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BOŠTJAN KUZMAN

(Received 10 February 2015; accepted 16 March 2015; first published online 13 May 2015)

Abstract

Let X be a simple, connected, p-valent, G-arc-transitive graph, where the subgroup G ≤ Aut(X) is solvable
and p ≥ 3 is a prime. We prove that X is a regular cover over one of the three possible types of graphs
with semi-edges. This enables short proofs of the facts that G is at most 3-arc-transitive on X and that its
edge kernel is trivial. For pentavalent graphs, two further applications are given: all G-basic pentavalent
graphs admitting a solvable arc-transitive group are constructed and an example of a non-Cayley graph
of this kind is presented.

2010 Mathematics subject classification: primary 20B25; secondary 05E18.
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1. Introduction

A large part of the systematic study of symmetric graphs with prime valency is rooted
in the fundamental results of Weiss [12, 13], who applied group theoretical methods
to investigate their local properties. Recently, general results on the order of arc-
stabilisers that extend his work were obtained by Potočnik et al. (see [8, 10, 11]). On
the other hand, Lorimer [3] observed that a normal quotient can reduce a symmetric
graph to a smaller one with similar properties.

In this paper, we use the concept of generalised graphs with semi-edges to prove
the following reduction theorem. (See Section 2 for definitions and Section 3 for the
proof.)

Theorem 1.1. Let X be a simple, connected, p-valent, G-arc-transitive graph, where
the group G ≤ Aut(X) is solvable and p ≥ 3 is a prime. Then there exists a normal
subgroup K ≤ G such that the following hold.

(i) The quotient projection X → X/K is a regular covering projection and the
quotient group G/K ≤ Aut(X/K) is arc-transitive on X/K.
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(ii) The quotient graph X/K is isomorphic to the dipole Dipp, the semistar Semip or
the complete bipartite graph Kp,p.

Moreover, the quotient projection X → X/K is a composition of regular elementary
abelian covering projections.

While this result can be seen as a refinement of the work by Lorimer [3, Theorem 9],
we want to emphasise the point of view that graphs with semi-edges have certain
advantages over the usual graphs when studying symmetry, as they form a class of
graphs that is closed under taking quotients for some equivalence relation. To illustrate
this, we present several applications of Theorem 1.1.

In the corollaries that follow, X is a finite connected simple p-valent graph, p ≥ 3 is
a prime and G ≤ Aut(X) is a solvable group. Cubic graphs admitting a solvable edge-
transitive group were first studied by Malnič et al. [6], where, among other results,
they also proved that the action of a solvable group of automorphisms is at most 3-arc-
transitive. We show that this can be generalised to any prime p ≥ 3.

Corollary 1.2. Suppose that X is (G, s)-arc-transitive. Then s ≤ 3 and s = 3 is possible
only if X is a regular cover of Kp,p.

Next, recall that the edge kernel G[1]
e consists of all automorphisms from G ≤ Aut(X)

that fix the edge e ∈ E(X) and all its adjacent edges. Using Theorem 1.1, an elementary
proof of the following result is easily derived.

Corollary 1.3. Suppose that X is (G, s)-arc-transitive with s ≥ 1. Then the edge kernel
G[1]

e is trivial.

We note that for p ≥ 5, Corollary 1.3 and the first part of Corollary 1.2 are actually
contained in [13, Theorem] under a more general setting with the local group GX(v)

v
primitive and containing a regular abelian normal subgroup. However, under the
assumption that G is solvable, our method yields an elegant proof that is interesting in
its own right.

As another easy application, the following sufficient condition for X to be a Cayley
graph is obtained.

Corollary 1.4. Suppose that X is (G, s)-arc-transitive with s ≥ 1 and X is not
bipartite. Then X is a Cayley graph over some regular subgroup of G and s ≤ 2.

The paper is organised as follows. The proofs of Theorem 1.1 and the corollaries
are given in Section 3. In Section 4, we focus on the case p = 5. Recently, the class of
pentavalent symmetric graphs has been a focus of interest. Results on vertex stabilisers
by Tutte and later Weiss have been extended to a complete classification of all primitive
(5, 2)-amalgams by Morgan [7]. In [2], a simple graph X is called G-basic if it is
G-arc-transitive and G has no normal subgroup K such that the quotient projection
X → X/K is a regular covering projection of connected simple graphs. The G-basic
cubic graphs with a solvable group G were essentially determined in [6] and further
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Table 1. The irreducible Zr
q-voltage assignments ζ on Dip5, which are H-admissible for some maximal

s-arc-transitive solvable group H ≤ Aut(Dip5).

