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ON THE COMMUTATORS OF SINGULAR INTEGRALS

RELATED TO BLOCK SPACES

SHANZHEN LU∗and HUOXIONG WU

Abstract. In this paper, the commutators of singular integrals with rough ker-
nels are considered. By the method of block decomposition for kernel function
and Fourier transform estimates, some new results about the L

p(Rn) bounded-
ness for these commutators are obtained.

§1. Introduction

Let Rn, n ≥ 2, be the n-dimensional Euclidean space and Sn−1 be

the unit sphere in Rn equipped with the normalized Lebesgue measure

dσ = dσ(x′). Let Ω(x) be a homogeneous function of degree zero and

have mean value zero on Sn−1. Suppose that h(t) ∈ L∞(0,∞). Define the

singular integral operator T by

(1.1) Tf(x) = p.v.

∫

Rn

Ω(x − y)

|x − y|n
h(|x − y|)f(y)dy.

For a positive integer k and a(x) ∈ BMO(Rn), define the k-th order com-

mutator Ta,k generated by T and a

(1.2) Ta,kf(x) = T ((a(x) − a(·))kf)(x), f ∈ C∞
0 (Rn).

It was proved by Coifman, Rochberg and Weiss [4] that if Ω ∈

Lipα(Sn−1) (0 < α ≤ 1) and h ≡ 1, then Ta,1 is bounded on Lp(Rn) with

bound C‖a‖BMO(Rn) for 1 < p < ∞. Afterwards, by a well-known result of

Duoandikoetxea [6] and the boundedness criterion of Alvarez-Bagby-Kurtz-

Pérez for the commutators of linear operator (see [2]), we have obtained the

following theorem (see also [10]):
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Theorem A. ([6, 2, 10]) Let Ω, a, k be as above and h ≡ 1, 1 < p <
∞. If Ω ∈ ∪q>1L

q(Sn−1), then Ta,k is bounded on Lp(Rn).

Recently, to weaken the condition imposed on Ω, Hu Guoen et al. em-

ployed the method of Littlewood-Paley theory and Fourier transform esti-

mates from [7] to obtain the following results.

Theorem B. Let Ω, a, k be as above. Then Ta,k is bounded on Lp(Rn)
with bound C‖a‖k

BMO(Rn), if one of the following conditions holds.

(i) (see [12]). p = 2, h ≡ 1, Ω ∈ L(log+ L)k+1(Sn−1).
(ii) (see [9]). p = 2, h ≡ 1 and for some α > k + 1, Ω satisfies

(1.3) sup
ξ∈Sn−1

∫

Sn−1

|Ω(θ)|

(
log

1

|θ · ξ|

)α

dθ.

(iii) (see [13] or [9]). For some α > k+1, Ω ∈ L(log+ L)α(Sn−1) and for

some s > 1, h satisfies supR>0

∫ 2R

R
|h(r)|sr−1dr < ∞, 2α/(2α − (k + 1)) <

p < 2α/(k + 1) or p = 2.

Theorem B certainly improve Theorem A since both the condition

Ω ∈ L(log+ L)α(Sn−1) (α > k +1) and the size condition (1.3) are properly

weaker than the condition Ω ∈
⋃

q>1 Lq(Sn−1). Unfortunately, the condi-

tion on Ω in Theorem B greatly depends on the order k of Ta,k. It is natural

to ask whether there exists a weaker size condition on Ω, which is indepen-

dent of k, such that Ta,k is bounded on Lp(Rn), 1 < p < ∞. The main

purpose of this paper is to give a positive answer to this problem. Inspired

by [1], we shall show that Ta,k is bounded on Lp(Rn) for 1 < p < ∞, if

Ω ∈ B0,0
q (Sn−1) for some q > 1. Here B0,0

q (Sn−1) denotes certain block

spaces introduced by Jiang and Lu(see [15]). We remark that some ideas

in the proof of our main results are taken from [7] and [11]. Before stating

the main results, we briefly review some pertinent concepts.

