,an) U {x} is such that A G s(X) and x £ int(A), because A 
is compact. Otherwise suppose that for a subsequence n^ there is ynk ^ xnk such that 
ynk G clS^.f ln,) . Set 2bk = d(^,yWik) and call A' = U£ i c l S ^ . W U {x}. Then 
A' G .s(X) and x £ int(A'). Consider the set C = A U B in the first case and the set 
C = A' U B in the second case. C cannot have an open neighborhood disjoint from 
(Kc)+ n (H)r~ because, given any basic open neighborhood Af of C, for sufficiently small 
e,Cn S(x, e)c G TV H (Kc)+ n (H)r~. m 

On the other hand local compactness allows us to get much stronger results. 

THEOREM 4.6. Let (X, d') be a locally compact metrizable space. Then (s(X), r r) is 
completely regular. 

PROOF. Local compactness allows claiming the existence of a distance d, equivalent 
to d', such that all the proper closed balls in (X, d) are compact [Be2, Theorem 2]. Obvi
ously, the rough topology in the hyperspace is not affected by switching from d' to d in the 
space X. We shall prove the claim by showing that the rough topology is a weak topol
ogy. From Theorem 3.3, we know that (s(X),rr) agrees with (s((X, d),CW-CWc)V 
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The claim now easily follows from the fact that the Choquet-Wijsman topology is the 
weakest one, on s(X), making continuous the family of functionals, defined on s(X), 
{A —• dx(A),x G X}. Then the rr-topology is the weakest topology on s(X) making 
continuous the following family of functionals: 

A —• dx(A) and A —> dx(A
c), for each x G X. m 

The importance of describing hyperspace topologies as weak topologies, as is done 
for the rr-topology in the proof of Theorem 4.6, is highlighted in [BL2]. 

THEOREM 4.7. Let X be a metrizable space. Then the following are equivalent: 
i) X is separable and locally compact. 

ii) (s(X), rr) is metrizable. 

Hi) (s(X), rr) is second countable. 

PROOF. At first, let us show that condition i) implies second countability. Without 
loss of generality, we can suppose that X has proper closed balls which are compact. 
Consider the following family of compact sets: {A,r =: cl S(jt/, r) such that {xt : i € N} 
is a dense family in X, r is a rational number, and the ball is proper}. Now consider the 
family of open sets 

* = {((A,>)c)+ H (Ajsy-; ij eN;r,seQ}. 

It is not difficult to see that A is a (countable) subbase for the rr-topology. Thus i) im
plies iii). Moreover i) and Theorem 4.6 allow us to conclude that (s(X), Tr) is metrizable, 
i.e. ii). From Proposition 4.4 and Theorem 4.5 we see that metrizability of (js(X)9Tr) im
plies i). To conclude the proof, let us show that second countability of (s(X),Tr) implies 
that X is separable and locally compact. Again, separability follows from Proposition 4.4. 
Now, suppose there is a point JC G X without compact neighborhoods. If there is a count
able base for (s(X),rr), then from the Lindelof Theorem there must be a countable base 
of the form {(K%)+ D (Hn)

r~,n G N}, for compact sets Kn and Hn, and, without loss of 
generality, KnnHn = 0. As cl S(x, \) is not compact, there is xn G cl S(x, ^)D(//„)C. Call 
H = {JC„, JC, n G N}. Consider, for each n, 2an =: min{d(£n, //„), d(xn, Hn)} > 0, where, 
for given sets A and B, d(A,B) — inf{d(a,b) : a G A,b G B}. Consider C„ = San[Hn]. 
Then Cn G (Kc

n)
+ n (Hn)

r~', but Cn £ Hr~ and the contradiction shows that X must be 
locally compact. 

5. Applications. 

THEOREM 5.1. Let (X,T) be a Polish space, (B(X) the family of the borel sets ofX 
and m: (s(X), rr) —+ [0, oo) a positive Borel measure. Then the following are equivalent: 

i) m is continuous at F. 
ii) m is continuous atclF0. 

iii) F is a m-continuity set, i.e. m(dF) — 0. 