Condition r ζ(x1) ζ(x2) ζ(x3) ζ(x4) s H
q ≡ 1 (mod 5),
ξ5 = 1 ∈ Zq, ξ , 1

1 (1) (1 + ξ) (1 + ξ + ξ2) (1 + ξ + ξ2 + ξ3) 1 C10

q ≡ −1 (mod 5),
η2 + η = 1 ∈ Zq

2
(
1 + η

1

) (
1 + η
1 + η

) (
0
1

) (
−1
0

)
1 D10

q ≡ ±2 (mod 5) 4


1
0
0
0



0
1
0
0



0
0
1
0



0
0
0
1

 2 F20 ×C2

studied by Feng et al. [2]. We obtain a similar classification for the pentavalent case
by constructing elementary abelian covers of quotients from Theorem 1.1.

Theorem 1.5. Let X be a connected, simple, pentavalent graph admitting a solvable
arc-transitive group G ≤ Aut(X). Suppose that X is G-basic. Then one of the following
holds.

(i) X is isomorphic to the complete bipartite graph K5,5.
(ii) X is isomorphic to the Clebsch graph Cl16.
(iii) X is isomorphic to a Zr

q-cover of Dip5, q , 5 a prime, defined by the voltage
assignment ζ : D(Dip5) → Zr

q, where ζ(x0) = 0 and the values of ζ(xi), i =

1, 2, 3, 4, are as shown in Table 1.

The proof is given in Section 4. As a final application, we show that Corollary 1.4
does not generalise to bipartite graphs by employing computational tools to construct
a specific Z8

2-cover of K5,5.

Proposition 1.6. There exists a connected simple pentavalent bipartite graph X on
2560 vertices such that Aut(X) is solvable and arc-transitive and X is not a Cayley
graph.

2. Preliminaries

Let X be a finite, simple, connected graph and let Aut(X) denote its automorphism
group. An s-arc of a graph is a sequence of vertices v0, . . . , vs such that any two
consecutive vertices are adjacent and vi−1 , vi+1. In particular, a 0-arc is just a vertex
and a 1-arc is simply an arc. A graph is called (G, s)-arc-transitive if G is transitive on
the set of s-arcs, and it is locally (G, s)-arc-transitive if, for any vertex v ∈ V(X), the
stabiliser Gv is transitive on the set of s-arcs originating at v. A subgroup G ≤ Aut(X)
is called vertex-, edge- or arc-transitive if the action of G is transitive on the set of
vertices V(X), edges E(X) or arcs A(X), respectively.

For a vertex v ∈ V(X), we denote by N(v) the set of vertices adjacent to v. If G is
(locally) arc-transitive, the vertex stabiliser Gv acts transitively on the neighbourhood
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Figure 1. The 5-dipole graph Dip5 and the 5-semistar graph Semi5.

N(v). The kernel of this action is called the vertex kernel and denoted G[1]
v ; it consists

of all group elements that fix v and all its neighbours pointwise. Similarly, for an edge
e = {u, v} ∈ E(X) we define the edge kernel G[1]

e as the kernel of the action of the edge
stabiliser Ge on the neighbours of u and v, that is, Ge = G[1]

u ∩G[1]
v .

In the rest of this section, we outline some essential definitions regarding graphs
with possible semi-edges, together with basic results about their covering projections.
For further details of these topics, we refer the reader to [4, 5].

A graph is an ordered 4-tuple X = (D,V; ini,−1 ), where V , ∅ and D are disjoint
finite sets of vertices and darts, the mapping ini : D→ V assigns to each dart its initial
vertex and the mapping −1 : D→ D interchanges each dart x with its inverse dart x−1.
The edge set E(X) is then obtained by defining edges as orbits of the inverse mapping
−1 on darts. In this way, the two element orbits {x, x−1}, x , x−1, represent either the
usual edges (also called links) if ini(x) , ini(x−1) or loops if ini(x) = ini(x−1), while a
single element orbit {x = x−1} is called a semi-edge.

It is not difficult to see that the above definition and the usual definition of a graph
are equivalent for graphs X = (V, E) without semi-edges: letting D = {(u, v) | u ∼ v;
uv ∈ V}, we define (u, v)−1 = (v, u) and ini(u, v) = u to obtain X = (V,D; ini,−1 ). A
graph is called simple if it has no semi-edges, loops or parallel edges (that is, different
edges with the same initial vertices).

Example 2.1. A p-dipole Dipp is the graph with two vertices, connected by p parallel
edges, that is, V = {u, v}, D = {x±1

1 , . . . , x±1
p }, x−1

i , xi, ini(xi) = u and ini(x−1
i ) = v for

all i. A p-semistar Semip is the graph with a single vertex and p semi-edges; hence,
D = {y1, . . . , yp}, where y−1

i = yi and ini(yi) = v for all i. See Figure 1 for the case p = 5.

