
Canad. J. Math. Vol. 66 (4), 2014 pp. 721–742
http://dx.doi.org/10.4153/CJM-2012-064-x
c©Canadian Mathematical Society 2013

On Whitney-type Characterization of
Approximate Differentiability on Metric
Measure Spaces

E. Durand-Cartagena, L. Ihnatsyeva, R. Korte, and M. Szumańska

Abstract. We study approximately differentiable functions on metric measure spaces admitting a
Cheeger differentiable structure. The main result is a Whitney-type characterization of approximately
differentiable functions in this setting. As an application, we prove a Stepanov-type theorem and con-
sider approximate differentiability of Sobolev, BV , and maximal functions.

1 Introduction

A classical theorem of Luzin states that a measurable function which is finite almost
everywhere coincides with a continuous function outside a set of arbitrary small mea-
sure. A function with such a property is said to satisfy the Luzin property of order zero.
The reverse implication in Luzin’s theorem also holds true and thus the Luzin prop-
erty actually characterizes measurable functions. With the aid of the Lebesgue differ-
entiation theorem, one can see that a function defined on Rn has the Luzin property
of order zero if and only if it is approximately continuous almost everywhere. This
characterization is known as Denjoy–Luzin theorem; see [13, 33].

For more regular functions, it is natural to expect Luzin properties of higher or-
der. Indeed, Whitney [41] proved that approximately differentiable functions are
precisely the functions that have the Luzin property of order one, in the sense that
they are smooth on “nearly” all of their domain.

The concept of approximate continuity makes perfect sense for functions defined
on arbitrary metric measure spaces. The same reasoning as in the Euclidean case
shows that the Denjoy–Luzin theorem holds true for metric spaces equipped with a
doubling measure; see Theorem 2.4. Our aim is to extend the Whitney theorem to a
more general setting. Recently, there has been intensive research, where a first order
differential calculus has been developed on metric measure spaces. For a general in-
troduction to the subject, we mention here the survey works by Heinonen [21, 22],
Heinonen–Koskela [20], Ambrosio–Tilli [3], Hajłasz–Koskela [18], Semmes [38],
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and Björn–Björn [7]. The standard assumptions, which allow the first order dif-
ferential calculus, include that the measure is doubling and that the space supports a
p-Poincaré inequality.

Cheeger [12] constructed a measurable differentiable structure for the above men-
tioned class of metric spaces (see also Keith [23]) in such a way that Lipschitz func-
tions can be differentiated almost everywhere with respect to this differentiable struc-
ture (Rademacher’s theorem). Cheeger’s differentiable structure provides a means to
study approximate differentiability in metric measure spaces. The concept of ap-
proximate differentiability in this setting has been already considered by Keith [24]
and by Bate and Speight [6]. See also Basalaev and Vodopyanov [5] for the study
of approximate differentiability and Whitney-type theorems in the sub-Riemannian
setting.

Here, we consider the class of approximately differentiable functions in spaces that
admit a Cheeger differentiable structure. The main result of this paper, Theorem 3.1,
is a Whitney-type characterization of approximate differentiability in the metric set-
ting. The Whitney theorem is interesting in its own right as a classical result of real
analysis, but the characterization of the Luzin property has also been used, for ex-
ample, to prove regularity properties of different function spaces, especially when
differentiability is not always guaranteed. This is the case, for example, for Sobolev
and BV functions. For approximate differentiability properties of Sobolev and BV
functions in the Euclidean case, one can consult [15].

We apply our main result in three different directions. The first one is related to
Stepanov’s theorem, and the other two are in connection with differentiability prop-
erties of Sobolev functions and the discrete Hardy–Littlewood maximal function.

The Stepanov theorem [40] states that a function is differentiable on the set of
points where a certain local growth condition holds. We prove an approximate ver-
sion of Stepanov’s theorem (Theorem 3.3) in the metric setting and use it to give
another characterization of approximate differentiability (Corollary 3.4) and an al-
ternative proof for Stepanov’s theorem by Balogh–Rogovin–Zürcher [4]. Our meth-
ods follow the lines of proof of the classical approximate Stepanov theorem in [16].

The obtained characterizations allow us to give a simple proof of the approximate
differentiability for Sobolev functions (Hajłasz–Sobolev spaces [17] and Newtonian
spaces [39]) and BV functions (Miranda [36]) in the metric setting; see Corollary 4.1.
Notice that approximate differentiability properties can be also deduced from exist-
ing results. See Björn [9] and Ranjbar–Motlagh [37].

To finish, we use the Whitney type characterization to show in Theorem 5.1 that
the notion of approximate differentiability in metric spaces is preserved under the
action of the discrete maximal operator. The analogous statement for the regular
Hardy–Littlewood maximal operator in the Euclidean setting was proved earlier by
Hajłasz–Malý in [19]. Buckley [11] has shown that for a metric space with a dou-
bling measure, the maximal operator may not preserve Lipschitz and Hölder spaces.
Therefore some Lipschitz-type estimates that were used to prove the approximate
continuity in Euclidean spaces do not hold in more general spaces. In order to have
a maximal function that preserves, for example, the Sobolev spaces on metric spaces,
Kinnunen and Latvala [26] used the discrete maximal function. Notice that in many
applications the Hardy–Littlewood maximal operator can be replaced by the discrete
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maximal operator, as they are comparable by two-sided estimates [26].
Luzin properties of order k for k > 1 have been studied by Bojarski [10], Liu [29],

and Liu–Tai [30, 31] in the Euclidean setting. See also [15]. In this paper, we only
consider Luzin properties of order 1, since the theory for higher order derivatives has
not been developed yet in the metric setting. However, it would be interesting to
extend these results to higher order cases at least for lower dimensional subsets of Rn.

The paper is organized as follows. In Section 2, we first briefly recall the con-
cepts of approximate continuity and approximate differentiability in the Euclidean
setting. After that we give some standard notation and relevant notions regarding
metric spaces supporting a doubling measure that enable us to define approximate
differentiability in this more general context. Section 3 contains the main result of
this paper: a Whitney-type characterization of approximately differentiable functions
in this setting as well as a Stepanov-type characterization. In Section 4, we use the
obtained characterizations to show the approximate differentiability for Sobolev and
BV functions. In the final Section 5, we prove that approximate differentiability a.e.
is preserved under the action of the discrete maximal operator.

2 Preliminaries

2.1 Approximate Differentiability in Rn

We say that l ∈ R is the approximate limit of a function f : Rn → R as y → x, and
write

ap lim
y→x

f (y) = l,

if for every ε > 0, x ∈ Rn is a density point for the set {y : | f (y)− l|) < ε}.
Observe that equivalently we can formulate the definition in the following way.