PROOF. Equivalence between ii) and iii) is an easy corollary of the equivalence be
tween i) and iii). Hence we prove this equivalence. Suppose there is F such that m(dF) — 
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a > 0 . Take a basic open set N of the form: N = {A G s(X) :AHK = 0}n{A G s(X) : 
intA D H} = (Kc)+ D (H)r~, where F misses the compact set K and intF contains the 
compact set H. Pick an open set G such that G D H and cl G Pi dF = 0. Consider the 
set A = cl(intF PI G). Then it is not difficult to see that A G (Kc)+ H (H)1" and that 
m(A) < m(F) — a, showing that m is not continuous at F. Conversely, let us observe that 
m is an inner regular measure, because every Polish space is a Radon space [Sc]. Then, 
for a given Borel set A, we have m{A) = sup{m(AT), K is compact and A D A'}. Now, 
take F such that m(3F) = 0, and let a > 0. There are compact sets H and f̂ such that 
intF D H mdF° D K and such that m(H) > ra(intF) - a and m(K) > m(F°) - a. It is 
easy to show that, for A G (A^c)+ n (//)r~, we have |m(A) — m(F)\ < a. m 

REMARK 5.2. Observe that the proof of Theorem 5.1 shows the equivalence between 
i) and iii) for sets in c(X) and not only in s(X). Also, it is easy to see that both imply ii) 
for all the sets in c(X). Instead, the relation ii) implies i) usually works only for solid sets. 

REMARK 5.3. Theorem 5.1 is true for every normal (for the only if part) and Radon 
(for the if part) space X: the proof is the same. More interestingly, one can wonder 
whether the claim holds for a-finite or locally finite measures too. Paralleling the proof 
of the theorem, one can see that m is continuous at a point F where m(F) — oo, if and 
onlyifm(intF) = oo, without further conditions on m(dF). If m(F) < ooandm(X) = oo, 
then m is never continuous at F, because every ^-neighborhood of F contains sets of ar
bitrarily big measure. One can get continuity in such a case by considering the topology 
which is the supremum of the lower rr-topology and the upper Vietoris topology, and a 
measure which is inner and outer regular at the same time. Observe that this last one is 
finer than the rough topology and coarser than the order topology. 

THEOREM 5.4. Suppose we have a probability measure P on the borel sets of a lo
cally compact space (X, d), and a family A such that A is a compact subset of (s(X), rr\ 
Suppose moreover P: (c(X),rr) —• [0,1] is continuous at every A G A. Then 

limsup{P(S£[aA]) : A G A} = 0. 
£—•0 

PROOF. By virtue of Theorem 5.1 and Remark 5.2, we can suppose that A is a com
pact subset of (C(X),T>). As a first step, of independent interest, let us show that the 
function 3: (c(X),rr) —> (C(X),T>) such that 9(A) = 3A, is continuous. A neighborhood 
of dA is of the kind (Kc)+, and K = K\ U K2, where K\ and K2 are compact sets such that 
K2 C intA and A H Kx = 0. Then d((Kc

{)
+ H (#2)r~) C (Kc)+, as it is easy to see. 

Now, let us consider the map t: [0,1] x (C(X),T>) —> (c(X),7>), defined by t(e,A) = 
S£[dA], (where So[dA] = dA). We want to show that is is continuous at (0, A), for A G A. 
Take a compact set K such that dA D K = 0. Then, for some s > 0, SS[K] is compact 
and dA G (SS[K])C+- From the first step, there is a neighborhood V of A such that dB G 
(SS[K])C+, for each B G V. It follows that S£[dB] H K = 0, for each E < s, showing 
the continuity of t at (0, A). Finally, continuity of P o t, compactness of A and the Berge 
maximum theorem allow us to conclude the proof. 
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COROLLARY 5.5. Let (X, d) be locally compact, let A and P be as in Theorem 5.4, 
and Pv a sequence of probability measures converging narrowly to P. Then 

lim sup{\Pv(A) ~ P(A)\ : A G J Î } - 0 , 
Z/—KX) 

i.e. the convergence ofPv to P is uniform on A. 

PROOF. This is a consequence of Theorem 5.3 and of Theorem 1 of [BT]. 
To conclude, let us observe that the same conclusion of Corollary 5.5 also holds when 

Ac has the same properties required for A in Theorem 5.4, where Ac := {cl(Ac) such that 
A £ A}. Moreover, Corollary 5.5 holds without requiring local compactness of (X, d) if 
we ask for sequential compactness (rather than compactness) of A (see also [LSW]). 
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