All the usual notions are naturally extended to graphs with semi-edges. The degree
or valency of a vertex is the size of its dart neighbourhood, which we define here
as ND(v) = {x ∈ D(X) | ini(x) = v}. An s-arc is a sequence of vertices and darts
v0, x0, . . . , xs−1, vs such that ini(xk) = vk and ini(x−1

k ) = vk+1, while xk+1 , x−1
k for all

relevant k. In particular, 1-arcs can be identified with darts; hence, arc-transitive is the
same as dart-transitive for graphs without semi-edges.

A graph homomorphism f : X → X′ is a function that maps V(X) to V(X′), and
D(X) to D(X′), such that it commutes with ini and −1. For any subgroup G ≤ Aut(X),
the natural quotient graph X/G is defined by taking vertex orbits Gv as vertices
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of X/G, dart orbits Gx as darts of X/G and by defining ini(Gx) = G(ini(x)) and
(Gx)−1 = G(x−1).

A graph epimorphism f : X̃ → X is called a covering projection if it is locally
bijective, that is, the neighbourhood ND(ũ) of ũ ∈ V(X̃) is mapped bijectively to the
neighbourhood ND(u) of u = f ũ ∈ V(X). The graph X̃ is called a covering graph
of the base graph X, and the set of pre-images f −1(v) ⊆ V(X̃) and f −1(x) ⊆ D(X̃)
are called a vertex fibre and a dart fibre, respectively. The subgroup K ≤ Aut(X̃) of
all automorphisms fixing each vertex fibre and dart fibre setwise is called the group
of covering transformations, and X̃ is called a K-cover. If the covering graph X̃ is
connected, the action of K is semiregular on each fibre. If it is also transitive and
hence regular, we call X̃ a regular cover and f a regular covering projection. Note
that in this case, the K-orbits of V(X̃) coincide with vertex fibres, so the quotient graph
X̃/K is isomorphic to X.

Alternatively, regular covers are derived combinatorially by assigning voltages to
base graphs. For K an abstract group, a function ζ : D(X)→ K with property ζ(x−1) =

ζ(x)−1 is called a K-voltage assignment; the pair (X, ζ) is called a voltage graph and
the values of ζ are voltages. The derived graph X ×ζ K is defined by taking the
vertex set V(X) × K, dart set D(X) × K, ini(x,g) = (ini(x),g) and (x,g)−1 = (x−1,gζ(x)).
Note that with our definition of graphs, the voltages on semi-edges must necessarily
be involutions. The derived graph is connected whenever Im ζ generates K, and
every regular K-covering projection f : X̃ → X is in fact equivalent to some voltage
projection fζ : X ×ζ K → X (where ζ can be further assumed to be trivial on the darts
of an arbitrarily chosen spanning tree of X).

An automorphism α ∈ Aut(X) lifts along a covering projection f : X̃ → X if there
exists an automorphism α̃ ∈ Aut(X̃) such that f α̃ = α f . The subgroup G ≤ Aut(X) lifts
if every α ∈ G lifts, in which case we say that f is G-admissible. Similarly, we say
that α̃ ∈ Aut(X̃) or G̃ ≤ Aut(X̃) projects along f . Note that G̃ projects if and only if the
vertex fibres are G̃-invariant, and that G̃ is s-arc-transitive if and only if G is.

The problem of characterising all voltage assignments ζ such that α ∈ Aut(X) lifts
along a given voltage projection fζ : X ×ζ K → X, where K is elementary abelian,
was extensively studied in [5]. We summarise the results as follows. Consider the
cycle space of X as a β-dimensional vector space over some prime field Zq, where
β = |E(X)| − |V(X)| + 1 is the Betti number of the graph. A basis B = {x1, . . . , xβ}
of the cycle space is determined by choosing a single dart from each edge of X \ T ,
where T is a spanning tree of X. Then every α ∈ Aut(X) induces an invertible linear
transformation, which we represent in this basis by a matrix α# ∈ Z

β×β
q .