There exists A ⊂ Rn with x a point of density for A such that

lim
y→x
y∈A

| f (y)− l| = 0.

If the approximate limit l exists and f (x) = l, then we say that f is approximately
continuous at x.

Using the notion of approximate limit one can define the approximate differential.

Definition 2.1 Let E ⊂ Rn and f : E → R. We say that f is approximately differen-
tiable at x ∈ E if there exists a vector L = (L1, . . . , Ln) such that

ap lim
y→x

| f (y)− f (x)− L · (y − x)|
|y − x|

= 0.

Approximate differentiability is a much weaker notion than differentiability. The
function f : [0, 1]→ R, f (x) = 1 if x ∈ R\Q and f (x) = 0 if x ∈ Q is approximately
differentiable almost everywhere but nowhere differentiable. On the other hand, even
a continuous function might be approximately differentiable almost nowhere; see, for
example, [35].
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The following characterization of approximate differentiability was given by Whit-
ney in [41]. See also [16, Theorem 3.1.8].

Theorem 2.2 Let E ⊂ Rn be a Lebesgue measurable set and let f : E → R be a
L n-measurable function. Then the following conditions are equivalent:

(i) f is approximately differentiable L n-a.e.;
(ii) f has a Lipschitz Luzin approximation, that is, for any ε > 0 there is a closed

set F ⊂ E and a locally Lipschitz function g : Rn → R such that f|F = g|F and
L n(E \ F) < ε;

(iii) f has a smooth Luzin approximation, that is, for any ε > 0 there is a closed set
F ⊂ E and a function g ∈ C1(Rn) such that f|F = g|F and L n(E \ F) < ε;

(iv) f induces the decomposition

E =
∞⋃
i=1

Ei ∪ Z,

where Ei are pairwise disjoint closed sets, f|Ei
is Lipschitz continuous, and Z has

measure zero.

2.2 Approximate Differentiability in Metric Measure Spaces

Our main aim is to extend the statement of Whitney’s theorem (Theorem 2.2) to
the more general setting of a metric measure space. To formulate a definition of
approximate differentiability in such a setting, we employ the ideas of Cheeger [12],
who extended the fundamental notions of first order differential calculus to a general
class of metric spaces. We start with several standard definitions.

Throughout the paper (X, d, µ) refers to a metric measure space, where (X, d) is a
separable metric space and µ is a Borel regular measure such that 0 < µ(B) <∞ for
every ball B ⊂ X.

For x ∈ X and r > 0 we denote by B(x, r) := {y ∈ X : d(x, y) < r} the open ball
of radius r centered at x.

One of the natural assumptions imposed on the measure is the doubling condi-
tion.

Definition 2.3 A measure µ on X is called doubling if there is a positive constant
Cµ such that

µ
(

B(x, 2r)
)
≤ Cµ µ

(
B(x, r)

)
for each x ∈ X and r > 0.

Recall that a point x ∈ X is a density point for a µ-measurable set A ⊂ X if

lim
r→0

µ(B(x, r) ∩ A)

µ(B(x, r))
= 1.

The following theorem gives a characterization of approximate continuity in the
metric setting and gives an interpretation of the notion of “0-smoothness”. For a
proof of the theorem in the Euclidean setting, see [16] or [15]. See also [10] for a
nice discussion of the role of Luzin–Denjoy theorem.
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Theorem 2.4 Let (X, d, µ) be a metric measure space with µ-doubling. Let E ⊂ X be
a bounded µ-measurable set and f : X → R. The following conditions are equivalent:

(i) f is µ-measurable on E;
(ii) f is approximately continuous µ-a.e. in E;
(iii) f is quasicontinuous, that is, for each ε > 0 there is a closed set F ⊂ E with

µ(E \ F) < ε and f|F is continuous. In other words, f has a Luzin approximation
of order zero;

(iv) f induces a (zero order) Luzin decomposition of E, that is,

E =
∞⋃
i=1

Ei ∪ Z,

where Ei are closed sets such that f|Ei
is continuous and Z has measure zero.

We do not give a complete proof, since it follows the lines of the classical setting.
One just needs to have in mind that the Lebesgue differentiation theorem holds in
spaces equipped with a doubling measures (see [21, 1.8]). The equivalence of (i) and
(ii) is shown by Federer [16, Theorem 2.9.13]. By Luzin’s theorem, (i) implies (iii);
see [16, Theorem 2.3.5]. The implications (iii)⇒ (iv) and (iv)⇒ (ii) can be shown
following the lines of the second and the third parts of the proof of Theorem 3.1 with
certain modifications; for instance, to show that (iv) implies (ii), one should apply
Tietze’s extension theorem instead of McShane’s.

The structure of metric spaces endowed with a doubling measure has turned out
to be too weak to develop a first order differential calculus involving derivatives, and
therefore extra conditions are needed. The following Poincaré inequality creates a
link between the measure, the metric, and the upper-gradient, and is ubiquitous in
analysis on metric spaces. We recall that a non-negative Borel function g on X is an
upper gradient of an extended real-valued function f on X if | f (γ(a)) − f (γ(b))| ≤∫
γ
g ds for all rectifiable curves γ : [a, b] → X. We interpret the above inequality as

also requiring that
∫
γ

g ds =∞whenever at least one of f (γ(a)), f (γ(b)) is not finite.

Definition 2.5 Let 1 ≤ p ≤ ∞. We say that (X, d, µ) supports a weak p-Poincaré
inequality if there are constants λp ≥ 1 and C p > 0 such that when f : X → R ∪
{−∞,∞} is a measurable function, g : X → [0,∞] is an upper gradient of f , and
B(x, r) is a ball in X,

(2.1) −
∫

B(x,r)
| f − fB(x,r)| dµ ≤ C p r

(
−
∫

B(x,λpr)
g pdµ

) 1/p

if 1 ≤ p <∞, and

−
∫

B(x,r)
| f − fB(x,r)| dµ ≤ C∞ r‖g‖L∞(B(x,λ∞r))

if p =∞.
Here and everywhere below we write

fA = −
∫

A
f :=

1

µ(A)

∫
A

f dµ,
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where A ⊂ X and 0 < µ(A) <∞.

We now recall the following theorem of Cheeger [12], which states that a metric
space equipped with a doubling measure and having a p-Poincaré inequality admits a
certain differentiable structure for which Lipschitz functions are differentiable µ-a.e.

