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On Non-Archimedean Curves Omitting
Few Components and their Arithmetic
Analogues

Aaron Levin and Julie Tzu-Yueh Wang

Abstract. Let k be an algebraically closed ûeld completewith respect to anon-Archimedean absolute
value of arbitrary characteristic. Let D1 , . . . ,Dn be eòective nef divisors intersecting transversally in
an n-dimensional nonsingular projective variety X. We study the degeneracy of non-Archimedean
analytic maps from k into X ∖ ⋃n

i=1 D i under various geometric conditions. When X is a ratio-
nal ruled surface and D1 and D2 are ample, we obtain a necessary and suõcient condition such
that there is no non-Archimedean analytic map from k into X ∖ D1 ∪ D2 . Using the dictionary
between non-Archimedean Nevanlinna theory and Diophantine approximation that originated in
earlier work with T. T. H. An, we also study arithmetic analogues of these problems, establishing
results on integral points on these varieties over Z or the ring of integers of an imaginary quadratic
ûeld.

1 Introduction

Let k be an algebraically closed ûeld completewith respect to a non-Archimedean ab-
solute value of arbitrary characteristic. Our primary object of study is the degeneracy
of non-Archimedean analyticmaps from k to an n-dimensional projective variety X
omitting an eòective divisor with at least n irreducible components. As argued in [2],
results on non-Archimedean analytic curves in this context should have arithmetic
counterparts inDiophantine geometry; they should correspond to results on integral
points over Z or the ring of integers of an imaginary quadratic ûeld. _us, a second
objective is to prove an appropriate arithmetic analogue of all of our results on non-
Archimedean analytic curves, further illustrating and justifying the correspondence
proposed in [2]. Before discussing our main results, we brie�y recall some aspects of
the correspondence in [2] as well as several examples of parallel non-Archimedean
and arithmetic results.

To begin, we recall the connection between Nevanlinna theory, the quantitative
theory that grew out of Picard’s theorem, and Diophantine approximation, a quanti-
tative theory behind many results on rational and integral points on varieties. Orig-
inating in the work of Osgood, Vojta, and Lang, it has been observed that there is a
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striking correspondence between many statements in Nevanlinna theory and state-
ments in Diophantine approximation. A detailed “dictionary" between the two sub-
jects has been constructed by Vojta [13]. Qualitatively, in the simplest case, holomor-
phic curves in a variety X should correspond to inûnite sets of integral points on X
(viewing X both as a variety over a number ûeld and as a complex analytic space).
Taking X = Gm = P1 ∖ {0,∞}, this implies that a non-constant entire function with-
out zeros is analogous to an inûnite set of units in some ring of integers.

In contrast to the situation in complex analysis, where the exponential function is
an entire functionwithout zeros, it is an easy fact that anon-Archimedean entire func-
tion without zeros must be constant. In view of the aforementioned analogies, this
suggests that to obtain a Diophantine analogue of non-Archimedean analytic curves,
we should consider only rings of integers with a ûnite unit group, i.e., Z or the ring of
integers of an imaginary quadratic ûeld. _is observation was the starting point for
the work in [2], where more generally it was argued that, at least for certain classes
of varieties, a non-constant non-Archimedean analytic map into a variety X should
correspond to an inûnite set of Ok-integral points on X, where Ok = Z or the ring
of integers of an imaginary quadratic ûeld. For completeness, we also mention that
this correspondence can frequently bemade quantitative (see [2]), resulting in parallel
statements in non-ArchimedeanNevanlinna theory andDiophantine approximation.
Determining the precise class of varieties under which a correspondence should

hold was le� open in [2]. At the least, it seems necessary that the varieties X be aõne
(or close to aõne) and that, in the arithmetic case, the varieties satisfy a rationality
condition on the components at inûnity:
(∗) _ere exists a projective closure X̃ of X nonsingular at every point in X̃ ∖ X and

such that every (geometric) irreducible component of X̃ ∖ X is deûned over k,
where k = Q or an imaginary quadratic ûeld. We now illustrate the correspondence
by recalling several examples of parallel non-Archimedean and arithmetic results.
For curves, condition (∗) yields a suõcient hypothesis underwhich our correspon-

dence holds (see Section 2 for the deûnitions).

_eorem 1.1 Let k beQ or an imaginary quadratic ûeld and suppose that chark = 0.
If X is an aõne curve over k satisfying (∗), then X contains an inûnite set ofOk-integral
points if and only if there exists a non-constant analytic map f ∶k → X if and only if X
is rational with a single point at inûnity.

_e last equivalence holds in arbitrary characteristic (we only assumed chark = 0
to ensure that X makes sense over both k and k). _is follows easily from Siegel’s
theorem andBerkovich’snon-Archimedean analogue ofPicard’s theorem. As a special
case, we have the following version of Berkovich’s Picard theorem.

_eorem 1.2A Any analytic map from k to a projective curve omitting two points
must be constant.