Theorem 2.2 [5, Theorem 6.2 and Corollary 6.3]. Let X be a connected graph and
let α ∈ Aut(X). Fixing a spanning tree T and a basis B = {x1, . . . , xβ} ⊆ D(X \ T )
yields a matrix α# ∈ Z

β×β
q . Suppose that ζ : D(X)→ Zd

q is a voltage assignment, which
is trivial on D(T ), and denote by Mζ ∈ Z

d×β
q the matrix with columns ζ(xi). Then

α lifts along the voltage projection fζ : X ×ζ Zd
q → X if and only if the rows of Mζ

form a basis of an (α#)t-invariant d-dimensional subspace Vζ of Zβq. If ζ′ is another
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voltage assignment satisfying these conditions, then fζ′ is equivalent to fζ if and only if
Vζ = Vζ′ . Moreover, two projections fζ and fζ′ (and hence the corresponding covering
graphs) are isomorphic if and only if there exists an automorphism ϕ ∈ Aut(X) such
that the matrix (ϕ#)t maps Vζ onto Vζ′ .

For G a group and an inverse-closed subset S = S −1 ⊆ G \ {1} that generates G, the
Cayley graph Cay(G, S ) is defined by the vertex set V(X) = G, dart set D(X) = G × S
and functions ini(g, s) = g and (g, s)−1 = (gs, s−1). Again, this definition coincides
with the usual one for a graph without semi-edges, where the edges are given by the
adjacency relation g ∼ sg for g ∈ G, s ∈ S . Moreover, every Cayley graph Cay(G, S )
is a regular G-cover of a single vertex graph with dart set D(X) = S and, vice versa,
every regular cover of a single vertex graph is a Cayley graph. Also, the Sabidussi
theorem holds: a graph X is isomorphic to some Cayley graph Cay(G, S ) if and only
if Aut(X) has a vertex-regular subgroup isomorphic to G.

3. Proof of main theorem and corollaries

Proof of Theorem 1.1. Temporarily, we denote a minimal nontrivial normal subgroup
in G by K. Since G is solvable, K is elementary abelian and hence K � Zr

q for some
prime q and integer r. We study the quotient graphs X/K according as the number m
of K-orbits on V(X) is 1, 2 or at least 3.

Case 1: m ≥ 3. Since K is normal and G is arc-transitive, the K-orbits of vertices are
equal in size and are also blocks of imprimitivity for the action of G. Hence, no two
vertices in the same K-orbit are adjacent. This implies that all nontrivial intersections
of K-orbits with the neighbourhood N(v) of some vertex v are of the same size. As p
is prime, it follows that each K-orbit contains at most one element from N(v). Hence,
X/K is a p-valent graph and there are at least p + 1 orbits. Moreover, StabK(v) = 1.
Indeed, if av = v for some a ∈ K and u ∈ N(v), then au ∈ N(v). But u and au are in the
same K-orbit (of size 1); hence, au = u and therefore a = 1 by connectedness. Thus,
X→ X/K is a regular covering projection of X onto a p-valent simple graph with G/K
being a solvable and arc-transitive group of automorphisms of X/K. By induction, the
new graph is further reduced until at most two vertex orbits remain.

Case 2: m = 2. As in the previous case, no two vertices in the same K-orbit are
adjacent and hence X is bipartite. Note that since K is abelian, an element of K fixing
one vertex fixes its full K-orbit: av = v for a ∈ K implies au = a(kv) = kav = kv = u for
all u = kv ∈ Kv. Suppose first that StabK(v) acts transitively on N(v). If u ∈ N(v) and
w ∼ u, then N(w) = N(v) since any element fixing v fixes w as well. By connectedness,
we have X � Kp,p. Now suppose that StabK(v) is not transitive on N(v). Then any
element a ∈ StabK(v) has at least two orbits on N(v). Denote the size of the minimal
orbit of a by s. Then as fixes the elements of this orbit. Since K is abelian, as fixes the
full K-orbit and hence as = 1. But then all orbits of a have equal size s, so s divides
p and hence s = 1. Therefore, StabK(v) is trivial and X → X/K is a regular covering
projection onto a p-dipole.
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Case 3: m = 1. Since K is transitive and also abelian, its action is regular. Hence,
X → X/K is a regular covering projection onto a p-valent graph on a single vertex
(observe that X is a Cayley graph in this case). Since X/K is arc-transitive and p is an
odd prime, X/K has no loops; therefore, it is isomorphic to a p-semistar. As K � Zr

q,
this also implies q = 2 and r ≤ p, since the voltages on semi-edges are involutions and
also generate K in this case.

Thus, a sequence of elementary abelian covering projections is obtained in each
case. Their composition is a regular covering projection. We may denote its group of
covering transformations by K. �

Proof of Corollary 1.2. By Theorem 1.1, X/K is isomorphic to one of the three
possible graphs. If X/K � Kp,p, which is 3-arc-transitive, then G/K and hence G is
at most 3-arc-transitive, with s = 3 possibly attained.