Theorem 2.6 Let X be a metric space with a doubling measure µ, and suppose that X
supports a weak p-Poincaré inequality for some 1 ≤ p <∞. Then there exists a count-
able collection {(Xα, xα)}α∈Λ of measurable sets Xα ⊂ X and Lipschitz coordinates

xα = (x1
α, . . . , x

N(α)
α ) : X −→ RN(α)

with the following properties:

(i) µ(X \
⋃
α Xα) = 0;

(ii) There exists N ≥ 0 such that N(α) ≤ N for each (Xα, xα);
(iii) If f : X → R is Lipschitz, then for each (Xα, xα) there exists a unique (up to a set

of zero measure) measurable bounded vector valued function dα f : Xα → RN(α)

such that

(2.2) lim
y→x
y 6=x

| f (y)− f (x)− dα f (x) · (xα(y)− xα(x))|
d(y, x)

= 0

for µ-a.e. x ∈ Xα.

If a metric measure space (X, d, µ) satisfies the conclusion of Theorem 2.6, we
say that the space admits a strong measurable differentiable structure. In particular,
{(Xα, xα)}α∈Λ is said to be a strong measurable differentiable structure for (X, d, µ).

Notice that although the exponent p is present in the hypothesis of this result,
it has no role in the conclusions. Keith weakened the hypotheses using the Lip-lip
condition, formulated as follows. There exists a constant K ≥ 1 such that

Lip f (x) ≤ K lip f (x)

for all Lipschitz functions f : X → R and for µ-almost every x ∈ X, where Lip f
and lip f denote the upper and lower scaled oscillation functions respectively. This
Lip-lip condition is satisfied by any complete metric space endowed with a doubling
measure that admits a p-Poincaré inequality for some 1 ≤ p <∞; see [23].

See [27] for an accessible introduction to the basis of the theory of differentiable
structures.

The existence of the differentiable structure allows us to consider the following
notion of differentiability of a function.

Definition 2.7 A function f : X → R is Cheeger differentiable at a point x ∈ Xα

with respect to the strong measurable differentiable structure {(Xα, xα)}α∈Λ if there
exists a unique vector (Cheeger differential) dα f (x) ∈ RN(α) such that (2.2) holds for
f at x.
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Notice that the definition of the differentiable structure implies that the unique-
ness of the Cheeger differential can be inferred from its existence almost everywhere
on X. The exceptional set depends only on the differentiable structure.

Analogously, one can introduce a notion of approximate differentiability of a
function defined on a metric space. See [6, 24].

Definition 2.8 If a metric measure space (X, d, µ) satisfies the conclusion of Theo-
rem 2.6, where the limit in (2.2) is replaced with the approximate limit, it is said that
the space admits an approximate differentiable structure (or a measurable differentiable
structure).

Recently, Bate and Speight [6] have proved that if a metric measure space admits
a strong measurable differentiable structure, then the measure is pointwise doubling
almost everywhere. They also gave an example showing that if one only requires
an approximate differentiable structure, the measure does not need to be pointwise
doubling.

Definition 2.9 Let (X, d, µ) be a metric measure space that supports an approxi-
mate differentiable structure {(Xα, xα)}α∈Λ. A function f : X → R is approximately
differentiable at x ∈ Xα with respect to (Xα, xα) if there exists a vector Lα f (x) ∈ RN(α)

(approximate differential) such that

(2.3) ap lim
y→x

| f (y)− f (x)− Lα f (x)(xα(y)− xα(x))|
d(x, y)

= 0;

i.e., for every ε > 0 the set

(2.4) Ax,ε =
{

y :
| f (y)− f (x)− Lα f (x) · (xα(y)− xα(x))|

d(x, y)
< ε
}

has x as a density point.

The following lemma shows that the approximate differential is well defined, in
the sense that if there exists such vector Lα f (x) satisfying (2.3) then it is unique for
almost all points x ∈ Xα. Thus, redefining (if necessary) the given measurable differ-
entiable structure on a set of measure zero, we get the structure with respect to which
the approximate differential is always unique.

Lemma 2.10 Let {(Xα, xα)}α∈Λ be an approximate differentiable structure defined
on a metric measure space (X, d, µ). Then for every α ∈ Λ one can choose a subset
X̃α ⊂ Xα such that µ(Xα \ X̃α) = 0 and for any function f : X → R and every x ∈ X̃α

the following statement is true: if there exist vectors Lα1 f (x), Lα2 f (x) ∈ RN(α) such that

ap lim
y→x

| f (y)− f (x)− Lαi f (x) · (xα(y)− xα(x))|
d(x, y)

= 0, i = 1, 2,(2.5)

then Lα1 f (x) = Lα2 f (x).
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Proof The definition of the approximate differentiable structure implies that the
function g ≡ 0 has a unique approximate differential on a set X̃α satisfying
µ(Xα \ X̃α) = 0.

Assume that there is a function f : X → R and a point x ∈ X̃α such that two
different vectors Lα1 f (x) and Lα2 f (x) satisfy (2.5). By the definition of the approximate
limit, there exist sets A1,A2 ⊂ Xα for which x is a density point and

lim
y→x
y∈Ai

| f (y)− f (x)− Lαi f (x) · (xα(y)− xα(x))|
d(y, x)

= 0,

for i = 1, 2. By the triangle inequality, we have that

lim
y→x

y∈A1∩A2

|(Lα1 f − Lα2 f )(x) · (xα(y)− xα(x))|
d(y, x)

= 0.

Since X̃α is a set where g ≡ 0 has a unique approximate differential, we have

(Lα1 f − Lα2 f )(x) = 0,

as required.

In what follows, we will prove that the approximate differential is a measurable
function. We will need the following technical lemma. Recall that ap lim supy→x F(y)
is the infimum of the set of numbers a ∈ R for which the set {y ∈ X : F(y) > a}
has density zero at the point x.

Lemma 2.11 Let (X, d, µ) be a metric measure space and let g : X × X → R be a
µ⊗ µ-measurable function. Then x 7→ ap lim supy→x g(x, y) is µ-measurable.

Proof The proof is an immediate adaptation of the proof of the analogous statement
in the Euclidean case [16, 3.1.3(2)] and is based on the fact that for any µ⊗ µ-mea-
surable set S and any fixed ε, δ > 0, the set⋂

0<r<δ

{
x ∈ X | µ

(
{y | (x, y) ∈ S, y ∈ B(x, r)}

)
< εµ

(
B(x, r)

)}
(2.6)

is µ-measurable. To prove the measurability of the set defined above, one needs to use
the fact that for every r > 0 the function f (x) = µ(B(x, r)) is lower semicontinuous
and, hence, measurable.