Definition 1. ([15]) A q-block on Sn−1 is an Lq(1 < q ≤ ∞) function
b(·) that satisfies

(i) supp(b) ⊆ Q, (ii) ‖b‖Lq(Sn−1) ≤ |Q|
1
q
−1

,

where Q = Sn−1 ∩ {y ∈ Rn : |y − ς| < ρ for some ς ∈ Sn−1 and ρ ∈
(0, 1]}.
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Definition 2. ([15]) The block spaces B0,0
q on Sn−1 are defined by

B0,0
q (Sn−1) = {Ω ∈ L1(Sn−1) : Ω(y′) =

∑

s

Csbs(y
′), M0,0

q ({Cs}) < ∞},

where each Cs is a complex number, each bs is a q-block supported in Qs,
and

M0,0
q ({Cs}) =

∑

s

|Cs|

{
1 + log+ 1

|Qs|

}
.

It should be pointed out that the method of block decomposition for

functions was invented by Taibleson and Weiss [17] in the study of the

convergence of the Fourier series. Later on, many application of the block

decomposition to harmonic analysis were discovered (see [1], [14]–[16] etc.).

For further background and information about the theory of spaces gener-

ated by blocks and its applications to harmonic analysis, one can consult

the book [15]. In [14], Keitoku and Sato showed that for any q > 1,

⋃

r>1

Lr(Sn−1) ⊂ B0,0
q (Sn−1),

which is a proper inclusion. And from [14], we easily see that B0,0
q (Sn−1) is

not contained in L(log+ L)1+ε(Sn−1) for any ε > 0 although the relationship

between B0,0
q (Sn−1) and L log+ L(Sn−1) remains open.

Definition 3. ([3]) A locally integrable function a(x) will be said to
belong to BLO(Rn), if there is a constant C such that for any cube Q

mQ(a) − inf
x∈Q

a(x) ≤ C,

where mQ(a) = |Q|−1
∫
Q

a(x)dx.

If a ∈ BLO(Rn), then we denote ‖a‖BLO(Rn) = supQ {mQ(a)−
infx∈Q a(x)}.

Obviously, L∞(Rn) ⊂ BLO(Rn) ⊂ BMO(Rn) and if a ∈ BLO(Rn),

then

(1.4) ‖a‖BMO(Rn) ≤ 2‖a‖BLO(Rn).

Now let us formulate our main results.
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Theorem 1. Let Ω be homogeneous of degree zero and have mean

value zero, k be a positive integer and a ∈ BMO(Rn). If h(t) ∈ L∞(0,∞)
and Ω ∈ B0,0

q (Sn−1) for q > 1, then the commutator Ta,k is bounded on

L2(Rn) with bound C‖a‖k
BMO(Rn).

For the case of p 6= 2, 1 < p < ∞, we need to impose some restrictions

on BMO functions a(x) as follows.

Theorem 2. Let Ω, h, k be as in Theorem 1, 1 < p < ∞. If a ∈
BLO(Rn) and a(x) is subharmonic, then Ta,k is bounded on Lp(Rn) with

bound C‖a‖k
BLO(Rn).

Remark 1. It is worth pointing out that a BMO function a(x) satis-
fying the restrictive conditions in Theorem 2 exists. A typical example is
log |x|.

Remark 2.
⋃

r>1 Lr(Sn−1) is properly contained in B0,0
q (Sn−1) for any

q > 1, and B0,0
q (Sn−1) is independent of the order of Ta,k and is not con-

tained in L(log+ L)α(Sn−1) (α > 1). Therefore our theorems are an es-
sential improvement on Theorem A and an great extension of the result in
Theorem B.

In proving Theorem 2, we shall use the following Lp-boundedness of

MΩ
a,k, a maximal operator related to higher order commutators, defined by

MΩ
a,kf(x) = sup

r>0

1

rn

∫

|x−y|<r

|a(x) − a(y)|k|h(|x − y|)Ω(x − y)f(y)|dy.

Theorem 3. Under the same hypothesis as in Theorem 2, the operator

MΩ
a,k satisfies

‖MΩ
a,kf‖p ≤ C‖a‖k

BLO(Rn)‖f‖p.

Throughout this paper, C always denotes positive constants that are

independent of the essential variables but whose value may vary at each

occurrence.
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§2. Proof of Theorem 1

Let us begin with some preliminary lemmas.

Lemma 1. ([11]) Let φ ∈ C∞
0 (Rn) be a radial function such that

suppφ ⊂ {1/4 ≤ |ξ| ≤ 4} and

∑

l∈Z

φ3(2−lξ) = 1, |ξ| 6= 0.