If X/K � Dipp, we may assume that there is a sequence of regular covering
projections X→ X′→ Dipp such that X′ is a simple graph, X′→ Dipp is an elementary
abelian covering projection and the projection G′ of G along X→ X′ is the lift of G/K
along X′→ X/K. Moreover, G′ is s-arc-transitive whenever G is. Hence, X′ is derived
by assigning voltages ζ(xi) ∈ Zr

q to darts x0, . . . , xp−1 of Dipp. We may assume that
ζ(x0) = 0 and 〈ζ(xi), i = 1, . . . , p − 1〉 generate Zr

q. As X′ is simple, we may also assume
there are two voltages, say ζ(x1) and ζ(x2), such that 〈ζ(x1)〉 , 〈ζ(x2)〉. Hence, the 3-
walks x0x1x2 and x0x1x0 in Dipp lift to 3-arcs in X′. But if G′ were 3-arc-transitive on
X′ these 3-arcs would project to isomorphic walks, which is a contradiction. Hence,
s ≤ 2.

In similar fashion, we see that if X/K � Semip, we have s ≤ 2. �

Corollary 1.3 is obtained from Theorem 1.1 by observing that the edge kernel is
preserved by regular quotient projection, as described in Proposition 3.1 below. Note
that for graphs with semi-edges, the vertex kernel G[1]

v is defined as the subgroup of
elements of G that fix all the darts x ∈ D(X) with ini(x) = v, and the edge kernel G[1]

e as
the intersection G[1]

v ∩G[1]
u , where e = {x, x−1}, v = ini(x) and u = ini(x−1). For graphs

without semi-edges, these definitions coincide with the usual ones.

Proposition 3.1. Let X be a graph and G ≤ Aut(X). Suppose that the normal subgroup
K /G is semiregular on V(X), whence the quotient projection X → X/K is a regular
covering projection with G/K ≤ Aut(X/K). Then the vertex and edge kernels of G are
preserved by the projection, that is, G[1]

v � (G/K)[1]
Kv and G[1]

e � (G/K)[1]
Ke.

Proof. Fix v ∈ V(X). For g ∈G[1]
v , we have gx = x for all darts x with ini(x) = v. Denote

the induced automorphism by gK ∈ Aut(X/K). It follows that (gK)(Kx) = Kgx = Kx,
so gK ∈ (G/K)[1]

Kv. Since K is semiregular, the induced mapping G[1]
v → (G/K)[1]

Kv is
also one-to-one, as gK = hK implies gh−1 = 1 ∈ K ∩ G[1]

v . On the other hand, let
gK ∈ (G/K)[1]

Kv for some g ∈G. For any dart x with ini(x) = v, we have (gK)(Kx) = Kx,
implying that (gk)x = x for some k ∈ K. Thus, gk fixes v. If another dart y with
ini(y) = v is fixed by gk′ for some k′, then (gk)−1(gk′) = k−1k′ ∈ K fixes v and so
k = k′ by semiregularity. Hence, gk ∈ G[1]

v projects to gK, so the mapping is onto.
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The isomorphism G[1]
e � (G/K)[1]

Ke then follows directly from the definition of G[1]
e as

the intersection of two (possibly equal) vertex kernels. �

Proof of Corollary 1.3. By Theorem 1.1, X/K is isomorphic to a p-dipole, a p-
semistar or a Kp,p. Since any subgroup of Aut(X/K) has trivial edge kernel in these
three cases, by Proposition 3.1 the same is true for X and G. �

Proof of Corollary 1.4. By Theorem 1.1, if X is not bipartite, then it is a regular
cover over a semistar and hence a Cayley graph over some regular subgroup of G. By
the proof of Corollary 1.2, s ≤ 2. �

Remark 3.2. Although several regular covering projections Kp,p → Dipp exist, a
subgroup G ≤ Aut(Kp,p) only projects to Dipp by taking a quotient relative to its
semiregular normal subgroup of order p. Similarly, a subgroup of Aut(Dipp) only
projects to Semip by taking a quotient relative to its semiregular normal subgroup of
order two. This is not possible for all choices of G. As an example, all conjugacy
classes of arc-transitive and solvable groups G ≤ Aut(X) of the three base graphs for
the case p = 5 are displayed in Table 2 (computed by Magma [1]). The good choices
for G ≤ Aut(K5,5) to project to Dip5 are 1, 2, 3 and 7 (see the last column), but only
in cases 1 and 7 do the respective groups project further to Semi5. Hence, all three
cases of Theorem 1.1 along with the information on the respective group action are
necessary for a complete reconstruction of all possible graphs. We investigate this
phenomenon in further detail for pentavalent graphs in Section 4.