To obtain the measurability of the function x 7→ ap lim supy→x g(x, y), it will be
enough to use the above observation for the set S := {(x, y) | g(x, y) > t} for any
t ∈ R.

Now we are ready to prove the measurability of the approximate differential.

Lemma 2.12 Let (X, d, µ) be a metric measure space that supports an approximate
differentiable structure. If f : X → R is a measurable function that is approximately
differentiable at µ-almost every x ∈ Xα, then the approximate differential Lα f : Xα →
RN(α) is µ-measurable on Xα.
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Here the value Lα f (x) is given by Definition 2.9, if x is a point of approximate
differentiability of f , and Lα f (x) = 0 otherwise.

Proof To prove that the function l = Lα f is measurable, we show that l−1(K) is a
measurable set for each compact K ⊂ RN(α). Let K be a compact set. Denote by

Ax(λ) = ap lim sup
y→x

| f (y)− f (x)− λ · (xα(y)− xα(x))|
d(x, y)

, λ ∈ RN(α).

Observe that, for every x, the function λ 7→ Ax(λ) is continuous. Indeed, since

ap lim sup
y→x

|g(y) + h(y)| ≤ ap lim sup
y→x

|g(y)| + ap lim sup
y→x

|h(y)|,

we have

|Ax(λ)− Ax(λ ′)| ≤ ap lim sup
y→x

|(λ− λ ′) · (xα(y)− xα(x))|
d(x, y)

≤ C|λ− λ ′|

for any λ, λ ′ ∈ RN(α). Set

E = {x ∈ Xα : ∃λ ∈ K such that Ax(λ) = 0}.

Note that since the approximate differential is unique, E coincides with l−1(K). To
check that E is measurable, fix a dense countable subset K ′ of K. Then by the conti-
nuity of Ax and the density of K ′ in K, we have

E =
{

x ∈ Xα : ∃(λn)n∈N ⊂ K ′, λ ∈ K such that λn → λ and lim
n→∞

Ax(λn) = 0
}
.

Consequently, we can write E as

E =
⋂

n∈N

⋃
λ∈K ′

{
x ∈ Xα : Ax(λ) <

1

n

}
.

To finish it remains to check that the function x 7→ Ax(λ) is measurable for each
λ ∈ RN(α). This follows from Lemma 2.11.

Next observe that the notion of approximate differentiability does not depend on
the choice of the approximate differentiable structure.

Lemma 2.13 Let (X, d, µ) be a metric measure space that admits an approximate
differentiable structure {(Xα, xα)}α∈Λ. If f : X → R is approximately differentiable
µ-a.e. on X with respect to {(Xα, xα)}α∈Λ, then it is approximately differentiable almost
everywhere with respect to any approximate differentiable structure defined on X.
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Proof Let {(Xα, xα)}α∈Λ and {(Yβ , yβ)}β∈B be two approximate differentiable
structures defined on (X, d, µ). We will write Lαx f for the approximate differential
of f with respect to {(Xα, xα)}α∈Λ at x ∈ Xα.

First we notice that for fixed x the real valued function gx( · ) = Lαx f (x) · xα( · )
is Lipschitz continuous on X, and thus it is approximately differentiable µ-a.e. with
respect to {(Yβ , yβ)}β∈B. Moreover the set of points where gx is approximately dif-
ferentiable does not depend on the choice of x.

Let β ∈ B. For almost every x ∈ Xβ we can choose α ∈ Λ such that x ∈ Xα and
x is a point of approximate differentiability of f with respect to (Xα, xα). Thus for
µ-a.e. x ∈ Xβ , we have

∣∣ f (y)− f (x)−Lβy gx(x)(yβ(y)−yβ(x))
∣∣ ≤ ∣∣ f (y)− f (x)−Lαx f (x)(xα(y)−xα(x))

∣∣
+
∣∣gx(y)− gx(x)− Lβy gx(x)(yβ(y)− yβ(x))

∣∣ .
Obviously the set

Ax,ε :=
{

y ∈ B(x, r) :
∣∣ f (y)− f (x)− Lβy gx(x)(yβ(y)− yβ(x))

∣∣ < εd(x, y)
}

contains the intersection of the sets{
y ∈ B(x, r) :

∣∣ f (y)− f (x)− Lαx f (x)(xα(y)− xα(x))
∣∣ < ε

2
d(x, y)

}
and {

y ∈ B(x, r) :
∣∣gx(y)− gx(x)− Lβy gx(x)(yβ(y)− yβ(x))

∣∣ < ε

2
d(x, y)

}
.

Therefore each x that is a point of approximate differentiability of f with respect to
(Xα, xα) and a point of approximate differentiability of Lαx f (x) · xα with respect to
(Yβ , yβ) is a point of density of Ax,ε. We conclude that f is approximately differen-
tiable a.e. on X with respect to {(Yβ , yβ)}β∈B.

Remark 2.14 Definition 2.9 of approximate differentiability makes sense when-
ever the underlying space supports an approximate differentiable structure. If we
additionally assume that the measure µ is doubling, then an approximate differen-
tiable structure turns out to be a strong measurable differentiable structure as well;
see [24, Prop. 3.5]. Since the results presented later on are formulated under the
assumption that the measure µ is doubling, we in fact deal with a strong measurable
differentiable structure.

3 Characterization of Approximate Differentiability

3.1 Whitney-type Characterization of Approximate Differentiability

The proof of the following theorem is strongly inspired by the original proof of Whit-
ney for the Euclidean case; see [41, Theorem 1].

https://doi.org/10.4153/CJM-2012-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-064-x


On Characterization of Approximate Differentiability on Metric Spaces 731

Theorem 3.1 Let (X, d, µ) be a complete metric measure space, where µ is a doubling
measure and let {(Xα, xα)}α∈Λ be an approximate differentiable structure on (X, d, µ).
Suppose that E ⊂ X and f : E → R is a µ-measurable function. Then the following
conditions are equivalent:

(i) f is approximately differentiable µ-a.e. in E;
(ii) for any ε > 0 there is a closed set F ⊂ E such that µ(E \ F) < ε and f|F is locally

Lipschitz;
(iii) f induces a Luzin decomposition of E, that is,

(3.1) E =
∞⋃
j=1

E j ∪ Z,

where Ei are pairwise disjoint measurable sets, f|Ei
are Lipschitz functions and Z

has measure zero.

Remark 3.2 When E ⊂ X is a bounded set, condition (ii) can be replaced by:

(ii ′) for any ε > 0 there exists a closed set F ⊂ E and a Lipschitz function g : X → R
such that µ(E \ F) < ε and f|F = g.