Denote by Sl the multiplier operator

Ŝlf(ξ) = φ(2−lξ)f̂(ξ),

and S2
l f(x) = Sl(Slf)(x). For any positive integer k and a ∈ BMO(Rn),

consider the k-th order commutator of Sl and S2
l , respectively, defined by

Sl;a,kf(x) = Sl((a(x) − a(·))kf)(x), f ∈ C∞
0 (Rn)

and

S2
l;a,kf(x) = S2

l ((a(x) − a(·))kf)(x), f ∈ C∞
0 (Rn).

Then for all 1 < p < ∞,

(a)

∥∥∥∥∥∥

(∑

l∈Z

|Sl;a,kf |
2

) 1
2

∥∥∥∥∥∥
p

≤ C‖a‖k
BMO(Rn)‖f‖p;

(b)

∥∥∥∥∥∥

(∑

l∈Z

|S2
l;a,kf |

2

) 1
2

∥∥∥∥∥∥
p

≤ C‖a‖k
BMO(Rn)‖f‖p;

(c)

∥∥∥∥∥
∑

l∈Z

Sl;a,kfl

∥∥∥∥∥
p

≤ C(n, k, p)‖a‖k
BMO(Rn)

∥∥∥∥∥∥

(∑

l∈Z

|fl|
2

) 1
2

∥∥∥∥∥∥
p

,

fl ∈ C∞
0 (Rn)(l ∈ Z).

Lemma 2. ([11]) Let 0 < δ < ∞, and take a function mδ ∈ C∞
0 (Rn)

with support contained in {ξ ∈ Rn : |ξ| ≤ δ}. Suppose that for some positive

constant α,

‖mδ‖∞ ≤ C min{δα, δ−α}, ‖∇mδ‖∞ ≤ C.

Let Tδ be the multiplier operator defined by

T̂δf(ξ) = mδ(ξ)f̂(ξ).
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For a positive integer k and a ∈ BMO(Rn), let Tδ;a,k be the k-th order

commutator of Tδ. Then for any fixed 0 < v < 1, there exists a positive

constant C = C(n, k, v) such that

‖Tδ;a,kf‖2 ≤ C min{δαv , δ−αv}‖a‖k
BMO(Rn)‖f‖2.

Lemma 3. Let Ω(x′) =
∑

s

Csbs(x
′), h(t) be as in Theorem 1. For

j ∈ Z, set

Kj(x) =
Ω(x)

|x|n
h(|x|)χ{2j≤|x|<2j+1}(x),

Kj,s(x) =
bs(x)

|x|n
h(|x|)χ{2j≤|x|<2j+1}(x),

and mj(ξ) = K̂j(ξ), mj,s(ξ) = K̂j,s(ξ). Then we have

(i) |mj(ξ)| ≤ C|2jξ|;

(ii) |mj,s(ξ)| ≤ |2jξ|
1

2 log |Qs| , if |Qs| < e
q

1−q ;

(iii) |mj,s(ξ)| ≤ C|2jξ|−ω, if |Qs| ≥ e
q

1−q .

Here C and ω are positive constants independent of j, s, ξ and bs.

Proof. By the mean zero property and the integrability of Ω on Sn−1,
we have

|mj(ξ)| =

∣∣∣∣∣

∫

2j≤|y|<2j+1

h(|y|)|y|−nΩ(y′)e−2πiy·ξdy

∣∣∣∣∣

=

∣∣∣∣∣

∫ 2j+1

2j

h(t)t−1

∫

Sn−1

Ω(y′)e−2πity′ ·ξdσ(y′)dt

∣∣∣∣∣

≤ C

∫ 2j+1

2j

t−1

∣∣∣∣
∫

Sn−1

Ω(y′)(e−2πity′ ·ξ − 1)dσ(y′)

∣∣∣∣ dt

≤ C

∫ 2j+1

2j

t−1

∫

Sn−1

|Ω(y′)||2πty′ · ξ|dσ(y′)dt

≤ C‖Ω‖L1(Sn−1)|ξ|

∫ 2j+1

2j

dt ≤ C|2jξ|.

Thus, (i) is proved. (ii) and (iii) are the special cases of (ii) and (iii) Lemma
2.2 in [1]. The proof of Lemma 3 is complete.
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Proof of Theorem 1. For j ∈ Z, let Kj(ξ), mj(ξ) be as in Lemma 3 and
φ be as in Lemma 1. Define the multiplier operator Sl by

Ŝlf(ξ) = φ(2−lξ)f̂(ξ).

