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ON THE COMMUTATORS OF SINGULAR INTEGRALS
RELATED TO BLOCK SPACES

SHANZHEN LU*AND HUOXIONG WU

Abstract. In this paper, the commutators of singular integrals with rough ker-
nels are considered. By the method of block decomposition for kernel function
and Fourier transform estimates, some new results about the LP(R™) bounded-
ness for these commutators are obtained.

§1. Introduction

Let R?, n > 2, be the n-dimensional Euclidean space and S™~! be
the unit sphere in R™ equipped with the normalized Lebesgue measure
do = do(x'). Let Q(x) be a homogeneous function of degree zero and
have mean value zero on S™~!. Suppose that h(t) € L>(0,00). Define the
singular integral operator 1" by

(L.1) R

rn |7 —y|"

For a positive integer k and a(x) € BMO(R"), define the k-th order com-
mutator T j generated by T" and a

(1.2) Torf(2) = T((a(z) — a()* f)(2), f e CF*R").

It was proved by Coifman, Rochberg and Weiss [4] that if Q €
Lip,(S" 1) (0 < @ < 1) and h = 1, then T, is bounded on LP(R") with
bound Clla| ppromny for 1 < p < oo. Afterwards, by a well-known result of
Duoandikoetxea [6] and the boundedness criterion of Alvarez-Bagby-Kurtz-
Pérez for the commutators of linear operator (see [2]), we have obtained the
following theorem (see also [10]):
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THEOREM A. ([6, 2, 10]) Let 2, a, k be as above and h =1, 1 < p <
00. If Q € Uy LI(S™Y), then T,k is bounded on LP(R™).

Recently, to weaken the condition imposed on 2, Hu Guoen et al. em-
ployed the method of Littlewood-Paley theory and Fourier transform esti-
mates from [7] to obtain the following results.

THEOREM B. Let(Q, a, k be as above. Then T, is bounded on LP(R™)
with bound C’HaH’fBMo(Rn), if one of the following conditions holds.

(i) (see [12]). p=2, h=1, Q € L(log™ L)k1(s"~1).
(ii) (see [9]). p=2, h =1 and for some o >k + 1, Q satisfies

1 (0%
1.3 Q6 1 dg.
(13) 55;?-11%1' “’(‘)gw'sr)

(iii) (see [13] or [9]). For some o > k+1, Q € L(log™ L)*(S"1) and for
some s > 1, h satisfies supp~ f;R |h(r)|*r~tdr < oo, 2a/(2a — (k + 1)) <
p<2af(k+1) orp=2.

Theorem B certainly improve Theorem A since both the condition
Qe Log™ L)*(S" 1) (a > k+1) and the size condition (1.3) are properly
weaker than the condition € {J -, Li(S"~1). Unfortunately, the condi-
tion on €2 in Theorem B greatly depends on the order k of Ty, ;.. It is natural
to ask whether there exists a weaker size condition on 2, which is indepen-
dent of k, such that T, is bounded on LP(R™), 1 < p < oco. The main
purpose of this paper is to give a positive answer to this problem. Inspired
by [1], we shall show that Tjj is bounded on LP(R") for 1 < p < oo, if
Q e BYY(S" 1) for some ¢ > 1. Here Bo*(S"1) denotes certain block
spaces introduced by Jiang and Lu(see [15]). We remark that some ideas
in the proof of our main results are taken from [7] and [11]. Before stating
the main results, we briefly review some pertinent concepts.

DEFINITION 1. ([15]) A g-block on S™ 1 is an LI(1 < ¢ < 0o) function
b(-) that satisfies

(i) supp(b) C @, (i) 6] pasny < |QJ7 7Y,

where Q = S" 'N{y e R*: |y—<| <p for some ¢€ S and pc

(0, 1]}.
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DEFINITION 2. ([15]) The block spaces By on $"~! are defined by

B ={Qe L'(S"1) : Q) = Y Cibs(y), M{P({Cs}) < oo},

where each Cj is a complex number, each by is a ¢-block supported in Qy,
and

0,0 _ o +L
M <{cs}>—2\csr{1+1g \@s\}'