To show that the function f is globally Lipschitz on F, one needs to notice that, since
X is proper, the set F is compact. Then one can extend f to the whole space by
standard arguments; see, for example, [21, Theorem 6.2].

Proof of Theorem 3.1 Without loss of generality, we can consider all coordinate
functions xα to be Lipschitz continuous with a Lipschitz constant equal to one, since
clearly {(Xα,

xα
LIP(xα) )}α∈Λ is an approximate differentiable structure on X, and f is

approximately differentiable with respect to the structure. Here LIP(xα) denotes the
Lipschitz constant of xα.

Let f be approximately differentiable µ-a.e. in E. We can assume that the sets Xα

are pairwise disjoint and extend Lα f by zero outside Xα. Denote by N the bound on
the dimension given by Theorem 2.6. Consider Lα f (x) as vectors in RN (we extend
the vector with zeros when necessary) and let L f =

∑
α Lα f . If a f function is

Cheeger differentiable µ-a.e. on X, the analogue construction would give a “gradient”
for f . This construction is quite standard in the literature; see e.g., [8, 9].

(i) =⇒ (ii) First, assume that E ⊂ X is a bounded set. Define

D = {x ∈ E : f is approximately differentiable at x}.

First we show that for any ε > 0 there exists a closed set F = Fε ⊂ D, δ > 0 and
L > 0 such that µ(D \ F) < ε and

| f (x)− f (y)| ≤ L d(x, y) for each x, y ∈ F, d(x, y) < δ.

Since µ is a doubling measure, we have for any r > 0, x, y ∈ X such that d(x, y) ≤
r/2 that

(3.2) µ
(

B(x, r) ∩ B(y, r)
)
≥ µ

(
B(x, r/2)

)
≥ 2 aµ

(
B(x, r)

)
,
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where a = 1/2Cµ, and Cµ denotes the doubling constant.
For each η > 0 define the following sequence of functions:

ψηi (x) = µ
(

B(x, 1/i) \ Ax,η

)
x ∈ D, i ∈ N,

where Ax,η is given by formula (2.4). It is clear that for each i ∈ N, the function ψηi (x)
is measurable in x for fixed η. Moreover, for each η > 0 and x ∈ D one has

φηi (x) =
ψηi (x)

µ(B(x, 1/i))
→ 0 as i →∞.

Next set η = 1. By Luzin’s and Egoroff ’s theorems there exists a closed set F ⊂ E
such that

(a) µ(E \ F) = µ(D \ F) < ε;
(b) L f|F is continuous, moreover, since X is proper, L f|F is bounded in F, i.e., |L f |F| ≤

C ;
(c) φ1

i → 0 uniformly on F.

Now choose i0 such that

(3.3) φ1
i (x) <

a

Cµ
, x ∈ F, i ≥ i0,

where Cµ ≥ 1 is the doubling constant.
Fix x, y ∈ F such that d(x, y) < 1/(2i0). Points x and y may belong to two

different charts, thus we write x ∈ Xα and y ∈ Xβ . Choose i ≥ i0 such that

1/(2i + 2) < d(x, y) ≤ 1/(2i).

For such i we have that i ≥ i0 and by (3.3), we get that

ψ1
i (y) <

a

Cµ
µ
(

B(y, 1/i)
)
≤ a

Cµ
µ
(

B(x, 2/i)
)
≤ aµ

(
B(x, 1/i)

)
.

Hence

(3.4) ψ1
i (x) < aµ

(
B(x, 1/i)

)
and ψ1

i (y) < aµ
(

B(x, 1/i)
)
.

Combining (3.2) and (3.4), we deduce that there exists a point z ∈ B(x, 1/i) ∩
B(y, 1/i) that does not belong to the union of B(x, 1/i) \ Ax,1 and B(y, 1/i) \ Ay,1.
For such point z, we have that d(x, z) < 1/i, d(y, z) < 1/i,

| f (z)− f (x)− Lα f (x) · (xα(z)− xα(x))|
d(z, x)

< 1(3.5)

and

| f (z)− f (y)− Lβ f (y) · (xβ(z)− xβ(y))|
d(z, y)

< 1.(3.6)
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By combining (3.5), (3.6), d(y, z) < 4d(x, y), and d(x, z) < 4d(x, y) we obtain the
inequality

| f (y)− f (x)| ≤
∣∣ f (z)− f (x)− Lα f (x) · (xα(z)− xα(x))

∣∣
+
∣∣ f (z)− f (y)− Lβ f (y) · (xβ(z)− xβ(y))

∣∣
+
∣∣Lα f (x) · (xα(z)− xα(x))

∣∣ +
∣∣Lβ f (y) · (xβ(z)− xβ(y))

∣∣
≤ 8d(x, y) + Cd(x, y),

which shows that f|F is a locally Lipschitz function and finishes the proof of the im-
plication for the case in which E ⊂ X is a bounded set.

Let now E be an arbitrary subset of X. Fix any point x0 ∈ X and consider a family
of open balls B j = B(x0, j), j = 1, 2, . . . , covering X.

Apply now the above reasoning to get closed sets F j ⊂ E ∩ B j such that

µ
(

(E ∩ B j) \ F j

)
≤ 2− jε

and f|F j
are locally Lipschitz functions. Set

F = X \
∞⋃
j=1

(B j \ F j),

then

µ(E \ F) = µ(E ∩ Fc) = µ
(

E ∩
∞⋃
j=1

(B j \ F j)
)
≤
∞∑
j=1

µ
(

E ∩ (B j \ F j)
)
≤ ε.

It is easy to see that F is a closed set and F ∩ B j ⊂ F j for every j = 1, 2, . . . . Hence,
F ⊂ E and f|F is locally Lipschitz. The last observation follows from the fact that for
every point of F we can find a neighborhood of x contained in some B j and f|F j

is
locally Lipschitz.

(ii) =⇒ (iii) For each i ∈ N there exists a closed set Fi such that µ(E \ Fi) ≤ 1/i

and f|Fi
is locally Lipschitz. Setting F̃k :=

⋃k
i=1 Fi we obtain an ascending family

of closed sets, such that f is locally Lipschitz on each of its members. We define
Z :=

⋂∞
k=1(E \ F̃k). Then

µ(Z) = lim
k→∞

µ(E \ F̃k) = 0.