_is corresponds to the following theorem on integral points.
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_eorem 1.2B Let k beQ or an imaginary quadratic ûeld and let C be an aõne curve
over k with at least two k-rational points at inûnity. _en any set of Ok-integral points
on C is ûnite.

A generalization of _eorem 1.2A to higher dimensions was obtained by Lin and
Wang [10], and a reûnement was given in [2] by An, Levin, andWang as follows.

_eorem 1.3A Let X be a nonsingular projective variety over k. Let D1 , . . . ,Dm be
eòective divisors on X with empty intersection. Let D = ∑m

i=1 D i .
(i) If κ(D i) > 0 for all i, then the image of an analyticmap f ∶k → X∖D is contained

in a proper subvariety of X.
(ii) If D i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such

that the image of any non-constant analyticmap f ∶k → X ∖ D is contained in Z.
(iii) If D i is ample for all i, then there is no non-constant analyticmap from k to X∖D.

_e arithmetic analogue of_eorem 1.3A is implicit in the proof of amore general
result proved in [9] using a higher-dimensional version of “Runge’s method".

_eorem 1.3B (Levin) Let k beQ or an imaginary quadratic ûeld. Let X be a nonsin-
gular projective variety over k. Let D1 , . . . ,Dm be eòective divisors on X, deûned over
k, with empty intersection. Let D = ∑m

i=1 D i .
(i) If κ(D i) > 0 for all i, then any set R of Ok-integral points on X ∖ D is contained

in a proper Zariski-closed subset of X.
(ii) If D i is big for all i, then there exists a proper Zariski-closed subset Z ⊂ X such

that for any set R of Ok-integral points on X ∖ D, the set R ∖ Z is ûnite.
(iii) If D i is ample for all i, then all sets R of Ok-integral points on X ∖ D are ûnite.

Furthermore, as shown in [9], in each of the above cases, the integral points can
be eòectively computed.

We note that if D1 , . . . ,Dm are eòective divisors in general position on X, then
they have empty intersection if m ≥ dimX + 1. Here, a collection of eòective divisors
D i on a projective variety X of dimension n is said to be in general position if for each
1 ≤ k ≤ n + 1 and each choice of indices i1 < ⋅ ⋅ ⋅ < ik , each irreducible component of
D i1 ∩⋅ ⋅ ⋅∩D ik has codimension at least k in X; in particular, this intersection is empty
when k = n + 1.

In view of _eorems 1.3A and 1.3B, a next natural case to study is varieties of the
form X ∖ ⋃n

i=1 D i , where n = dimX. _e non-Archimedean case was studied for
projective space by An, Wang, and Wong [3] (cf. [2] for a necessary and suõcient
statement), and the arithmetic analogue was established in [2].

_eorem 1.4A (An,Wang,Wong) Let D1 , . . . ,Dn be nonsingular hypersurfaces in
Pn intersecting transversally. _en there is no non-constant analytic map from k to
Pn ∖⋃n

i=1 D i if degD i ≥ 2 for each 1 ≤ i ≤ n.
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_eorem 1.4B (An, Levin, Wang) Let k be Q or an imaginary quadratic ûeld. Let
D1 , . . . ,Dn be nonsingular hypersurfaces deûned over k in Pn intersecting transver-
sally. Suppose that every point in the intersection ⋂n

i=1 D i is k-rational. _en any set
of Ok-integral points on Pn ∖⋃n

i=1 D i is ûnite.

More generally, when k is Q or an imaginary quadratic ûeld and D1 and D2 are
curves over k intersecting transversally, a complete characterization of ûniteness of
Ok-integral points on P2 ∖ {D1 ∪ D2} was given in [2].

We now state our main results. Under various geometric conditions, we prove the
degeneracy of analyticmaps f ∶k → X ∖⋃n

i=1 D i . We also prove analogous results for
Ok-integral points on X ∖⋃n

i=1 D i under condition (∗) and the following condition:
(∗∗) Every point in the intersection ⋂n

i=1 D i is k-rational.
Notation and deûnitions will be given in the next section.

_eorem 1.5A Let D1 , . . . ,Dn be eòective nef divisors intersecting transversally in
an n-dimensional nonsingular projective variety X over k. Let KX denote the canonical
divisor on X.
(i) Assume that either Dn

i > 1 or that Dn
i = 1 and KX .Dn−1

i < 1 − n for each 1 ≤ i ≤ n.
_en the image of an analytic map f ∶k → X ∖ ⋃n

i=1 D i is contained in a proper
subvariety of X.

(ii) If Dn
i > 1 for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that

the image of any non-constant analytic map f ∶k → X ∖ ⋃n
i=1 D i is contained in

Z.