S

It should be pointed out that the method of block decomposition for
functions was invented by Taibleson and Weiss [17] in the study of the
convergence of the Fourier series. Later on, many application of the block
decomposition to harmonic analysis were discovered (see [1], [14]-[16] etc.).
For further background and information about the theory of spaces gener-
ated by blocks and its applications to harmonic analysis, one can consult
the book [15]. In [14], Keitoku and Sato showed that for any ¢ > 1,

U Lr(Sn—l) C BS’O(SH_I),

r>1

which is a proper inclusion. And from [14], we easily see that BY?(S™1) is
not contained in L(log™ L)!*¢(S"~1) for any & > 0 although the relationship
between Be?(5"1) and Llog™ L(S" 1) remains open.

DEFINITION 3. ([3]) A locally integrable function a(x) will be said to
belong to BLO(R™), if there is a constant C' such that for any cube @

mg(a) — ;2{2 a(x) < C,

where mg(a) = |Q| ™} fQ a(x)dz.
If @ € BLO(R"), then we denote [la|pLomn) = supg{mq(a)—

infyeqa(z)}.

Obviously, L®(R") ¢ BLO(R") ¢ BMO(R™) and if a € BLO(R™),
then
(1.4) lall Baro@ny < 2llall BLon)-

Now let us formulate our main results.
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THEOREM 1. Let Q0 be homogeneous of degree zero and have mean
value zero, k be a positive integer and a € BMO(R™). If h(t) € L*°(0, c0)
and Q € BS’O(S”A) for ¢ > 1, then the commutator T, is bounded on
L2(R™) with bound CHaH%Mo(Rn).

For the case of p # 2, 1 < p < oo, we need to impose some restrictions
on BMO functions a(x) as follows.

THEOREM 2. Let , h, k be as in Theorem 1, 1 < p < co. Ifa €
BLO(R") and a(x) is subharmonic, then Ty is bounded on LP(R™) with
bound CHCLH%LO(RR).

Remark 1. 1t is worth pointing out that a BMO function a(x) satis-
fying the restrictive conditions in Theorem 2 exists. A typical example is
log |z|.

Remark 2. |J,~, L"(S™ ') is properly contained in Bg’O(S”_l) for any
g > 1, and BS’O(S”_I) is independent of the order of T ; and is not con-
tained in L(log®™ L)*(S™ 1) (o > 1). Therefore our theorems are an es-

sential improvement on Theorem A and an great extension of the result in
Theorem B.

In proving Theorem 2, we shall use the following LP-boundedness of

M (?k, a maximal operator related to higher order commutators, defined by

Mgk f (x) = sup = la(z) — a(y)*|h(lz — y))2x —y) f(y)|dy.

n
>0 T J|z—y|<r

THEOREM 3. Under the same hypothesis as in Theorem 2, the operator
M(?k satisfies

1M £l < Cllallsromny I f1lp-

Throughout this paper, C' always denotes positive constants that are
independent of the essential variables but whose value may vary at each
occurrence.
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§2. Proof of Theorem 1

Let us begin with some preliminary lemmas.

LEMMA 1. ([11]) Let ¢ € CG°(R™) be a radial function such that
supp ¢ C {1/4 < |¢] < 4} and

D P2l =1, ¢ #£0.
leZ

Denote by Sy the multiplier operator

Sif(€) = 6276 (©),

and S?f(z) = Si(Sif)(x). For any positive integer k and a € BMO(R™),
consider the k-th order commutator of S; and 5’12, respectively, defined by

Stakf (@) = Si((alz) = a()* f)(x), f e (RY)
and

Stapf (@) = 57 ((a(z) — a(-))* (), f e G (RY).
Then for all 1 < p < o0,

(a) <Z|Sl;a,kf|2> < CllallBaron I1flp;

leZ

=

p

N

(b) (Z!S?;a,kf\Q) < Cllallzaromn I flp:

IEZ

p
1
2
< C(nakap)”aH%Mo(Rn) <Z’fl’2> ’

IEZ

Zslakfl

IEZ

p
fre Ce(R™)(1 € Z).