Let {Bi}∞i=1 denote a countable family of balls covering X. Then

E = Z ∪
∞⋃
i=1

∞⋃
k=1

F̃k ∩ Bi = Z ∪
∞⋃
j=1

F ′j ,

where the family {F ′j}∞j=1 is obtained just by renumerating the family {Fk ∩ Bi}. Ob-
serve that f|F ′

j
is Lipschitz. To finish the proof we take the disjoint sets as follows:

E1 := F ′1 and E j := F ′j \
⋃

m< j Em, j > 1.
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(iii) =⇒ (i) If decomposition (3.1) holds, then the restriction f|Ei
is Lipschitz for ev-

ery i. Using McShane’s theorem, we can extend f|Ei
to a Lipschitz function f̃i defined

on the whole space X. By the definition of the approximate differentiable structure,
f̃i is µ-a.e. approximately differentiable on X. Since Ei is measurable, almost every
point of Ei is one of its points of density. Therefore it follows that f̃i (hence also f ) is
µ-a.e. approximately differentiable on Ei .

3.2 Stepanov-type Characterization

The following Stepanov-type theorem shows that an approximate local growth con-
dition on a function guarantees its approximation by Lipschitz functions in Luzin’s
sense.

Theorem 3.3 Let µ be a doubling measure. A µ-measurable function f : E → R
defined on a measurable subset E ⊂ X satisfies the condition

(3.7) ap lim sup
y→x

| f (y)− f (x)|
d(x, y)

<∞

for µ-a.e. x in E if and only if for any ε > 0 there is a closed set G ⊂ E such that
µ(E \ G) ≤ ε and f is locally Lipschitz on G.

The proof is an adaptation of arguments in [16, Theorem 3.1.8] to the metric
setting.

Proof First assume that condition (3.7) holds. Define for each positive integer j the
set

Q(u, r, j) = B(u, r) ∩
{

x : x /∈ E or | f (x)− f (u)| > jd(x, u)
}
,

whenever u ∈ E and r > 0. Define also the set

A j = E ∩
{

u : µ
(

Q(u, r, j)
)
< aµ

(
B(u, r)

)
for 0 < r < 1/ j

}
,

where a > 0 is some constant for which (3.2) holds. Then each set A j is measurable,
which follows from the measurability of the sets defined by (2.6), and

(3.8) µ
(

E \
∞⋃
j=1

A j

)
= 0.

Observe that if u, v ∈ A j and d(u, v) < 1/2 j, then∣∣ f (u)− f (v)
∣∣ ≤ 4 jd(u, v).

Indeed, set r = 2d(u, v), then by the definition of the sets Q and by inequality (3.2)

µ
(

Q(u, r, j) ∪ Q(v, r, j)
)
< a
(
µ(B(u, r)) + µ(B(v, r))

)
≤ µ

(
B(u, r) ∩ B(v, r)

)
.
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Thus, we can choose a point x ∈
(

B(u, r) ∩ B(v, r)
)
\
(

Q(u, r, j) ∪ Q(v, r, j)
)

, and
we have ∣∣ f (u)− f (v)

∣∣ ≤ ∣∣ f (u)− f (x)
∣∣ +
∣∣ f (v)− f (x)

∣∣
≤ j
(

d(x, u) + d(x, v)
)
≤ 2 jr = 4 jd(u, v).

It follows from the last inequality that f is locally Lipschitz on every A j . Since
the sequence of sets A j , j = 1, 2, . . . is increasing, the measure µ is Borel regular
and equality (3.8) holds, for any ε > 0 we can choose a closed set G ⊂ E such that
µ(E \ G) ≤ ε and f |G is a locally Lipschitz function.

Let us show the reverse implication. Let G be a closed set such that µ(E \ G) ≤ ε
and f |G is a locally Lipschitz function. Then X \G has density zero at µ-almost every
point of G. Thus, (3.7) holds µ-a.e. in G and the fact that ε can be chosen arbitrary
small finishes the proof.

As a corollary of Theorems 3.1 and 3.3, we get the following characterization of
approximate differentiability.

Corollary 3.4 Under the hypothesis of Theorem 3.1, a function f : X → R is ap-
proximately differentiable µ-a.e. in a bounded measurable subset E ⊂ X if and only
if

ap lim sup
y→x

| f (y)− f (x)|
d(x, y)

<∞, µ-a.e. in E.

A similar integral local growth condition is used in [37] to guarantee Lp-differ-
entiability of a function. It is also mentioned in [37, Remark 3.4] that the technique
used in [37, Theorem 3.3] can be adapted for the notion of approximate differentia-
bility.

As mentioned before, approximate differentiability is a much weaker property
than differentiability. However, if it is the case that both the approximate differential
and the Cheeger differential exist almost everywhere, they should coincide. There-
fore it is interesting to search for additional conditions of global and infinitesimal
character that imply Cheeger differentiability almost everywhere.

The following Stepanov differentiability theorem in metric measure spaces was
proved by Balogh–Rogovin–Zürcher in [4].

Theorem 3.5 [4] Let (X, d, µ) be a metric space endowed with a doubling measure µ.
Assume that there is a strong measurable differentiable structure for (X, d, µ). Then a
function f : X → R is µ-a.e. Cheeger differentiable in the set{

x : lim sup
y→x

| f (y)− f (x)|
d(x, y)

<∞
}
.

The proof of Theorem 3.5 is based on Malý’s proof of Stepanov’s theorem in the
Euclidean case; see [34]. Note that the Stepanov differentiability theorem in Rn can
also be derived from its approximate analogue; see e.g., [16, Theorem 3.1.9]. The
same arguments work in metric spaces. Thus, one can obtain an alternative proof for
Theorem 3.5 combining Corollary 3.4 and the version of [16, Lemma 3.1.5] adapted
to the metric measure setting.
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4 Differentiability Properties of Sobolev Functions

In this section, we show that the approximate differentiability of Sobolev functions
and BV functions follows easily from the Stepanov-type characterization of approx-
imate differentiability. The results in this section are basically known, but our ap-
proach gives another point of view.

First let us notice that if we have a Lipschitz-type pointwise estimate for a function,
then we have an approximate local growth condition on f as in Theorem 3.3. Namely,
if f : X → R is a µ-measurable function for which there exists a µ-measurable func-
tion g : X → R and a set N of measure zero with

(4.1)
∣∣ f (x)− f (y)

∣∣ ≤ d(x, y)
(

g(x) + g(y)
)

for every x, y ∈ X \ N,

then

(4.2) ap lim sup
y→x

| f (y)− f (x)|
d(x, y)

<∞, µ-a.e. in X.

Indeed, notice first that by Theorem 2.4, g is approximately continuous µ-a.e. Divide
both sides of the inequality (4.1) by d(x, y) and take approximate supremum limits
when y → x to get (4.2).