_eorem 1.5B Let k beQ or an imaginary quadratic ûeld. Let X be an n-dimensional
nonsingular projective variety over k. Let D1 , . . . ,Dn be eòective nef divisors on X, all
deûned over k, intersecting transversally in X. Let KX denote the canonical divisor on
X. Suppose that every point in the intersection ⋂n

i=1 D i is k-rational.
(i) Assume that either Dn

i > 1 or that Dn
i = 1 and KX .Dn−1

i < 1 − n for each 1 ≤ i ≤
n. _en any set R of Ok-integral points on X ∖ ⋃n

i=1 D i is contained in a proper
Zariski-closed subset of X.

(ii) If Dn
i > 1 for all i, then there exists a proper Zariski-closed subset Z ⊂ X such that

for any set R of Ok-integral points on X ∖⋃n
i=1 D i , the set R ∖ Z is ûnite.

Combinedwith an appropriate version of theHodge index theorem(_eorem 2.3),
this yields the following corollaries.

Corollary 1.6A Let X be an n-dimensional nonsingular projective variety over k.
Suppose that −KX is nef and (−KX)n > (n − 1)n . Let D1 , . . . ,Dn be eòective nef and
big divisors on X intersecting transversally. _en the image of an analytic map f ∶k →
X ∖⋃n

i=1 D i is contained in a proper subvariety of X.

Corollary 1.6B Let k beQ or an imaginary quadratic ûeld. Let X be an n-dimensional
nonsingular projective variety over k. Suppose that −KX is nef and (−KX)n > (n− 1)n .
Let D1 , . . . ,Dn be eòective nef and big divisors on X, all deûned over k, intersecting
transversally in X. Suppose that every point in the intersection ⋂n

i=1 D i is k-rational.
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_en any set R of Ok-integral points on X ∖ ⋃n
i=1 D i is contained in a proper Zariski-

closed subset of X.

_e surfaces X satisfying the hypotheses of Corollary 1.6A can be completely clas-
siûed as follows. (cf. [7, Chapter III, Exercise 3.8])

Remark 1.7 Let X be a smooth projective surface over an algebraically closed ûeld.
_en −KX is nef and (−KX)2 > 1 if and only if one of the following holds:
(a) X ≅ P(OP1 ⊕OP1(2)) over P1;
(b) X ≅ P2 or X ≅ P1 × P1;
(c) X is obtained from P2 by successively blowing up at most 7 points.

In contrast to the case of projective space (_eorem 1.4A) and the situation for de-
generacy (_eorem 1.5A), on general projective varieties, even under a transversality
assumption, there is no condition on the self-intersection numbers of the divisors or
the degrees of the divisors (in some ûxed projective embedding) suõcient to ensure
that there arenonon-constant analyticmaps f ∶k → X∖(D1∪⋅ ⋅ ⋅∪Dn). A similar state-
ment holds for integral points, but we give an example only in the non-Archimedean
setting.

Example 1.8 Let m and n be positive integers. Let X = P1 ×P1 and let D1 and D2 be
eòective divisors of type (1,m) and (1, n), respectively. Let D = D1 + D2. Let P be a
point in the intersection of the supports ofD1 andD2 and let L be the line on X of type
(0, 1) through P. _en since L∖D = L∖{P} ≅ A1, there exists a non-constant analytic
map f ∶k → X ∖D. Note that D1 and D2 are very ample and D2

1 = 2m, D2
2 = 2n. _us,

there is no condition on the self-intersection numbers of (very) ample divisorsD1 and
D2 on X that is suõcient to guarantee that there are no non-constant analytic maps
from k to X ∖ (D1 ∪ D2). Note also that for any embedding X ⊂ PN , the divisors D i
may have arbitrarily large degree.

In the case of rational ruled surfaces, we are able to completely classify analytic
maps f ∶k → X ∖ D1 ∪ D2 when D1 and D2 are ample eòective divisors intersecting
transversally. We also prove the arithmetic analogue, again under conditions (∗) and
(∗∗).

Recall that if X is a rational ruled surface, then X ≅ P(E), where E = O ⊕ O(−e)
over P1 and e ≥ 0 is uniquely determined. We let F denote a ûber on X and let C0
denote a section of X such that O(C0) ≅ OP(E)(1).

_eorem 1.9A Let X be a rational ruled surface over k. Let D1 and D2 be eòective
divisors intersecting transversally in X.
(i) If D1 and D2 are big, then the image of an analytic map f ∶k → X ∖ D1 ∪ D2 is

contained in a proper subvariety of X.
(ii) Suppose that D1 and D2 are ample. _e image of an analytic map f ∶k → X ∖

D1 ∪ D2 is contained in either a ûber or a section C with C ∼ C0. _ere is no
non-constant analytic map from k to X ∖ D1 ∪ D2 if and only if every ûber and
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every section C, C ∼ C0, intersects D1 ∪D2 in more than one point. In particular,
this holds if D i .F ≥ 2 and D i .C0 ≥ 2 for i = 1, 2.