LEMMA 2. ([11]) Let 0 < § < oo, and take a function ms € C§°(R™)
with support contained in {{ € R™ : || < §}. Suppose that for some positive
constant o,

[mslloe < Cmin{6%, 6%}, [[Vmslee < C.

Let Ty be the multiplier operator defined by
Ts1(€) = ms(€)f (€).
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For a positive integer k and a € BMO(R™), let Ts.q be the k-th order
commutator of Ts. Then for any fired 0 < v < 1, there exists a positive
constant C = C(n, k,v) such that

T fll2 < Cmin{d®, 6~ }|all 0@ |1 £l2-

LEMMA 3. Let Q(z') = ZCSbS(:):’), h(t) be as in Theorem 1. For

JjEZ, set

Kj(z) = fa)

R

bs(x
Kjs(z) = |$(|n)h(|ﬂf!)X{2f<|x|<2f+1}($),

h(lz])x {21 <|o| <251} (),

and m;(§) = I/(\j(f’), m;js(§) = I?]\S(f’) Then we have
(i) Im;i(9)] < C|27¢];

(i) my(6)] < (D€, if [Qul < €77

(i) |mys(€)] < CI20E|™, if |Qs] > eT 7.

Here C and w are positive constants independent of j, s, & and bg.

Proof. By the mean zero property and the integrability of  on S™~1,
we have

m;(€)] = / Rl ) ey
27 <[yl <2i+1
27+1

= / h(t)t™! / Qe 2 < do (v )dt
2i gn-1

<C tt
2
27+1
<o / Q) i2nty - €ldo(y')dt
2J Sn—1
97+1

< Cllpsnfél [ dt< P
J

dt

| o) s~ 1oty

Thus, (i) is proved. (ii) and (iii) are the special cases of (ii) and (iii) Lemma
2.2 in [1]. The proof of Lemma 3 is complete. [
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Proof of Theorem 1. For j € Z, let K;(£), m;(§) be as in Lemma 3 and
¢ be as in Lemma 1. Define the multiplier operator S; by

Sif(€) = (271 £ ().
Set m(€) = m;()(2171¢) and TLF(€) = m(€)F(€). Let

Unf(z) = ((&—ﬂ’f&—j)m f) ().

JET

We know from [11] that for f, g € C5°(R"),

| s@Tf@ie= [ o) 3 tifta

l€Z
Hence
(2.1) Tk fll2 <D U2
leZ
With the aid of the formula
k
(a(x) —a(y)® =" Ci" (a(z) — a(2))™ (a(z) — a)*™, =, y, z € R",
m=0
we get
[ s@is @iz
k
:Z / ZSI jiak— m(( Sjl)amf) (.Cll‘)d.%,
m=0 JEZL ’

for f, g € Cg°(R™) by a straightforward computation.
By Lemma 1(c), we get

k
Oifle <03 | % S-tasm ((7i515), 1)

m=0 ||jEZ 9 X

2)2
2

(2.2)
(15),,

)

<C Z lall 5o en) (Z
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Case 1. We first consider the L?-boundedness of U; for [ < 0.
Let T]l be the operator defined by

TIF(€) = mh(2 7O f (©).
By the vanishing moment and the integrability of 2, we have
[K; (&) < C12%¢|,  |VE|leo < C27.

Thus ' .
Imh(277 oo < €2, [V (277 oo < C.

Using this and Lemma 2, we obtain that for any fixed 0 < v < 1 and
positive integer 1,

1T} 00 ll2 < C2[all g ar0gn |l f1l2;
which by dilation-invariance implies
(2.3) 1T} 0,if 12 < C2%|allgarogn [1.fl12-
On the other hand, the Plancherel theorem tells us that
(2.4) IT; fll2 < C2'| f]l2-

Observe that for f, g € C§°(R"™),

/n g(x) (T}Slf])a . f(z)dr = Z C;H/R g(x)ng;,a,i (Sl*j;a,m—if) (z)dx
’ i=0 "