There are several generalizations of classical Sobolev spaces to the setting of arbi-
trary metric measure spaces.

Hajłasz–Sobolev spaces M1,p(X) were defined in [17] as the functions f ∈ Lp(X)
for which there exists a positive function g ∈ Lp(X) satisfying inequality (4.1). It
follows from the discussion above that under the hypothesis of Theorem 3.1, Hajłasz–
Sobolev functions are approximately differentiable almost everywhere.

Using the notion of upper gradient (and more generally weak upper gradient),
Shanmugalingam [39] introduced Newtonian spaces N1,p(X) for 1 ≤ p ≤ ∞. A
non-negative Borel function g on X is a p-weak upper gradient of an extended real-
valued function f on X if | f (γ(a)) − f (γ(b))| ≤

∫
γ

g for all rectifiable curves γ :
[a, b] → X except for a family of zero p-modulus. See [39] for the definition of
modulus of a family of curves.

Let Ñ1,p(X, d, µ), where 1 ≤ p ≤ ∞, be the class of all p-integrable functions on
X for which there exists a p-weak upper gradient in Lp(X). For f ∈ Ñ1,p(X, d, µ), we
define

‖ f ‖Ñ1,p := ‖ f ‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p-weak upper gradients g of f . Now, we define
in Ñ1,p(X, d, µ) an equivalence relation by f1 ∼ f2 if and only if ‖ f1 − f2‖Ñ1,p = 0.

Then the space N1,p(X, d, µ) = N1,p(X) is defined as the quotient Ñ1,p(X, d, µ)/ ∼.
As shown by Hajłasz and Koskela [18, Theorem 3.2], if we have a pair of func-

tions ( f , g) that satisfies a p-Poincaré inequality (2.1), then we have the following
pointwise estimate

(4.3)
∣∣ f (x)− f (y)

∣∣ ≤ Cd(x, y)
[(

M2σd(x,y)g
p(x)

) 1/p
+ (M2σd(x,y)g

p(y))1/p
]
,
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for µ-a.e. x, y ∈ X and for some constants C, σ > 0. Here MR f is defined by

MR f (x) := sup
0<r≤R

−
∫

B(x,r)
| f (y)|dµ(y),

and notice that MR f (x) ≤ M f (x), where M f is the standard Hardy–Littlewood max-
imal function. Actually, if the space supports a doubling measure and a p-Poincaré
inequality, with p > 1, Newtonian spaces N1,p(X) are characterized by (4.3).
Moreover, under these hypotheses, Newtonian spaces coincide with Hajłasz–Sobolev
spaces; see [39]. If X is only known to be bounded, complete and supports an∞-
Poincaré inequality, the space of Lipschitz functions coincides with N1,∞(X) (see
[14, Theorem 4.7]).

Stepanov-type characterization can also be used to prove that BV functions on
metric spaces are approximately differentiable almost everywhere. See the work by
Miranda [36] for the corresponding definition of BV functions. Very recently, Lahti
and Tuominen [28] have shown that a similar pointwise estimate as in (4.3) holds
for BV functions assuming that the space is complete and supports a 1-Poincaré in-
equality. Namely, if f ∈ BV (X), there exists a constant σ ≥ 1 such that∣∣ f (x)− f (y)

∣∣ ≤ Cd(x, y)
[

M2σd(x,y)‖D f ‖(x) + M2σd(x,y)‖D f ‖(y)
]
,

for µ-a.e. x, y ∈ X, where C is a constant depending only on the doubling constant
and the constants involved in the Poincaré inequality. Here M2σd(x,y)‖D f ‖ denotes
the restricted maximal function of the measure ‖D f ‖; that is,

MR‖D f ‖(x) := sup
0<r≤R

‖D f ‖(B(x, r))

µ(B(x, r))
,

where ‖D f ‖ denotes the total variation of the measure µ.

Corollary 4.1 Assume that (X, d, µ) is complete doubling metric measure space. Then
a function f is approximately differentiable µ-a.e. in each of the following cases:

• X supports an approximate differentiable structure and f ∈ M1,p(X), for some
p ≥ 1;

• X supports the p-Poincaré inequality and f ∈ N1,p(X) for some p ≥ 1;
• X supports the 1-Poincaré inequality and f ∈ BV (X).

Notice that the assumption of a Poincaré inequality cannot be dropped from the
hypothesis in the Newtonian case and in the BV case. For example, if the space
has no rectifiable curves, except for the constant ones, then N1,p(X) = Lp(X), and
therefore it could happen that a function in N1,p(X) is nowhere differentiable, nor
approximately differentiable. On the other hand, when one uses Hajłasz approach,
it is enough to assume that the space admits a differentiable structure to reach the
conclusion.

The results in Corollary 4.1 can be also deduced from existing results in literature.
Björn [9] has shown that if (X, d, µ) is doubling and supports a p-Poincaré inequality,
then for each function f ∈ N1,p(X) and µ-a.e. x ∈ X,

lim sup
r→0

1

r
−
∫

B(x,r)

∣∣ f (y)− f (x)− d f α(x) ·
(

xα(y)− xα(x)
) ∣∣dµ(y) = 0;
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in other words, f is L1-differentiable. For uniformly perfect spaces equipped with
a doubling measure, L1-differentiability implies approximate differentiability. For
a proof of this fact, see [24, Prop. 3.4]. Notice that a space supporting a Poincaré
inequality is connected and thus also uniformly perfect.

In [37] it is proved that BV functions are L1-differentiable µ-a.e., if the space sup-
ports a 1-Poincaré inequality. As a direct consequence we deduce as well that BV
functions are approximately differentiable µ-a.e. Observe that the approximate dif-
ferentiability is a weaker notion than Lp-differentiability. In particular, the definition
of the approximate differentiability does not involve any integrability assumptions.

5 Approximate Differentiability of the Maximal Function

Hajłasz and Malý proved in [19] that, in the case of X = Rn, approximate differen-
tiability is preserved under the action of the Hardy–Littlewood maximal operator

M f (x) := sup
r>0
−
∫

B(x,r)
| f (y)| dy, x ∈ X.

It was recently shown by H. Luiro [32, Corollary 1.5] that, in the Euclidean case,
differentiability almost everywhere is also preserved under the action of the maximal
function.