4. Pentavalent case

Proof of Theorem 1.5. By Theorem 1.1, all p-valent graphs admitting a solvable arc-
transitive group are obtained by a sequence of elementary abelian covers of one of
the three small graphs Y . Moreover, the respective covering projections X → Y must
admit a lift of some solvable arc-transitive group H of the base graph Y . Theorem 2.2
describes a general method for characterising all voltage assignments ζ with values in
the elementary abelian group Zr

q such that an automorphism α ∈ Aut(Y) lifts along the
derived covering projection f : Y ×ζ Zr

q → Y (see also [5]).
We construct the G-basic simple graphs X by applying this method to pairs (Y,H),

where Y is isomorphic to Dip5, Semi5 or K5,5, and H ≤ Aut(Y) is a solvable arc-
transitive group. As the graph K5,5 is simple, part (i) of Theorem 1.5 is obvious.

Case Y = Semi5. In order to obtain a connected simple covering graph X, different
voltages of order two must be assigned to each semi-edge; hence, the voltage group is
Zr

2 for some r ≤ 5. Moreover, some automorphism ρ ∈ Aut(Y) of order five must lift
along the respective covering projection in order to obtain an arc-transitive cover. We
may assume that ρ = (12345) is a cyclic rotation of semi-edges and the corresponding
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Table 2. The conjugacy classes of all s-arc-transitive and solvable subgroups G ≤ Aut(X), where X is
isomorphic to K5,5, Dip5 or Semi5, together with their respective vertex-, edge- and arc-stabilisers that
constitute the primitive (5, 2)-amalgams (see [7]).1

G ≤ Aut(K5,5) ∃H ≤ G ∃C5 /G
# |G| Gv Ge Ga s vert. reg. semireg.
1 50 C5 C2 1 1 Yes Yes
2 100 D5 C2

2 C2 1 Yes Yes
3 100 D5 C4 C2 1 No Yes
4 200 D10, D4 C2

2 1 Yes No
5 200 F20 Q C4 2 No No
6 200 F20 D4 C4 2 Yes No
7 200 F20 C2 ×C4 C4 2 Yes Yes
8 200 F20, C8 C4 2 No No
9 400 C2 × F20 N16 C2 ×C4 2 Yes No

10 400 C2 × F20 M16 C2 ×C4 2 No No
11 800 C4 × F20 C4 oC2 C4 ×C4 3 Yes No

G ≤ Aut(Dip5) ∃H ≤ G ∃C2 /G
# G Gv Ge Ga s vert. reg. semireg.
1 C10 C5 C2 1 1 Yes Yes
2 D5 C5 C2 1 1 Yes No
3 F20 D5 C4 C2 1 No No
4 D10 D5 C2

2 C2 1 Yes Yes
5 F20 ×C2 F20 C2 ×C4 C4 2 Yes Yes

G ≤ Aut(Semi5) ∃H ≤ G
# G Gv Ge Ga s vert. reg.
1 C5 C5 1 1 1 Yes
2 D5 D5 C2 1 1 Yes
3 F20 F20 C4 C2 1 Yes

1Here v, e, a denote a vertex, edge or arc of graph X, respectively; Cn is the cyclic group of order n, Dn

the dihedral group of order 2n, F20 � AGL(1, 5) the Frobenius group of order 20 and M16 and N16 the
subgroups of order 16 in Sym(8) generated by 〈(12345678), (26)(48)〉 and 〈(1234)(5678), (57)(68),
(15)(26)(37)(38)〉, respectively.

matrix is

C = (ρ#)t =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 ∈ Z
5×5
2 .

By Theorem 2.2, the 〈ρ〉-admissible voltage assignments on Y are obtained from C-
invariant subspaces, which, in this case, are exactly the binary cyclic codes of length
five. The minimal invariant subspaces correspond to the two irreducible divisors
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λ4 + λ3 + λ2 + λ + 1 and λ + 1 of the polynomial λ5 + 1 ∈ Z2[λ]. In the first case,
the corresponding one-dimensional subspace 〈(1, 1, 1, 1, 1)t〉 yields a nonsimple graph
Dip5, as voltage 1 is assigned to each semi-edge. In the second case, the polynomial
λ + 1 corresponds to the invariant subspace determined by the rowspace of the matrix

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 .
The columns of this matrix then correspond to voltages on semi-edges. The derived
graph obtained is the Cayley graph

Cay(Z4
2, {(1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)}).