It follows from (2.3), (2.4) and Lemma 1(a) that

102
2
l
> |(Tsis),, 0
JEZ ’
2 L2
m 2 2
(25) < C Z ‘ jiayi Sl—j;a,m—if)‘
i:0 JEZ
L 2
< 2! Z ”aHBMO R") Z [ m—
< 022“l|!a\\BMo Rn) Hszv f e G (R™).
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Therefore

(2.6) 10ifllz < C2"[lallBrr0@n) 1 fll2-

Case 2. Next we consider the L?-estimate of U; for [ > 0.
Let Kj, mjs be as in Lemma 3. Then K;(§) = ZC’SKLS(f). Define
S

the operator T]l-’s by

TP (€)= Kjs(§)o(2 ) f(©).

Then

£) = ZCSY?’Sf(é)

(Tjsl J) ZC (Tl 55 J) f@).
And
Uf(z) = CU; f()
where
U f (@) = 3 (SiyT)7S1ey)  f@).

JEZ @
So
(2.7) U fll2 < D 1CSTE fl2-

Similarly to (2.2), we have

1
2\ 2

28)  |Uifll.<C Z lall o || | 22

JEZ.

)

2

In what follows, we estimate ||U}f||2 for each s. Set
() = Kju(©)9(27€) = ()62 ).

And let ijs be the operator defined by

—

TP f(€) = mb(277€) f ().
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By (ii) and (iii) of Lemma 3, we may assume, without loss of generality,
that the support Qs of bs are uniformly small such that |Qs| < eT3. Thus

— , L
[mjs(€)] = [K;5(€)] < CJ27¢|ToTasT,
By a straightforward computation, we get
Vm;s(€)] = V()] < C2.

So
mi*(27€)| = mys(27)g(2716)| < CommRm

and

[Vm* (2776)| = |V (m;+(277€)$(27'€))| < C.

By Lemma 2 again, there exists some constant 0 < § < 1 such that

1 0l
|7 mt]], < C2 @l B0z 1 £

which by dilation-invariance implies

l, 0l
|7t [, < C2 @ a0 51l

From this and Lemma 1(a), we obtain

112
2 2
l,s )
> |(1sia),, 0
JEZ ’
2 L2
m 5\ 2
< Cz ‘T}lzz Slfj;a,mf’if)‘
i JEZ
2
lis ) ol 9
< CZ lall3 aro@n) 2 1@ Z 151—jsa,m—i f1I2
< Camia lall B0 I F113-
Thus
ol
(2.9) U5 fll2 < C277513T |lal|Epro ) fl2-
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This shows that

>Nl <Z!C DU fll2

>0 >0
(2.10) < CZ |Csl ZQQIOngS‘ lallBarogmnylIf 112
s >0

<010 (108 g ) elbasoren 112
Therefore, it follows from (2.6) and (2.10) that
I Tokflle <D NULFll2 + D U fll2 < CllallBarognll£ll2-
<0 >0

This completes the proof of Theorem 1. 0

§3. Proof of Theorem 3

The proof of Theorem 3 is based on the following two lemmas.

LEMMA 4. Let m be a positive number, 1 < p < oco. If a € BLO(R"™)
and a(x) is a subharmonic function, then the operator Mg ., defined by

My f () = sup — la() — a(y)[™|f (v)ldy

r>0 " le—y|<r
satisfies

[Mamfllp < Cllalprogn | fllp-

Note that for any cube Q, |Q|~* fQ la(z)—ag|™dx < Ha”?LO(Rﬂ)' Since
a is a subharmonic function, this lemma follows from the same argument
as in the proof of Theorems 2.3 and 2.4 in [8]. We omit the details.