_eorem 1.9B Let k beQ or an imaginary quadratic ûeld. Let π∶X → P1 be a rational
ruled surface over k. Let D1 and D2 be eòective divisors intersecting transversally in X.
Suppose that all the irreducible components of D1 and D2 are deûned over k and that
all of the points in the intersection D1 ∩ D2 are k-rational.
(i) If D1 and D2 are big, then any set R of Ok-integral points on X ∖ D1 ∪ D2 is

contained in a proper Zariski-closed subset of X.
(ii) Suppose that D1 and D2 are ample. _en any set R of Ok-integral points on

X ∖ D1 ∪ D2 is contained in a ûnite union of ûbers and sections C with C ∼ C0.
Any set R of Ok-integral points on X ∖ D1 ∪ D2 is ûnite if and only if every curve
C ⊂ X over k that is linearly equivalent toC0 or a ûber F intersectsD1∪D2 inmore
than one point. In particular, this holds if D i .F ≥ 2 and D i .C0 ≥ 2 for i = 1, 2.

2 Preliminaries

We ûrst introduce some notation and deûnitions.
Let k be a number ûeld and let Mk denote the set of places of k. Let D be an

eòective divisor on a nonsingular projective variety X, both deûned over k. Recall
that we can associate to D a height function hD (well-deûned up to O(1)) which for
points P ∈ X(k)∖D decomposes as a sumof local height functions hD = ∑v∈Mk hD ,v .
Let S be a ûnite set of places of k. A set of points R ⊂ X(k) ∖ D is called a set of
Ok ,S-integral points on X ∖ D if there exist constants cv , v ∈ Mk , such that cv = 0 for
all but ûnitelymany v, and for all v /∈ S, hD ,v(P) ≤ cv for all P ∈ R. We refer the reader
to [13] for further details on height functions and integral points.

Let D be a divisor on a nonsingular projective variety X, both deûned over a
ûeld k. For a nonzero rational function ϕ ∈ k(X), we let div(ϕ) denote the di-
visor associated to ϕ. _en we let L(D) = {ϕ ∈ k(X) ∣ div(ϕ) + D ≥ 0} and
h0(D) = dimH0(X ,O(D)) = dim L(D). If h0(nD) = 0 for all n > 0 then we let
κ(D) = −∞. Otherwise, we deûne the Kodaira–Iitaka dimension of D to be the inte-
ger κ(D) such that there exist positive constants c1 and c2 with

c1nκ(D) ≤ h0(nD) ≤ c2nκ(D)

for all suõciently divisible n > 0. We deûne a divisor D on X to be big if κ(D) =
dimX.

Deûnition 2.1 A divisor D on X is said to be numerically eòective, or nef, if D ⋅C ≥ 0
for any irreducible curve C on X.

We recall some basic properties of nef divisors on X; see [6].

Lemma 2.2 Nef divisors satisfy the following:
(i) Let n = dimX. If D1 , . . . ,Dn are nef divisors on X, then

D1D2 ⋅ ⋅ ⋅Dn ≥ 0.
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(ii) Let f ∶X → Y be a morphism and let D be a nef divisor on Y with f (X) not
contained in the support of D. _en f ∗(D) is nef on X.

We recall the following generalizedHodge index theorem; see [8,_eorem 1.6.1].

_eorem 2.3 Let D1 , . . . ,Dn be nef divisors on an n-dimensional nonsingular pro-
jective variety X. _en (D1⋯Dn)n ≥ Dn

1 ⋯Dn
n .

When X is a surface and n = 2, this holds without the nef hypothesis as long as
D2

1 > 0.
For nef divisors, we have the following asymptotic Riemann–Roch formula.

Lemma 2.4 Suppose D is a nef divisor on a nonsingular projective variety X. Let
n = dimX. _en h0(mD) = Dn

n! ⋅m
n + O(mn−1). In particular, Dn > 0 if and only if

D is big.

_e next theorem gives a more reûned bound for the dimension of the space of
global sections of nef and big divisors (cf. [11] or [7, Chapter VI _eorem 2.15.9]).

_eorem 2.5 (Matsusaka) Let X be a nonsingular projective variety of dimension n
and let D be a nef and big divisor on X. _en

h0(mD) = D
n

n!
mn − KX .Dn−1

2(n − 1)!m
n−1 + O(mn−2).

We will also make use of two basic exact sequences.

Lemma 2.6 Let D be an eòective divisor on a nonsingular projective variety X with
inclusion map i∶D → X. Let L be an invertible sheaf on X. _en we have exact se-
quences

0→ L⊗O(−D)→ L→ i∗(i∗L)→ 0,

0→ H0(X ,L⊗O(−D))→ H0(X ,L)→ H0(D, i∗L).

Proof If D is an eòective divisor on X, then a fundamental exact sequence is

0→ O(−D)→ OX → i∗OD → 0.

Tensoring with L and using the projection formula, we get the ûrst exact sequence.
Taking global sections then gives the second exact sequence.