Set ml
j(ξ) = mj(ξ)φ(2j−lξ) and T̂ l

jf(ξ) = ml
j(ξ)f̂(ξ). Let

Ulf(x) =
∑

j∈Z

((
Sl−jT

l
jSl−j

)
a,k

f

)
(x).

We know from [11] that for f , g ∈ C∞
0 (Rn),

∫

Rn

g(x)Ta,kf(x)dx =

∫

Rn

g(x)
∑

l∈Z

Ulf(x)dx.

Hence

(2.1) ‖Ta,kf‖2 ≤
∑

l∈Z

‖Ulf‖2.

With the aid of the formula

(a(x) − a(y))k =

k∑

m=0

Cm
k (a(x) − a(z))m (a(z) − a(y))k−m , x, y, z ∈ Rn,

we get
∫

Rn

g(x)Ulf(x)dx

=
k∑

m=0

Cm
k

∫

Rn

g(x)
∑

j∈Z

Sl−j;a,k−m

((
T l

jSj−l

)
a,m

f

)
(x)dx,

for f , g ∈ C∞
0 (Rn) by a straightforward computation.

By Lemma 1(c), we get

(2.2)

‖Ulf‖2 ≤ C

k∑

m=0

∥∥∥∥∥∥
∑

j∈Z

Sj−l;a,k−m

((
T l

jSl−j

)
a,m

f

)∥∥∥∥∥∥
2

≤ C

k∑

m=0

‖a‖k−m
BOM(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l

jSl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥
2

.
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Case 1. We first consider the L2-boundedness of Ul for l ≤ 0.
Let T̃ l

j be the operator defined by

̂̃T l
jf(ξ) = ml

j(2
−jξ)f̂(ξ).

By the vanishing moment and the integrability of Ω, we have

|K̂j(ξ)| ≤ C|2jξ|, ‖∇K̂j‖∞ ≤ C2j .

Thus
‖ml

j(2
−j ·)‖∞ ≤ C2l, ‖∇ml

j(2
−j ·)‖∞ ≤ C.

Using this and Lemma 2, we obtain that for any fixed 0 < v < 1 and
positive integer i,

‖T̃ l
j;a,if‖2 ≤ C2vl‖a‖i

BMO(Rn)‖f‖2,

which by dilation-invariance implies

(2.3) ‖T l
j;a,if‖2 ≤ C2vl‖a‖i

BMO(Rn)‖f‖2.

On the other hand, the Plancherel theorem tells us that

(2.4) ‖T l
jf‖2 ≤ C2l‖f‖2.

Observe that for f , g ∈ C∞
0 (Rn),

∫

Rn

g(x)
(
T l

jSl−j

)
a,m

f(x)dx =

m∑

i=0

Ci
m

∫

Rn

g(x)T l
j;,a,i (Sl−j;a,m−if) (x)dx.

It follows from (2.3), (2.4) and Lemma 1(a) that

(2.5)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l

jSl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥

2

2

≤ C

m∑

i=0

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣T l
j;a,i (Sl−j;a,m−if)

∣∣∣
2




1
2

∥∥∥∥∥∥∥

2

2

≤ C22vl

m∑

i=0

‖a‖2i
BMO(Rn)

∑

j∈Z

‖Sl−j;a,m−if‖
2
2

≤ C22vl‖a‖2m
BMO(Rn)‖f‖

2
2, f ∈ C∞

0 (Rn).
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Therefore

(2.6) ‖Ulf‖2 ≤ C2vl‖a‖k
BMO(Rn)‖f‖2.

Case 2. Next we consider the L2-estimate of Ul for l > 0.
Let Kj,s, mj,s be as in Lemma 3. Then Kj(ξ) =

∑

s

CsKj,s(ξ). Define

the operator T l,s
j by

̂
T l,s

j f(ξ) = K̂j,s(ξ)φ(2j−lξ)f̂(ξ).

Then
T l

jf(ξ) =
∑

s

CsT
l,s
j f(ξ),

(
T l

jSl−j

)
a,m

f(x) =
∑

s

Cs

(
T l,s

j Sl−j

)
a,m

f(x).

And
Ulf(x) =

∑

s

CsU
s
l f(x),

where
U s

l f(x) =
∑

j∈Z

(
Sl−jT

l,s
j Sl−j

)
a,k

f(x).

