ON CRITICAL r, λ -SYSTEMS

вү J. VRANCH

SUMMARY. Critical r, λ -systems are introduced such that any nontrivial r, λ -system must be an extension of some critical system. It is shown that parametric values for which critical systems can exist are restricted to $\lambda(v-1) \le r(r-1)$ and, further, to $\lambda(v-1) < r(r-1)$ if the critical system is extendible.

1. Introduction. An r, λ -system is a collection of v objects (or varieties) arranged into b subsets (blocks) such that each variety appears in exactly r blocks and each pair of varieties appears in exactly λ blocks. For $\lambda = 0$, each block must contain a single variety and, for $\lambda = r$, each block must contain all varieties. We call such designs trivial and avoid them by assuming $1 \le \lambda < r$.

A theorem by Ryser [1], proves that if b = v in an r, λ -system, then $\lambda(v-1) = r(r-1)$ and the system is a symmetric balanced incomplete block design. The r, λ -system,

(abcdeg)(ag)(bd)(ce)(abcf)(adef)(befg)(cdfg)

has v = 7, b = 8, r = 4 and $\lambda = 2$. Since (v-1) = 12 = r(r-1) but $b \neq v$ the converse of Ryser's theorem does not hold. We partition r, λ -systems into three classes by defining $D = \lambda(v-1) - r(r-1)$ and calling a system elliptic, parabolic or hyperbolic according to whether D is negative, zero or positive respectively.

2. **Reducible** r, λ -systems. Consider any r, λ -system S. Adding a complete block (that is, a block consisting of all v varieties) will result in a new r, λ -system with the values of r and λ each increased by one. Adding a complete singles set (that is each variety appears as a block consisting of a single element) will result in a new r, λ -system with the value of r increased by one. These simple additions can be used to construct an infinite family of systems from any given system. Any r, λ -system containing a complete block or a complete singles set will be called a reducible system. We will concern ourselves primarily with r, λ -systems that are not reducible and which we call irreducible.

Stanton and Mullin [2] proved that for $\lambda = 1$, all irreducible systems are elliptic or parabolic. It is conjectured that this is true for any value of λ and the following results support this conjecture.

Received by the editors May 5, 1975.

3. Embedding r, λ -systems. Let S be an r, λ -system with v > 1 varieties. Deleting all occurrences of some variety, say x, will leave an r, λ -system with v-1 varieties and the same values for r and λ as S. The reverse process, of adding a new variety, say y, to r blocks to generate an r, λ -system S' with v+1 varieties is not so simple and not always possible. When it is possible we say S is embedded in S'. If S is embedded in S' and S' is embedded in S'' we say "S is embedded in S'''.

LEMMA 1. An irreducible system cannot be embedded in a reducible system.

Proof. A reducible system must contain a complete block or a complete singles set. Deleting any variety still leaves a complete block or a complete singles set. Hence any system embedded in a reducible system would be itself reducible.

4. Critical r, λ -systems. If S is some irreducible r, λ -system such that the complete removal of any variety from S yields a reducible system we call S a critical irreducible system or, more simply, we say "S is critical".

THEOREM 1. All critical r, λ -systems are elliptic or parabolic.

Proof. Assume S is a critical r, λ -system on v varieties with v > 3. Let X be the set of varieties in S such that the complete removal of any $x \in X$ leaves a system with a complete block. For each $x \in X$, S must contain a block consisting of all varieties of S except x. Let Y be the set of varieties in S that are not in X. Since S is critical, the complete removal of any $y \in X$ must leave a system with a complete singles set. Let T be the set of varieties in S that do not occur as single elements. Since S is irreducible, T is not empty. Then for each $y \in Y$ and each $t \in T$ ($y \neq t$), S must contain a block consisting of precisely the pair (y, t).

Choose some $t \in T$. If $t \in X$, then t occurs in at least |X|-1 blocks of length v-1, one for each of the other elements in X. Also t occurs in |Y| blocks of length two. Since v > 3, these occurrences are distinct and t must occur in at least |Y|+|X|-1 blocks. If $t \in Y$, then t occurs in |X| blocks of length v-1 and |Y|-1 blocks of length two. Again t occurs in at least |X|+|Y|-1=v-1 blocks. Since t must belong to X or Y we conclude r = (occurrences of $t) \ge v-1$. Substituting this result into the hyperbolic condition $D = \lambda(v-1)-r(r-1)>0$, we obtain $\lambda(v-1)>r(r-1)\ge (v-1)(r-1)$ or $\lambda>r-1$. This contradicts $\lambda < r$ so S was not hyperbolic.