LEMMA 5. Let Q¢ be homogeneous of degree zero on R", 1 < p < o0, a
and h be as in Theorem 2 . If Qg € LA(S™1), for A > 1, then the operator

M f(z) = sup — la() — ()| h(z — y)Q0 (@ — v) F(v)ldy

r>0 " lz—y|<r

satisfies
Q
1M Fllp < CllalBrogn 120l Lr sn-1) 1 fllps
for all integer m > 0. Here C is independent of \.
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Proof. For m = 0, Lemma 5 was proved by Calderén and Zygmund

[5]. Next, we consider the case, m > 0. For any A > 1, write A’ = ﬁ

Then by a double application of Hélder’s inequality, we have

VA <l | O @) (Mo )" d
< Ol I 1Moy 715,

where

Moy f() = sup — 93 — 9) F()ldy.

r>0 " Jjz—y|<r

It follows from Lemma 4 that
P ~ P
Moo I < Cllall T g 17112

By the method of rotation of Calderén-Zygmund [5], it yields that

b
IIMmfllﬁ < CllQ0lIx gn1) £ 117 -

Combining these estimates above, we complete the proof Lemma 5. U

Proof of Theorem 3. By Definitions 1 and 2, we write Q(y') =
Z Csbs(y'), where each by is a g-block supported in Q. Thus
S

Mg f(2)
< Z |Cs ISup/ la(z) — a(y)|" [h(lx = y)bs(z — y) f(y)ldy

r>0J|z— y‘<r

=Yg

Consequently,
Mgt fllp < 3 1O 1M fllp-
S

We now estimate [|M2s,, f|l, for each b. It follows from Lemma 5 that for
any A > 1,
155 flp < Cllbsll o sn-1) lallBLo@n 1 flp-

Notice that supp(bs) € Qs and ||bs||fa(gn—1y < \Qs\q I Q| > el%CI, we
let A\ = q, to get

IMes flly - < Cllbs lzacsm-nllalBLoge I flls
< C‘Qs‘ai ”aHBLO(]Rn)”fHP < C!!a\lgLo(Rn)llpr-
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If Qs < equq, let A = log|Qs|/(1 + log|Qs|), so that 1 < A < ¢ and
N = —log|Qs|. By Holder’s inequality, we have

M2, fllpy < Cllbs ||Lq(5n 1|Qs *"IIaIIBLO(Rn | fllp
< C’er—”aHBLo(Rn)”pr < CHaHBLO(Rn)”fHP‘

So, we obtain
1M flly < €Y ICslall Bromn I flls < CllallBrogn I fllp

and complete the proof of Theorem 3. b

§84. Proof of Theorem 2

To prove Theorem 2 we still need the following auxiliary result.
Let h, a, k and Q(y Z Csbs(y') be as in Theorem 2, j € Z. Define

the following operators:

srarf@= [ o)~ a)l L — sy
21 < |z—y|<20+1 ’.CL‘ ‘

s = a(x) —a kib( ) T —
Gard@) = [ la) ) T D)y

pard @)= [ o) = at) e - ol

s bs
arf@) = [ a(@) — @) FEE e~ pw)dy,
21 < |z—y|<20+1 ’ ’
1 o f (@) = sup | f (@) and  pd% f(x) = sup |ul, 1 f (@)
JEZ JEZ
Clearly, we have
pi o f (@) < CMPL f(z) and s f(x) < CMY f(x).

By Lemma 5 and Theorem 3, it is easy to see that for all 1 < p < oo,

(4.1) sk fllp < Cllallprogm 1 fllp
and
(4.2) 115 Fllp < ClIbsl £ (sn-1) lall Lo ey 1 £ Ilps

and the bounds are independent of by.
By applying (4.1) and (4.2), we can obtain the following lemma.
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LEMMA 6. Under the same assumptions as in Theorem 2, for arbitrary
functions fj,

1 1
2 2
(4.3) > lojantil < Cllallpro@ ||| D 1l
JEz jez
p p
and
1
2
s 2
> osanti]
JEZL
(4.4) b 1
2
SCllbsllenfl)IIGII%LO(Rn) Z|fj|2
JEZ

for all 1 <p < o0 and for any A > 1.