3 Proof of Theorems 1.5A and 1.5B

We ûrst prove a theorem controlling theKodaira–Iitaka dimension of certain divisors
on blow-ups.

_eorem 3.1 Let X be a nonsingular projective variety of dimension n over a ûeld k
and let D be a nef divisor on X. Let KX denote the canonical divisor on X. Let π∶ X̃ →
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X be the blow-up along m distinct points P1 , . . . , Pm of X, successively, and let E i ∶=
π−1(Pi) be the exceptional divisor for 1 ≤ i ≤ m.
(i) If Dn > 1, then π∗D − E i is big for each 1 ≤ i ≤ m.
(ii) If Dn = 1 and KX .Dn−1 < 1 − n, then κ(π∗D − E i) ≥ n − 1 for each 1 ≤ i ≤ m.

Remark 3.2 It is easy to see that part (i) may be false if Dn = 1. If H is a hyperplane
in Pn and P = P1 ∈ H,m = 1, then Hn = 1 and π∗H−E is not big. Similarly, at least for
n = 2, part (ii) may be false ifKX .Dn−1 = 1−n. Let P1 , . . . , P9 ∈ P2 be nine points in the
plane with a unique cubic curve C passing through the nine points. Let π∶X → P2 be
the blow up at P1 , . . . , P8, with corresponding exceptional divisors E1 , . . . , E8. _en
KX = π∗(−3L) +∑8

i=1 E i , where L is a line in P2. Let D = π∗C −∑8
i=1 E i ∼ −KX be

the strict transform of C. _en D2 = 1 and D.KX = −1. Let π̃∶ X̃ → X be the blow up
of X at P9 and let E be the exceptional divisor. _en κ(π̃∗D − E) = 0.

Proof We ûrst treat the case of blowing-up one point, i.e., m = 1. For simplicity
of notation, we let P = P1 and E = E1. Let i∶ E → X̃ be the inclusion map. From
Lemma 2.6, we have an exact sequence

0→ H0( X̃ ,O(mπ∗D − ( j + 1)E)) →
H0( X̃ ,O(mπ∗D − jE)) → H0(E , i∗O(mπ∗D − jE)) .

Now since π∗D.E = 0, i∗O(mπ∗D − jE) ≅ i∗O(− jE). Recall that we can identify E
with Pn−1. Under this identiûcation, i∗O(−E) ≅ OPn−1(1). It follows that

dimH0(E , i∗O(mπ∗D − jE)) = dimH0(E , i∗O(− jE)) = dimH0(Pn−1 ,O( j))

= ( j + n − 1
n − 1

).

_us,

h0(mπ∗D − jE) − h0(mπ∗D − ( j + 1)E) ≤ ( j + n − 1
n − 1

).

_en

h0(mπ∗D) − h0(mπ∗D −mE) =
m−1

∑
j=0

h0(mπ∗D − jE) − h0(mπ∗D − ( j + 1)E)

≤
m−1

∑
j=0
( j + n − 1

n − 1
) = (m + n − 1

n
)

≤ mn

n!
+ (n − 1)n

2
mn−1

n!
+ O(mn−2)

≤ mn

n!
+ 1

2
mn−1

(n − 2)! + O(mn−2).

Using _eorem 2.5 to compute h0(mπ∗D), we ûnd that

h0(mπ∗D −mE) ≥ D
n

n!
mn − KX .Dn−1

2(n − 1)!m
n−1 − (m

n

n!
+ 1

2
mn−1

(n − 2)!) + O(mn−2).
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Simplifying, we get

h0(mπ∗D −mE) ≥ D
n − 1
n!

mn − KX .Dn−1 + (n − 1)
2(n − 1)! mn−1 + O(mn−2),

proving the theorem for the case of blowing-up one point.
For the general case,we use the following notation. Let π̃ i ∶X i → X be the blow-up

at Pi , and let є i ∶ X̃ → X i be such that π = π̃ i ○ є i . Let Ẽ i = π̃−1
i (Pi) be the exceptional

divisor of π̃ i and note that E i = є∗i Ẽ i . _en we have the following:

h0(m(π∗D − E i)) = h0(m(є∗i (π̃∗i D) − є∗i Ẽ i)) ≥ h0(m(π̃∗i D − Ẽ i)).

_us, the general case follows from the previously proved one-point case applied to
the blow-ups π̃ i ∶X i → X, i = 1, . . . ,m.

Proof of_eorems 1.5A and 1.5B Since a major part of the proofs of the two the-
orems is the same, we will largely do the proofs together, giving separate arguments
when necessary. By Lemma 2.4, the assumption that D i is nef and Dn

i ≥ 1 for all i
implies that D i is big for each 1 ≤ i ≤ n. We ûrst observe that it suõces to consider
when ⋂n

i=1 D i is nonempty. Indeed, suppose that ⋂n
i=1 D i is empty. _en in the non-

Archimedean case, by_eorem 1.3A there exists a proper Zariski-closed subset Z ⊂ X
such that the image of any non-constant analytic map f ∶k → X ∖ D is contained in
Z. While in the arithmetic case, by _eorem 1.3B there exists a proper Zariski-closed
subset Z ⊂ X such that for any set R ofOk-integral points on X∖⋃n

i=1 D i , the set R∖Z
is ûnite. _erefore, we now assume that ⋂n

i=1 D i is not empty.
Since D1 , . . . ,Dn intersect transversally, their intersection contains only points.