Now suppose $v \le 3$. Any r, λ -system with v = 1 or v = 2 is reducible so it couldn't be critical. For v = 3, the hyperbolic property becomes $\lambda \cdot 2 > r(r-1)$. Using $\lambda \le r-1$ we obtain $2 \cdot \lambda > (\lambda + 1)\lambda$ or $\lambda < 1$. This says that S was trivial so it couldn't be critical. We conclude that there are no critical hyperbolic r, λ -systems.

218

June

1976]

A system obtained by taking as blocks all possible subsets of order v-1 from v varieties is called a full combinatorial design. Counting arguments show that there will be b = v blocks, r = v-1 occurrences of each variety and $\lambda = v-2$ occurrences of each pair of varieties. The design is parabolic since $\lambda(v-1) = (v-2)(v-1) = r(r-1)$ and critical since the complete removal of any variety leaves a complete block.

THEOREM 2. A critical parabolic system with v varieties must be a full combinatorial design with r = v - 1 and $\lambda = v - 2$.

Proof. Suppose S is a critical design with v > 3. Then

(1)
$$r \ge (v-1)$$
 as shown in Theorem 1.

Assume that S is also parabolic. That is, $\lambda(v-1) = r(r-1)$ or $r^2 - r - \lambda(v-1) = 0$. Solving as a quadratic equation in r, $r = (1 \pm (1 + 4\lambda v - 4\lambda)^{1/2})/2$. Since r is a positive integer we omit the negative sign to obtain,

(2)
$$r = (1 + (1 + 4\lambda v - 4\lambda)^{1/2})/2.$$

Combining (1) and (2), $1+(1+4\lambda v-4\lambda)^{1/2} \ge 2(v-1)$. Simplifying, $1+4\lambda v-4\lambda \ge 4v^2-12v+9$, or

(3)
$$0 \ge v^2 - (3+\lambda)v + 2 + \lambda = [v - (2+\lambda)][v - 1].$$

Since the roots of the quadratic equation $v^2 - (3+\lambda)v + (2+\lambda) = 0$ are v = 1and $v = \lambda + 2$ we obtain from (3) that $1 \le v \le \lambda + 2$. Suppose $v \le \lambda + 1$. Then $\lambda^2 \ge \lambda(v-1)$ and, using the parabolic property and $\lambda \le r-1$, we obtain $\lambda(v-1) = r(r-1) \ge (\lambda+1)\lambda = \lambda^2 + \lambda$. Hence $\lambda^2 \ge \lambda^2 + \lambda$ and no such non-trivial systems exist. Therefore $v = \lambda + 2$. From $\lambda(v-1) = r(r-1)$ we now get $r = \lambda + 1$. S contains $\begin{pmatrix} v \\ 2 \end{pmatrix}$ distinct pairs, each occurring $\lambda = v-2$ times for a total of v(v-1)(v-2)/2 pairs. The maximum number of varieties per block is v-1 and blocks of this size contain (v-1)(v-2)/2 pairs. We have $v \cdot r = v(v-1)$ entries, so we can construct v blocks of length v-1 for a total of v(v-1)(v-2)/2 pairs. Since this is precisely the number of pairs required and any other arrangement of varieties will produce strictly fewer pairs, then S must take this form and is the full combinatorial design. For $v \le 3$ we argue as in Theorem 1 and find the only critical parabolic system to be (ab)(ac)(bc) which is also a full combinatorial design.

Theorem 4 from Stanton and Mullin [2] tells us that these full combinatorial designs can be embedded in other r, λ -systems only if k (the constant block size) divides $r - \lambda$. In this case that would imply that k = 1 and the system would be reducible. Hence no critical parabolic r, λ -system can be embedded in some other r, λ -system.

J. VRANCH

Since all irreducible r, λ -systems are critical or have some critical system embedded in them, we are now left with the fact that any irreducible hyperbolic r, λ -systems must be extensions of critical elliptical systems.

References

1. H. J. Ryser, Combinatorial Mathematics, Wiley, 1963.

2. R. G. Stanton and R. C. Mullin Inductive Methods for BIBD's, Ann. Math. Stat., 37 (1966), 1348-1354.

THE UNIVERSITY OF WESTERN ONTARIO, London, Ontario, Canada