Proof. We prove only (4.3) because the other is essentially similar.
The ideas in our proof are taken from those in Lemma of [7] and Lemma 2
of [11]. In fact, it suffices to consider the case p > 2 so that ¢ = (§)’, and
there exists g € L of unit norm such that

JET

1 2
2
S losansi2| | = / S (00 (@) ().
R™ jez
P

Also, by Holder’s inequality and a simple computation, we have

050k f (@) < Cpjaon(|f1P) (@)
and

[ mrasiP@ie = [ Pangand-od,
Rn Rn
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where a(z) = a(—z) and g(z) = g(—=z). Therefore

l 2
> logihil <c/ > o (I65) (@ofa)ds
JEZ JEZ
P
ij ) pja2kg(—r)de
JGZ
SC/]R sup\ﬂjazkg \ZfQ
SCH”Z’,%EH Z‘fj‘Q
\|iez P
By (4.1), we obtain
1112 1112
2 2
2 2
Y 105l < ClalBzommllglle ||| D 17l
JEL JEZ
P P
102
2
2
= CllalZrow ||| DI/l ,
JEL
P
which proves Lemma 6. b

Proof of Theorem 2. Let Uy, Tj, S;—j be the same as that in the proof
of Theorem 1. Then for 1 < p < oo, similarly to (2.1) and (2.2), we have

(4.5) | Tasfllp <D NUFlp
leZ
and

1

2

(4.6) |Uifll, <C Z HGHBLO(]R” Z

JET

(159,

)

p

Now we estimate ||U; f]|, in two cases as follows:
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Case 1. First we show the LP-boundedness of U; for [ < 0.
For p = 2, by the same arguments as to (2.6), we obtain

(4.7) 1Uifll2 < C2*allf Lol fl2-

Next we turn to estimate LP-boundedness of U;f. Write

<11}Sl_j>am f(‘T) = Z Cﬁno-jﬂ,i (S?—j;a,m—if) (.T)

)

We know from Lemma 6 and Lemma 1(b) that for all 1 < p < oo,

(4.8)

HUlpr < C Z HGHBLO(Rn) Z Z |0'j;a,i (SlQ_j;(Lm_if) |2
=0

JET

1

[N]]

k m
N el a1 S 1SE jwm—if |

m=0 i=0 JEZ

< Cllalls Loz 1711

p

Using interpolation between (4.7) and (4.8), we obtain

(4.9) YO, < Cllall o 1£1lp-

<0

Case 2. We next consider the LP-estimate of U; for [ > 0.
Let T]l s S1—j, U} be as that in the proof of Theorem 1. Similarly to
(2.7) and (2.8), we have for 1 < p < oo,

(4.10) 1ULFllp < D IS £llps

and

1

2

(4.11) HUlf||p<cZ||a||BLO(Rn >

JEZ.

)

p
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For each by, without loss of generality, we may assume that the support
9
Qs of by are uniformly small such that |Qs] < eT=<. Similarly to (2.9), we
can get that for some 0 < 6 < 1,

ol
(4.12) U7 fll2 < C27%sTT [lal| o g |1 £ l2-

For 1 < p < oo, noting that

(T}l-’SSl,])a . f(l') = Z Cinaj;a,i (Sffj;a,mfif) (.CL‘)

=0
and invoking (4.4) and Lemma 1(b) with A = %, we have
(4.13)
m 2
s 2
10 fll, =€ Z lalls 6@ D || Do 105 ai (SEjiam—if)]
i=0 || \jez

k. m
< C”bSHLA(S"*U Z Z Ha”%zrg?[én) Z “Sfl2—j;a,m—if‘2

m=0 i=0 JET
P
< CHG’HBLO(Rn 1 £1lp-
Using interpolation between (4.12) and (4.13) again, we obtain
. 0,01 k

(4.14) 1O fllp < C22es1e:l lal B ro@n [ f1lp,
for some 0 < #; < 1. This shows that

doluifll, < Zlc > T f I

>0 >0
(4.15) < CZ |Cs \ZQQlog'Q“ ”aHBLO(R” £l

>0
<0l (1om gy ) o 171
Therefore, (4.9) and (4.15) now imply
| Taefllp < D MU lp + Y IOFp < Cllallbron 1f 1,
1<0 1>0

which completes the proof of Theorem 2. 0
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