So

(2.7) ‖Ulf‖2 ≤
∑

s

|Cs|‖U
s
l f‖2.

Similarly to (2.2), we have

(2.8) ‖U s
l f‖2 ≤ C

k∑

m=0

‖a‖k−m
BMO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l,s

j Sl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥
2

.

In what follows, we estimate ‖U s
l f‖2 for each s. Set

ml,s
j (ξ) = K̂j,s(ξ)φ(2j−lξ) = mj,s(ξ)φ(2j−lξ).

And let T̄ l,s
j be the operator defined by

̂̄
T l,s

j f(ξ) = ml,s
j (2−jξ)f̂(ξ).
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By (ii) and (iii) of Lemma 3, we may assume, without loss of generality,

that the support Qs of bs are uniformly small such that |Qs| < e
q

1−q . Thus

|mj,s(ξ)| = |K̂j,s(ξ)| ≤ C|2jξ|
1

2 log |Qs| .

By a straightforward computation, we get

|∇mj,s(ξ)| = |∇K̂j,s(ξ)| ≤ C2j.

So

|ml,s
j (2−jξ)| = |mj,s(2

−jξ)φ(2−lξ)| ≤ C2
l

2 log |Qs|

and

|∇ml,s
j (2−jξ)| = |∇(mj,s(2

−jξ)φ(2−lξ))| ≤ C.

By Lemma 2 again, there exists some constant 0 < θ < 1 such that

∥∥∥T̄ l,s
j;a,mf

∥∥∥
2
≤ C2

θl
2 log |Qs| ‖a‖m

BMO(Rn)‖f‖2,

which by dilation-invariance implies

∥∥∥T l,s
j;a,mf

∥∥∥
2
≤ C2

θl
2 log |Qs| ‖a‖m

BMO(Rn)‖f‖2.

From this and Lemma 1(a), we obtain

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l,s

j Sl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥

2

2

≤ C
m∑

i=0

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣T l,s
j;a,i (Sl−j;a,m−if)

∣∣∣
2




1
2

∥∥∥∥∥∥∥

2

2

≤ C

m∑

i=0

‖a‖2i
BMO(Rn)2

θl
log |Qs|

∑

j

‖Sl−j;a,m−if‖
2
2

≤ C2
θl

log |Qs| ‖a‖2m
BMO(Rn)‖f‖

2
2.

Thus

(2.9) ‖U s
l f‖2 ≤ C2

θl
2 log |Qs| ‖a‖k

BMO(Rn)‖f‖2.
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This shows that

(2.10)

∑

l>0

‖Ulf‖2 ≤
∑

s

|Cs|
∑

l>0

‖U s
l f‖2

≤ C
∑

s

|Cs|
∑

l>0

2
θl

2 log |Qs| ‖a‖k
BMO(Rn)‖f‖2

≤ C
∑

s

|Cs|

(
log

1

|Qs|

)
‖a‖k

BMO(Rn)‖f‖2.

Therefore, it follows from (2.6) and (2.10) that

‖Ta,kf‖2 ≤
∑

l≤0

‖Ulf‖2 +
∑

l>0

‖Ulf‖2 ≤ C‖a‖k
BMO(Rn)‖f‖2.

This completes the proof of Theorem 1.

§3. Proof of Theorem 3

The proof of Theorem 3 is based on the following two lemmas.

Lemma 4. Let m be a positive number, 1 < p < ∞. If a ∈ BLO(Rn)
and a(x) is a subharmonic function, then the operator Ma,m defined by

Ma,mf(x) = sup
r>0

1

rn

∫

|x−y|≤r

|a(x) − a(y)|m|f(y)|dy

satisfies

‖Ma,mf‖p ≤ C‖a‖m
BLO(Rn)‖f‖p.

Note that for any cube Q, |Q|−1
∫
Q
|a(x)−aQ|

mdx ≤ ‖a‖m
BLO(Rn). Since

a is a subharmonic function, this lemma follows from the same argument

as in the proof of Theorems 2.3 and 2.4 in [8]. We omit the details.