Let ⋂n
i=1 D i = {p1 , . . . , pm}. Let π∶ X̃ → X be the blow-up along p1 , . . . , pm , succes-

sively, and let E j ∶= π−1(p j) be the exceptional divisor for 1 ≤ j ≤ m. For 1 ≤ i ≤ n and
1 ≤ j ≤ m, we let G i j ∶= π∗(D i) − E j = D̃ i + E1 + ⋅ ⋅ ⋅ + E j−1 + E j+1 + ⋅ ⋅ ⋅ + Em , where
D̃ i is the strict transform of D i under π. Clearly, G i j is eòective and by _eorem 3.1,
κ(G i j) > 0. It is clear from the construction and our transversality assumptions that

⋂
1≤i≤n
1≤ j≤m

G i j = ∅ and ⋃
1≤i≤n
1≤ j≤m

G i j =
n
⋃
i=1

π−1(D i).

In the non-Archimedean case, the analyticmap f ∶k → X ∖⋃n
i=1 D i li�s to

f̃ ∶k → X̃ ∖ ⋃
1≤i≤n
1≤ j≤m

G i j

with f = π ○ f̃ . _eorem 1.3A implies that the image of f̃ is contained in a proper
subvariety of X̃, hence the image of f is contained in a proper subvariety of X. If Dn

i >
1 for all i, then G i j is big for all i and j by _eorem 3.1. Now applying _eorem 1.3A
as before yields the desired result.

In the arithmetic case, every point in the intersection ⋂n
i=1 D i = {p1 , ⋅ ⋅ ⋅ , pm} is

k-rational by assumption. _en X̃ and all the G i j are deûned over k, since π∶ X̃ → X
is blown up over k-rational points. Under this construction, any set R of Ok-integral
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points on X ∖⋃n
i=1 D i li�s to a set R̃ of Ok-integral points on

X̃ ∖ ⋃
1≤i≤n
1≤ j≤m

G i j .

By _eorem 1.3B, R̃ is contained in a proper Zariski-closed subset Z̃ of X̃, and hence
R is contained in the proper Zariski-closed subset π(Z̃) of X. If Dn

i > 1 for all i, then
G i j is big for all i and j by _eorem 3.1. Now applying _eorem 1.3B as before yields
the desired result.

Proof of Corollaries 1.6A and 1.6B By _eorem 2.3, for all i,

(−KX .Dn−1
i )n ≥ (−KX)n(Dn

i )n−1 ≥ (−KX)n > (n − 1)n .

Since −KX .Dn−1
i ≥ 0 for all i, this immediately implies that KX .Dn−1

i < 1 − n for
all i.

4 Proof of Theorems 1.9A and 1.9B

We ûrst recall the deûnition and basic properties of rational ruled surfaces (cf. [5,
Chapter V.2] and [7, Chapter IV.1]).

Deûnition 4.1 Let k be a ûeld and let k be the algebraic closure of k. A rational
ruled surface is a surface X (over k), together with a surjectivemorphism π∶X → P1,
such that the ûber Xy is isomorphic to P1 for every point y ∈ P1. We say π∶X → P1 is
a rational ruled surface deûned over k if both X and themorphism π are deûned over
k and X is a rational ruled surface over k.

Proposition 4.2 A rational ruled surface X (over k) is isomorphic to

Xe ∶= P(OP1 ⊕OP1(−e))

over P1 for some nonnegative integer e. Let F denote a ûber on X and let C0 denote a
section of X such that O(C0) ≅ OXe (1).
(a) PicX ≅ Z⊕Z generated by C0 ⊂ X and F with C2

0 = −e, F2 = 0, and C0 ⋅ F = 1.
(b) Let KX be the canonical divisor on X. _en KX ∼ −2C0 − (2 + e)F . In particular,

K2
X = 8.

(c) Let D be a divisor on X equivalent to aC0 + bF in PicX.
(i) If D is an irreducible curve ≁ C0, F, then a, b > 0, b ≥ ae, and D2 > 0.
(ii) D is big if and only if a > 0 and b > 0.
(iii) D is ample if and only if a > 0 and b > ae.

Remark 4.3 When e = 0, X0 is isomorphic to P1 × P1; when e = 1, Xe = X1 is P2

blown up at one point.