On the other hand, in the setting of metric spaces endowed with a doubling mea-
sure, the maximal operator does not preserve the regularity of a function in the same
manner as in the Euclidean case. Kinnunen proved in [25, Theorem 1.4] that the
Hardy–Littlewood maximal operator is bounded in W 1,p(Rn) for 1 < p ≤ ∞. No-
tice that the case p = ∞ corresponds to the space of Lipschitz functions. On the
other hand, Buckley [11, Example 1.4] has shown that for a metric space with a dou-
bling measure, the maximal operator may not preserve Lipschitz and Hölder spaces.
In order to have a maximal function that preserves, for example, the Sobolev spaces
on metric spaces, Kinnunen and Latvala [26] constructed a maximal function based
on discrete convolution (see also [1, 2]).

In the next theorem, we will show that the discrete maximal operator also pre-
serves approximate differentiability. First, we define the discrete maximal operator at
scale r > 0. Let Bi = B(xi , r), i ∈ N, be a collection of balls such that they cover X
and the balls B(xi , r/2), i ∈ N, are pairwise disjoint. Let ψi be a partition of unity
subordinate to the covering Bi , i = 1, 2, . . . , i.e., 0 ≤ ψi ≤ 1, suppψi ⊂ B(xi , 6r),
ψi ≥ 1/C in B(xi , 3r), ψi is Lipschitz with constant L/r and

∑
i ψi = 1. Then we

define the discrete convolution of f ∈ L1
loc(X) by setting

(5.1) fr(x) =
∞∑
i=1

ψi(x) fB(xi ,3r).

Let r j be an enumeration of the positive rationals. We define the discrete maximal
function (which depends on the chosen covering)

M∗ f (x) = sup
j
| f |r j (x).
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Now we can state our theorem. Notice that the theorem holds for arbitrarily chosen
coverings defining M∗ f .

Theorem 5.1 Let (X, d, µ) be a complete metric space equipped with a doubling
measure µ. Assume also that X supports an approximate differentiable structure. If
f ∈ L1(X) is approximately differentiable µ-a.e., then M∗ f is approximately differen-
tiable µ-a.e.

The proof follows the ideas used in [19]. First, we consider the restricted maximal
function M∗ε f , ε > 0, defined by the formula

M∗ε f (x) := sup
r j>ε
| f |r j (x).

Lemma 5.2 Let (X, d) be a complete metric measure space equipped with a doubling
measure µ. Assume also that X supports an approximate differentiable structure. If
f ∈ L1(X), then M∗ε f , ε > 0, is approximately differentiable µ-a.e. in X.

Proof We start by proving that for some constant Q̃, which depends only on the
doubling constant, the following inequality holds:
(5.2)∣∣M∗ε f (x)−M∗ε f (y)

∣∣ ≤ Q̃

ε
d(x, y)

(
M∗ε f (x) + M∗ε f (y)

)
for µ-a.e. x, y ∈ X.

Notice first, that the claim clearly holds if d(x, y) ≥ ε, so we may assume that
d(x, y) < ε. Fix a rational number r > ε. Let {B(xi , r)}i be the covering used to
define the discrete convolution | f |r and let I denote the set of indexes i such that x
or y belong to B(xi , 6r). The doubling property implies that |I| ≤ C with a constant
that only depends on the doubling constant. For every i ∈ I, there exists a point
x̃ ∈ B(xi , 4r) such that the ball B(x̃, 4r) belongs to the covering used to construct
| f |4r as in (5.1). Since B(xi , 3r) ⊂ B(x̃, 12r) and x ∈ B(x̃, 12r), we have

| f |B(xi ,3r) ≤ C| f |B(x̃,3·4r) ≤ C| f |4r(x) ≤ CM∗ε f (x)

with a constant depending only on the doubling constant; see, for example, the proof
of [26, Lemma 3.1]. Thus we can conclude that∣∣ | f |r(x)− | f |r(y)

∣∣ = ∣∣∣∑
i∈I

(
ψi(x)− ψi(y)

)
| f |B(xi ,3r)

∣∣∣
≤ C

L

r
d(x, y)M∗ε f (x) ≤ C

L

ε
d(x, y)

(
M∗ε f (x) + M∗ε f (y)

)
.

By taking the supremum over all rationals r > ε, we obtain (5.2).
Now it is enough to notice that the restricted maximal function is µ-measurable,

hence by Luzin’s Theorem 2.4, it is approximately continuous µ-a.e., and by (5.2)

ap lim sup
y→x

|M∗ε f (x)−M∗ε f (y)|
d(x, y)

≤ Q̃

ε
2M∗ε f (x) <∞ µ-a.e. in X.

Using a Stepanov-type characterization (see Corollary 3.4), we obtain that M∗ε f is
approximately differentiable µ-a.e. in X.
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It would be interesting to know, whether Theorem 5.1 holds for the standard
Hardy–Littlewood maximal function as well. In the metric space setting, this would
require a totally different proof, since estimates like (5.2) do not hold in spaces where
the measure of balls does not behave nicely. Even with the annular decay property,
only Hölder type estimates are available [11].

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 First, we can split the space into three parts

X =
{

x : M∗ f (x) > | f (x)|
}
∪
{

x : M∗ f (x) = | f (x)|
}
∪ N.

By [1, Lemma 4.5], | f (x)| ≤ M∗ f (x) a.e. in X. Thus µ(N) = 0.
Observe that if f ∈ L1(X) is approximately differentiable function at µ-almost

every point in X, then | f | is approximately differentiable µ-a.e. in X as well. This fact
easily follows, for example, from Theorem 3.1 on Whitney-type characterization of
approximate differentiability.

Thus, the maximal function M∗ f is approximate differentiable µ-a.e. on the sec-
ond set. Note also that since µ-almost every point of X is a Lebesgue point of f (see
e.g., [21, Theorem 1.8]), it is enough to show that M∗ f is approximately differen-
tiable almost everywhere on the set

A := {x : M∗ f (x) > | f (x)| and x is a Lebesgue point of f }.

If x ∈ A, there exists a sequence {rn}∞n=1 such that

lim
n→∞

| f |rn (x) = M∗ f (x).

The sequence rn is bounded (since M∗ f (x) > 0 and f ∈ L1(X)), and we can find
a convergent subsequence. Let us denote its limit by r. Note that r > 0, otherwise
M∗ f (x) = | f |(x). Thus for each x ∈ A there exists k ∈ N such that M∗ f (x) =
M∗1/k f (x) and

A ⊂
∞⋃

k=1

{
x : M∗ f (x) = M∗1/k f (x)

}
.

By Lemma 5.2, each maximal function M∗1/k f (x), k ∈ N, is approximately differen-

tiable µ-a.e. in X, and, since the sets {x : M∗ f (x) = M∗1/k f (x)} are measurable, M∗ f
is approximately differentiable µ-a.e. in A.
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