Lemma 5. Let Ω0 be homogeneous of degree zero on Rn, 1 < p < ∞, a
and h be as in Theorem 2 . If Ω0 ∈ Lλ(Sn−1), for λ > 1, then the operator

MΩ0

a, em
f(x) = sup

r>0

1

rn

∫

|x−y|≤r

|a(x) − a(y)| em|h(|x − y|)Ω0(x − y)f(y)|dy

satisfies

‖MΩ0

a, em
f‖p ≤ C‖a‖ em

BLO(Rn)‖Ω0‖Lλ(Sn−1)‖f‖p,

for all integer m̃ ≥ 0. Here C is independent of λ.
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Proof. For m̃ = 0, Lemma 5 was proved by Calderón and Zygmund
[5]. Next, we consider the case, m̃ > 0. For any λ > 1, write λ′ = λ

λ−1 .
Then by a double application of Hölder’s inequality, we have

‖MΩ0

a, em
f‖p

p ≤ ‖h‖p
∞

∫

Rn

(
Ma,λ′ emf(x)

) p

λ′

(
MΩλ

0
f(x)

) p

λ
dx

≤ C‖Ma,λ′ emf‖
p

λ′
p ‖MΩλ

0
f‖

p

λ
p ,

where

MΩλ
0
f(x) = sup

r>0

1

rn

∫

|x−y|≤r

|Ωλ
0(x − y)f(y)|dy.

It follows from Lemma 4 that

‖Ma,λ′ emf‖
p

λ′
p ≤ C‖a‖ emp

BLO(Rn)‖f‖
p

λ′
p .

By the method of rotation of Calderón-Zygmund [5], it yields that

‖MΩλ
0
f‖

p

λ
p ≤ C‖Ω0‖

p

Lλ(Sn−1)
‖f‖

p

λ
p .

Combining these estimates above, we complete the proof Lemma 5.

Proof of Theorem 3. By Definitions 1 and 2, we write Ω(y ′) =∑

s

Csbs(y
′), where each bs is a q-block supported in Qs. Thus

MΩ
a,mf(x)

≤
∑

s

|Cs| sup
r>0

∫

|x−y|≤r

|a(x) − a(y)|m|h(|x − y|)bs(x − y)f(y)|dy

:=
∑

s

|Cs|M
bs
a,mf(x).

Consequently,

‖MΩ
a,mf‖p ≤

∑

s

|Cs|‖M
bs
a,mf‖p.

We now estimate ‖M bs
a,mf‖p for each bs. It follows from Lemma 5 that for

any λ > 1,
‖M bs

a,mf‖p ≤ C‖bs‖Lλ(Sn−1)‖a‖
m
BLO(Rn)‖f‖p.

Notice that supp(bs) ⊆ Qs and ‖bs‖Lq(Sn−1) ≤ |Qs|
1
q
−1. If |Qs| ≥ e

q

1−q , we
let λ = q, to get

‖M bs
a,mf‖p ≤ C‖bs‖Lq(Sn−1)‖a‖

m
BLO(Rn)‖f‖p

≤ C|Qs|
1
q
−1‖a‖m

BLO(Rn)‖f‖p ≤ C‖a‖m
BLO(Rn)‖f‖p.
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If |Qs| < e
q

1−q , let λ = log |Qs|/(1 + log |Qs|), so that 1 < λ < q and
λ′ = − log |Qs|. By Hölder’s inequality, we have

‖M bs
a,mf‖p ≤ C‖bs‖Lq(Sn−1)|Qs|

1
λ
− 1

q ‖a‖m
BLO(Rn)‖f‖p

≤ C|Qs|
− 1

λ′ ‖a‖m
BLO(Rn)‖f‖p ≤ C‖a‖m

BLO(Rn)‖f‖p.

So, we obtain

‖MΩ
a,mf‖p ≤ C

∑

s

|Cs|‖a‖
m
BLO(Rn)‖f‖p ≤ C‖a‖m

BLO(Rn)‖f‖p

and complete the proof of Theorem 3.

§4. Proof of Theorem 2

To prove Theorem 2, we still need the following auxiliary result.

Let h, a, k and Ω(y′) =
∑

s

Csbs(y
′) be as in Theorem 2, j ∈ Z. Define

the following operators:

σj;a,kf(x) =

∫

2j<|x−y|≤2j+1

[a(x) − a(y)]k
Ω(x − y)

|x − y|n
h(|x − y|)f(y)dy,

σs
j;a,kf(x) =

∫

2j<|x−y|≤2j+1

[a(x) − a(y)]k
bs(x − y)

|x − y|n
h(|x − y|)f(y)dy,

µj;a,kf(x) =

∫

2j<|x−y|≤2j+1

|a(x) − a(y)|k
|Ω(x − y)|

|x − y|n
|h(|x − y|)|f(y)dy,

µs
j;a,kf(x) =

∫

2j<|x−y|≤2j+1

|a(x) − a(y)|k
|bs(x − y)|

|x − y|n
|h(|x − y|)|f(y)dy,

µ∗
a,kf(x) = sup

j∈Z

|µj;a,kf(x)| and µs∗
a,kf(x) = sup

j∈Z

|µs
j;a,kf(x)|.