Proof of_eorem 1.9A A rational ruled surface X is isomorphic to Xe with e ≥ 0
as described in Proposition 4.2. Let D1 and D2 be big eòective divisors on X. Sup-
pose ûrst that D1 and D2 have irreducible components E1 and E2, respectively, with
E i ≁ C0 , F, for i = 1, 2. _en by Proposition 4.2, E2

i ≥ 1 for i = 1, 2. Let KX be
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the canonical divisor on X. By the Hodge index theorem (or direct calculation),
(KX .E i)2 ≥ K2

XE2
i ≥ K2

X = 8 and KX .E i ≤ −3. _en by _eorem 1.5A, the image
of an analytic map f ∶k → X ∖ (D1 ∪ D2) ⊂ X ∖ (E1 ∪ E2) is contained in a proper
subvariety of X. Suppose now that, say, D1 has every irreducible component linearly
equivalent to either C0 or F. Since D1 is big, by Proposition 4.2, D1 must contain at
least two irreducible components C and F′ with C ∼ C0 and F′ a ûber. Since D2 is
linearly equivalent to a positive integral linear combination of C and F′, there exists
a non-constant function ϕ ∈ k(X)∗ with poles and zeros only in the support of D1
and D2. Consider an analyticmap f ∶k → X ∖ (D1 ∪ D2). _en ϕ ○ f ∶k → A1 ∖ {0}
is analytic, and hence constant. It follows that the image of f is contained in a proper
subvariety of X.
Assume further that D1 and D2 are ample. By (a), the image of a non-constant

analyticmap f ∶k → X ∖ (D1 ∪ D2) is contained in a curve in X. Let C be the Zariski
closure of the image of f in X. If C ∩ (D1 ∪ D2) contains more than one point, then
f must be constant. On the other hand, D i ∩ C /= ∅ for i = 1, 2, since D1 and D2 are
ample. _erefore, we only need to consider when C ∩ D1 = C ∩ D2 = {x} for some
x ∈ X.

Let π∶ X̃ → X be the blow-up of X at x with exceptionaldivisor E. Let C̃ be the strict
transform of C and D̃ i the strict transform of D i , i = 1, 2. _en f ∶k → X ∖ D1 ∪ D2

li�s to f̃ ∶k → X̃∖ D̃1∪ D̃2 with f = π ○ f̃ and the image of f̃ is contained in C̃. Denote
by m = mx(C) the multiplicity of C at x. If (C .D i)x > m = mx(C) ⋅ mx(D i) for
i = 1, 2, then each D̃ i must intersect C̃ at some point on X̃ lying above x. Since D1 and
D2 intersect transversally, ⋂2

i=1 D̃ i ∩ E = ∅. _us, there must be at least two points
on C̃ lying above x. Consequently, f̃ ∶k → X̃ ∖ D̃1 ∪ D̃2 is constant by _eorem 1.2A,
and hence f is also constant. _erefore, it remains to considerwhen (C .D i)x = m for
i = 1 or i = 2.

Without loss of generality, let (C .D1)x = m. Suppose that C is linearly equivalent
to cC0 + dF and D1 is linearly equivalent to aC0 + bF. Proposition 4.2 implies that
the intersection multiplicity is given by

(C .D1)x = C .D1 = ad + c(b − ae).

Assume that C is not linearly equivalent to C0 or F. From Proposition 4.2,we have
that a, b − ae , c, d > 0. By taking F to be the ûber passing through x, we see that
c = C .F ≥ m. _en

m = C .D1 = ad + c(b − ae) > c ≥ m,

a contradiction. _is proves the ûrst statement in (ii). _e second statement follows
from _eorem 1.2A and the observation that if some ûber or some section C ∼ C0
intersects D1 ∪D2 in exactly one point, then since every ûber and every section is iso-
morphic toP1 andA1 admits a non-constant analyticmap, there exists a non-constant
analyticmap from k to X ∖ D1 ∪ D2.
For the last statement, note that any ûber or section must intersect one of D1 or

D2 transversally at x, as any ûber or section is nonsingular and D1 and D2 intersect
transversally. If D i .F ≥ 2 and D i .C0 ≥ 2 for i = 1, 2, then this implies that every ûber
and every section intersects D1 ∪ D2 in more than one point.
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Proof of_eorem 1.9B We will use the same notation as in the proof of _eo-
rem 1.9A and only give arguments that are diòerent from the non-Archimedean case.
We note that section C0 may not be deûned over k (and consequently, we work with
linear equivalence over k below). Let D1 and D2 be big eòective divisors on X. Sup-
pose ûrst that D1 and D2 have irreducible components E1 and E2, respectively, with
E i ≁ C0 , F, for i = 1, 2. We have shown that E2