It is easy to check by computer that it is isomorphic to the Clebsch graph of order
16, which is defined by adding edges to antipodal pairs of vertices in the hypercube
Q4 (see [14]). Moreover, the maximal solvable arc-transitive subgroup 〈ρ, τ〉 � F20

of Aut(Y), where τ = (1254), also lifts along this covering projection, as the above
subspace is also invariant for the respective permutation matrix

T = (τ#)t =


0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0

 .
Hence, by lifting copies of C5, D5 or F20 in Aut(Semi5), the Clebsch graph admits
three conjugacy classes of solvable arc-transitive groups of orders 80, 160 and 320, all
of them 1-arc-transitive.

Case Y = Dip5. We remark that the general construction of all edge-transitive
elementary abelian covers of Dipp is described in [5]. Our construction here follows
this general case and sharpens the results. Let G ≤ Aut(Y) be arc-transitive and
solvable. By inspecting the groups in Table 2, we may assume that G contains
a cyclic permutation ν = (x0x1x2x3x4)(x−1

0 x−1
1 x−1

2 x−1
3 x−1

4 ), where xi ∈ D(Y) are darts
(Figure 1). Let B = {b1, b2, b3, b4} be the homology basis of Dip5, where bi = xix−1

0 are
the fundamental cycles. In this basis, ν corresponds to the matrix

V = (ν#)t =


−1 1 0 0
−1 0 1 0
−1 0 0 1
−1 0 0 0

 ∈ Z4×4
q

and the invariant subspaces of its transpose matrix determine the G-admissible covers.
These, however, depend on the factorisation of its minimal polynomial mV (λ) =
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λ4 + λ3 + λ2 + λ + 1 over Zq, which is

m(λ) =


(λ − 1)4, q = 5,
(λ − ξ)(λ − ξ2)(λ − ξ3)(λ − ξ4), q ≡ 1 (mod 5),
(λ2 − η1λ + 1)(λ2 − η2λ + 1), q ≡ −1 (mod 5),
λ4 + λ3 + λ2 + λ + 1, q ≡ ±2 (mod 5).

Here ξ ∈ Zq is any primitive fifth root of unity, q ≡ 1 (mod 5), and η1,2 are the two roots
of the equation η2 + η − 1 = 0; hence, η1,2 = 1

2 (−1 ±
√

5) ∈ Zq, q ≡ −1 (mod 5).
For q = 5, the Jordan canonical form of V consists of a single cell, and it is easy to

compute that the only V-invariant subspaces are Ker(V − I) j = 〈v1, . . . , v j〉, where vk is

the kth column of the matrix
[

1 0 0 0
2 1 0 0
3 3 1 0
4 1 4 1

]
∈ Z4×4

5 . The minimal V-invariant subspace is the

eigenspace 〈(1, 2, 3, 4)t〉. However, the corresponding covering graph obtained by the
voltage assignment ζ(xi) = i ∈ Z5 is K5,5, which already appears in our list.

For q ≡ 1 (mod 5), the minimal V-invariant subspaces are one dimensional of the
form

Ker(V − ξI) = Ker


−1 − ξ 1 0 0
−1 −ξ 1 0
−1 0 −ξ 1
−1 0 0 −ξ

 = 〈(1, 1 + ξ, 1 + ξ + ξ2, 1 + ξ + ξ2 + ξ3)t〉.

Note that if ξ, ξ′ are two different nontrivial roots of ξ5 − 1, the respective covering
projections give isomorphic covers. To see this, suppose without loss of generality that
ξ′ = ξ2. The automorphism ψ ∈ Aut(Dip5), defined by ψ(xi) = x3i (mod 5), corresponds
in basis B to the matrix

Ψ = (ψ#)t =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ∈ Z4×4
q ,

and a short computation then shows that Ψ(Ker(V − ξI)) = Ker(V − ξ2I), which, by
Theorem 2.2, implies that the respective covers are isomorphic.

Similarly, for q ≡ −1 (mod 5), the minimal V-invariant subspaces are two
dimensional of the form

Ker(V2 − ηV + I) = Ker


η + 1 −η − 1 1 0
η 0 −η 1
η −1 1 −η

1 + η −1 0 1


= 〈(1 + η, 1 + η, 0,−1)t, (1, 1 + η, 1, 0)t〉.

Again we can easily see that the two solutions of η2 + η = 1 in Zq yield isomorphic
covers, as Ψ2 maps the first subspace onto the second one.
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In the remaining case q ≡ ±2 (mod 5), the full space Ker(V4 + V3 + V2 + V + I) =

(Zq)4×1 is the only V-invariant subspace.
The bases of minimal V-invariant subspaces determine the voltage assignments in

Table 1. By construction, all of these admit a lift of an edge-transitive group 〈ν〉.
Now observe that the involution σ = (x0x−1

0 )(x1x−1
1 )(x2x−1

2 )(x3x−1
3 )(x4x−1

4 ) ∈ Aut(Y)
corresponds to minus the identity matrix S = −I. Therefore, all V-invariant subspaces
are also 〈V, S 〉-invariant and the respective covering projections are arc-transitive, as
〈ν, σ〉 � C10 always lifts.