Clearly, we have

µ∗
a,kf(x) ≤ CMΩ

a,kf(x) and µs∗
a,kf(x) ≤ CM bs

a,kf(x).

By Lemma 5 and Theorem 3, it is easy to see that for all 1 < p < ∞,

(4.1) ‖µ∗
a,kf‖p ≤ C‖a‖k

BLO(Rn)‖f‖p

and

(4.2) ‖µs∗
a,kf‖p ≤ C‖bs‖Lλ(Sn−1)‖a‖

k
BLO(Rn)‖f‖p,

and the bounds are independent of bs.

By applying (4.1) and (4.2), we can obtain the following lemma.
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Lemma 6. Under the same assumptions as in Theorem 2, for arbitrary

functions fj,

(4.3)

∥∥∥∥∥∥∥


∑

j∈Z

|σj;a,kfj|
2




1
2

∥∥∥∥∥∥∥
p

≤ C‖a‖k
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

|fj|
2




1
2

∥∥∥∥∥∥∥
p

and

(4.4)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣σs
j;a,kfj

∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C‖bs‖Lλ(Sn−1)‖a‖
k
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

|fj|
2




1
2

∥∥∥∥∥∥∥
p

for all 1 < p < ∞ and for any λ > 1.

Proof. We prove only (4.3) because the other is essentially similar.
The ideas in our proof are taken from those in Lemma of [7] and Lemma 2
of [11]. In fact, it suffices to consider the case p > 2 so that q = ( p

2 )′, and
there exists g ∈ Lq

+ of unit norm such that

∥∥∥∥∥∥∥


∑

j∈Z

|σj;a,kfj|
2




1
2

∥∥∥∥∥∥∥

2

p

=

∫

Rn

∑

j∈Z

|σj;a,kfj(x)|2 g(x)dx.

Also, by Hölder’s inequality and a simple computation, we have

|σj;a,kf(x)|2 ≤ Cµj;a,2k(|f |
2)(x)

and ∫

Rn

µj;a,k(|f |
2)(x)g(x)dx =

∫

Rn

f2(x)µj;ea,2kg̃(−x)dx,
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where ã(x) = a(−x) and g̃(x) = g(−x). Therefore

∥∥∥∥∥∥∥


∑

j∈Z

|σj;a,kfj|
2




1
2

∥∥∥∥∥∥∥

2

p

≤ C

∫

Rn

∑

j∈Z

µj;a,2k

(
|fj|

2
)

(x)g(x)dx

= C

∫

Rn

∑

j∈Z

f2
j (x)µj;ea,2kg̃(−x)dx

≤ C

∫

Rn

sup
j∈Z

∣∣µj;ea,2kg̃(−x)
∣∣∑

j∈Z

f2
j (x)dx

≤ C
∥∥∥µ∗

ea,2kg̃
∥∥∥

q

∥∥∥∥∥∥
∑

j∈Z

|fj|
2

∥∥∥∥∥∥
p

2

.

By (4.1), we obtain

∥∥∥∥∥∥∥


∑

j∈Z

|σj;a,kfj|
2




1
2

∥∥∥∥∥∥∥

2

p

≤ C‖a‖2k
BLO(Rn)‖g‖q

∥∥∥∥∥∥∥


∑

j∈Z

|fj|
2




1
2

∥∥∥∥∥∥∥

2

p

= C‖a‖2k
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

|fj|
2




1
2

∥∥∥∥∥∥∥

2

p

,

which proves Lemma 6.

Proof of Theorem 2. Let Ul, T l
j , Sl−j be the same as that in the proof

of Theorem 1. Then for 1 < p < ∞, similarly to (2.1) and (2.2), we have

(4.5) ‖Ta,kf‖p ≤
∑

l∈Z

‖Ulf‖p

and

(4.6) ‖Ulf‖p ≤ C
k∑

m=0

‖a‖k−m
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l

jSl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥
p

.