i ≥ 1 for i = 1, 2 and KX .E i ≤ −3. _en
by _eorem 1.5B, any set R of Ok-integral points on X ∖ (D1 ∪ D2) ⊂ X ∖ (E1 ∪ E2)
is contained in a proper Zariski-closed subset of X. Suppose now that, say, D1 has
every irreducible component linearly equivalent to either C0 or F. Since D1 is big,
by Proposition 4.2, D1 must contain at least two irreducible components C and F′
with C ∼ C0 and F′ a ûber. Since D2 is linearly equivalent to a positive integral linear
combination of C and F′, there exists a non-constant function ϕ ∈ Q(X)∗ with poles
and zeros only in the support of D1 and D2. Since all the irreducible components
of D1 and D2 are deûned over k, we may take ϕ to be deûned over k. _en ϕ(R) is
a set of Ok-integral points on A1 ∖ {0} which is ûnite. Consequently, we can write
ϕ(R) = {α1 , . . . , αm} ⊂ k∖{0}. It follows that the image of R is contained in a proper
subvariety of X given by ⋃m

i=1{p ∈ X ∣ ϕ(p) = α i}.
Assume furthermore that D1 and D2 are ample. Suppose that R is an inûnite set

of Ok-integral points on X ∖ (D1 ∪D2). By (a), one can ûnd a Zariski closed curve C
containing an inûnite subset R′ of R. _enCmust be deûned over k andC∩(D1∪D2)
contains at most two points by Siegel’s theorem. If C∩(D1 ∪D2) contains exactly two
points p, q, then either p and q are k-rational points or they are conjugate to each
other. Since C, D1, and D2 are deûned over k, the second case implies that C ∩ D1 =
C∩D2 = {p, q} and hence {p, q} ⊂ D1∩D2, contradicting our assumption thatD1∩D2
contains only k-rational points. _e remaining case that p and q are both k-rational
points is impossible due to _eorem 1.3B(iii). _erefore, C ∩ (D1 ∪ D2) contains at
most one point. On the other hand, D i ∩C /= ∅ for i = 1, 2, since D1 and D2 are ample.
_erefore, we only need to consider when C ∩ D1 = C ∩ D2 = {x} for some x ∈ X.
Moreover, x is a k-rational point, since it is a point in D1 ∩ D2.

Let π∶ X̃ → X be the blow-up of X at x with exceptional divisor E. Let C̃ be the
strict transformofC and D̃ i the strict transformofD i , i = 1, 2. We note that X̃, C̃, and
D̃ i are all deûned over k, since x is k-rational. _en this inûnite set R′ of Ok-integral
points on X ∖(D1 ∪D2) li�s to an inûnite set R̃′ ofOk-integral points on X̃ ∖ D̃1 ∪ D̃2
with R′ = π(R̃′). Denote by m = mx(C) themultiplicity of C at x. If (C .D i)x > m =
mx(C) ⋅mx(D i) for i = 1, 2, then each D̃ i must intersect C̃ at some point on X̃ lying
above x. Since D1 and D2 intersect transversally, ⋂2

i=1 D̃ i ∩ E = ∅. _us, there must
be at least two points on C̃ lying above x. As before, by Siegel’s theorem, it suõces to
consider when there are exactly two points in C̃ ∩ (D̃1 ∪ D̃2). _e above construction
shows that this can only happen if C̃ ∩ D̃1 = {p}, C̃ ∩ D̃2 = {q}, and p /= q. Since
C̃ and D̃ i , i = 1, 2, are deûned over k, p and q must be k-rational points. However,
_eorem 1.3B(iii) implies that any set ofOk-integral points on C̃ ∖ (D̃1 ∪ D̃2) is ûnite,
which yields a contradiction. _erefore, it remains to consider when (C .D i)x = m
for i = 1 or i = 2. _e same argument as in the proof of_eorem 1.9A shows that C is
linearly equivalent to C0 or F under this assumption. _is proves the ûrst statement
in (ii).
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For the second statement, we continue our argument from above and consider
when C is linearly equivalent to C0 or F. Suppose that C intersects D1 ∪D2 in at least
two points. If there are two k-rational points ormore than two points inC∩{D1∪D2},
then we get a contradiction again by _eorem 1.3B(iii) or by Siegel’s theorem. _e
only case le� is C ∩ {D1 ∪ D2} = {p, q}, and one of the points is not k-rational.
Since C and the D i are deûned over k, this implies that p and q are conjugate over
k and C ∩ D1 = C ∩ D2 = {p, q}. _en {p, q} ⊂ D1 ∩ D2, which contradicts our
assumption that the intersection points of D1 and D2 are k-rational. _erefore, the
cardinality of R must be ûnite. For the converse direction of the second statement,we
ûrst observe that if an irreducible curve C deûned over k intersects D1 ∪D2 in exactly
one point, then this point must be k-rational. Furthermore, if C is linearly equivalent
to F or C0 then C is a ûber or a section which is isomorphic to P1. Indeed, C is k-
isomorphic to P1 since C is deûned over k and C(k) is not empty. Since A1 admits
inûnitely many Ok-integral points, there exists inûnitely many Ok-integral points on
C ∖ (D1 ∪ D2) ⊂ X ∖ (D1 ∪ D2).
For the last statement, the proof is the same as in _eorem 1.9A.
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