In order to determine the maximal arc-transitive solvable subgroup of Aut(Y)
that lifts, we further consider the five conjugacy classes of Table 2. Class 3 is
represented by the group 〈ν, π〉 � F20, where π = (x0x−1

1 x3x−1
2 )(x1x−1

3 x2x−1
0 )(x4x−1

4 ), and
the respective matrix is

P = (π#)t =


1 0 −1 0
1 0 0 0
1 −1 0 0
1 0 0 −1

 ∈ Z4×4
q .

An easy computation now shows that among the above V-invariant subspaces for q , 5,
only the full space Z4

q is P-invariant.
Similarly, class 2 is represented by the group 〈ν, ω〉 � D5, where

ω = (x0x−1
0 )(x1x−1

4 )(x2x1
3)(x3x−1

2 )(x4x−1
1 ).

The respective matrix is

W = (ω#)t =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 ∈ Z4×4
q .

In this case, the two-dimensional subspaces of the case q ≡ −1 (mod 5) are W-invariant,
while the one-dimensional subspaces of the case q ≡ 1 (mod 5) are not.

This shows that the homological Z4
q-cover which is minimal for q ≡ ±2 (mod 5)

admits the lift of a maximal solvable arc-transitive subgroup F20 × C2 of Dip5, the
two-dimensional covers of case q ≡ −1 (mod 5) admit the lift of 〈ν, σ, ω〉 � D10, while
C10 is the maximal solvable arc-transitive group that lifts in the remaining case. �

Remark 4.1. For q = 2, the respective Z4
2-cover of Dip5 of Theorem 1.5 is the 5-cube

Q5. Observe also that the Zr
q-covers of Dip5 in Table 1 are also Cayley graphs, since, by

Table 2, the maximal groups H = C10, D10 and F20 ×C2 ≤ Aut(Dip5) that lift along the
respective covering projection contain a vertex-regular subgroup. More information on
the pairs (X,G) of Theorem 1.5 could be obtained by further inspecting the lifts of the
respective groups H. For instance, if X = Cl16, then G is a group of order 80, 160
or 320, obtained by lifting a copy of C5, D5 or F20 along the respective Z4

2-covering
projection to Semi5 and so on.
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Figure 2. A representative graph of class 8 in Table 2.

Table 3. Voltage assignment for the graph in Figure 2.

ai j a27 a37 a47 a57 a28 a38 a48 a58 a29 a39 a49 a59 a2 10 a3 10 a4 10 a5 10

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0

ζ(ai j) 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

Proof of Proposition 1.6. The minimal non-Cayley pentavalent graph admitting a
solvable automorphism group is constructed as a Z8

2-cover over K5,5 in the following
manner. By a well-known theorem of Sabidussi, a graph is a Cayley graph if and only
if it admits a vertex-regular subgroup of automorphisms. Hence, a necessary condition
for a derived covering graph X ×ζ K admitting a lift of some group G ≤ Aut(X) to be
non-Cayley is that G contains no vertex-regular subgroup. For the graph X = K5,5, a
complete list of (conjugacy classes of) subgroups G ≤ Aut(X) that are solvable and
arc-transitive is given in Table 2.

As the table shows, there are four conjugacy classes of groups with no vertex-
regular subgroups (classes 3, 5, 8 and 10). A representative of class 8 is the group
H = 〈(1, 7, 3, 10, 4, 6, 5, 8)(2, 9), (6, 7, 8, 9, 10)〉 of order 200, where group generators
are described as permutations of the vertices (see Figure 2). Using computational
tools, we can construct all H-admissible elementary abelian covering projections up
to a certain size. In particular, the Magma routines, described in [9], were used for
efficient computation of solvable covers. One of these yields the graph in Figure 2,
described by the following voltage function ζ : A(X)→ Z8

2, where ζ(ai j) is the value
on arc ai j from vertex i to vertex j for arcs in Table 3 or is trivial otherwise.

The full automorphism group of this derived graph contains no vertex-regular
subgroup and hence the graph is not a Cayley graph, although it admits a solvable
and arc-transitive subgroup by construction (in fact, the lifted group is the same as the
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full automorphism group). A similar inspection of other subgroups in Aut(K5,5) and
Aut(Dip5) shows that this graph of order 2560 is the smallest example of its kind. �
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[4] A. Malnič, ‘Action graphs and coverings’, Discrete Math. 244 (2002), 299–322.
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