Now we estimate ‖Ulf‖p in two cases as follows:

https://doi.org/10.1017/S0027763000008771 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008771


220 S. LU AND H. WU

Case 1. First we show the Lp-boundedness of Ul for l ≤ 0.
For p = 2, by the same arguments as to (2.6), we obtain

(4.7) ‖Ulf‖2 ≤ C2υl‖a‖k
BLO(Rn)‖f‖2.

Next we turn to estimate Lp-boundedness of Ulf . Write

(
T l

jSl−j

)
a,m

f(x) =
m∑

i=0

Ci
mσj;a,i

(
S2

l−j;a,m−if
)
(x).

We know from Lemma 6 and Lemma 1(b) that for all 1 < p < ∞,

(4.8)

‖Ulf‖p ≤ C

k∑

m=0

‖a‖k−m
BLO(Rn)

m∑

i=0

∥∥∥∥∥∥∥


∑

j∈Z

∣∣σj;a,i

(
S2

l−j;a,m−if
)∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C
k∑

m=0

m∑

i=0

Cm
i ‖a‖k−m+i

BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣S2
l−j;a,m−if

∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C‖a‖k
BLO(Rn)‖f‖p.

Using interpolation between (4.7) and (4.8), we obtain

(4.9)
∑

l≤0

‖Ulf‖p ≤ C‖a‖k
BLO(Rn)‖f‖p.

Case 2. We next consider the Lp-estimate of Ul for l > 0.
Let T l

j,s, Sl−j, U s
l be as that in the proof of Theorem 1. Similarly to

(2.7) and (2.8), we have for 1 < p < ∞,

(4.10) ‖Ulf‖p ≤
∑

s

|Cs|‖U
s
l f‖p,

and

(4.11) ‖U s
l f‖p ≤ C

k∑

m=0

‖a‖k−m
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣
(
T l,s

j Sl−j

)
a,m

f

∣∣∣∣
2



1
2

∥∥∥∥∥∥∥
p

.
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For each bs, without loss of generality, we may assume that the support

Qs of bs are uniformly small such that |Qs| < e
q

1−q . Similarly to (2.9), we
can get that for some 0 < θ < 1,

(4.12) ‖U s
l f‖2 ≤ C2

θl
2 log |Qs| ‖a‖k

BLO(Rn)‖f‖2.

For 1 < p < ∞, noting that

(
T l,s

j Sl−j

)
a,m

f(x) =

m∑

i=0

Ci
mσs

j;a,i

(
S2

l−j;a,m−if
)
(x)

and invoking (4.4) and Lemma 1(b) with λ = log |Qs|
1+log |Qs|

, we have

(4.13)

‖U s
l f‖p ≤ C

k∑

m=0

‖a‖k−m
BLO(Rn)

m∑

i=0

∥∥∥∥∥∥∥


∑

j∈Z

∣∣σs
j;a,i

(
S2

l−j;a,m−if
)∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C‖bs‖Lλ(Sn−1)

k∑

m=0

m∑

i=0

‖a‖k−m+i
BLO(Rn)

∥∥∥∥∥∥∥


∑

j∈Z

∣∣S2
l−j;a,m−if

∣∣2



1
2

∥∥∥∥∥∥∥
p

≤ C‖a‖k
BLO(Rn)‖f‖p.

Using interpolation between (4.12) and (4.13) again, we obtain

(4.14) ‖U s
l f‖p ≤ C2

θ1θl

2 log |Qs| ‖a‖k
BLO(Rn)‖f‖p,

for some 0 < θ1 ≤ 1. This shows that

(4.15)

∑

l>0

‖Ulf‖p ≤
∑

s

|Cs|
∑

l>0

‖U s
l f‖p

≤ C
∑

s

|Cs|
∑

l>0

2
θ1θl

2 log |Qs| ‖a‖k
BLO(Rn)‖f‖p

≤ C
∑

s

|Cs|

(
log

1

|Qs|

)
‖a‖k

BLO(Rn)‖f‖p.

Therefore, (4.9) and (4.15) now imply

‖Ta,kf‖p ≤
∑

l≤0

‖Ulf‖p +
∑

l>0

‖Ulf‖p ≤ C‖a‖k
BLO(Rn)‖f‖p,

which completes the proof of Theorem 2.
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