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Abstract

The study of species association is of great interest in ecology due to its role in understanding
key issues such as patterns of habitat use by animals, species coexistence, biotic interactions, and
in general factors affecting community structure and assembly. There are many indices that
ecologists commonly use, all based on the observed frequencies of organism occurrences, to
evaluate the association between a pair of species. However, few of these indices correspond to
proper statistical measures of association, and the inferential aspects of their analysis are often
overlooked. In this paper, we propose a Bayesian approach based on a simple multinomial-
Dirichlet structure to provide a comprehensive inferential framework for any set of association
indices. Our approach provides a full statistical analysis for any association index of interest,
free of special requirements on the sample size. We illustrate our procedure with a camera-
trapping real-dataset, but the analysis of any other dataset of the same type can be readily
produced using the R package basa that accompanies this paper.

Introduction

The question of whether two species tend to occur together, or finding one of them precludes the
presence of the other, has occupied the attention of ecologists since the beginning of the past
century (Dice 1945). The study of species association patterns constitutes a central issue in
ecology due to its role in understanding how species interact and how these interactions are
influenced by changes in biotic and abiotic factors, ultimately shaping community character-
istics (Lavender et al. 2019). Because of this interest, a variety of approaches have been proposed
to analyze the relevant information, each usually introducing a different numerical measure of
association (Calvert 1922, Dice 1945, Forbes 1907, Michael 1920, Pielou 1967).

Hubálek (1982) reviewed 43 association coefficients and concluded that only 6 of them were
admissible according to a set of properties that he determined. Legendre and Legendre (1998)
reviewed several measures of association and proposed a classification of them (i.e., similarity,
distance, and dependence), distinguishing between two types of input information: abundance
and presence–absence of the species. Their list included several well-known statistical measures
of dependence such as the Pearson, Kendall, and Spearman correlation coefficients. For each of
these cases, they discussed the corresponding inferential procedure.

De Cáceres et al. (2008) used two association measures – the Pearson correlation coefficient
and the Ochiai index – as fidelity measures to identify diagnostic species of vegetation
communities. These authors showed that, under certain conditions, theOchiai index can be seen
as an asymptotic approximation to the Pearson coefficient. Moreover, they noted that only for
the Pearson coefficient there exists an associated test of independence (which in this context is
known as a non-faithfulness test). They suggested that, instead of a test of hypothesis, a
confidence interval could be used to evaluate the strength of the fidelity measured by an index. In
their paper, approximate intervals were obtained using bootstrap techniques. In a related study,
De Cáceres and Legendre (2009) dealt with the problem of assessing the association between
species and groups of sites. They addressed the problem of selecting an appropriate association
index and emphasized the importance of inferential analysis in this setting. To determine if
some species are associated with site groups, they proposed a significance test for different
indices (e.g., the Pearson coefficient and the Indicator Value index). Due to the lack of suitable
distributional theory, the authors proposed the use of permutation tests; they recognized,
however, that in some instances this approach can lead to poor results. As in the previous case,
they relied on bootstrap techniques to produce confidence intervals.

In practice, even though association measures play an important role in modern ecological
research, there do not seem to be clear guidelines as to which index is more appropriate for a
given study. Furthermore, once an index is chosen, little attention is paid to the range of values it
could take if computed from similar data, not tomention the plausible values of other indices for
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the same data. From a statistical point of view, an assessment of this
uncertainty must be provided, and a common suggestion is to
compute interval estimates. For traditional frequentist methods, it
is often the case that the distributional theory – exact or asymptotic –
necessary to obtain confidence intervals is not readily available.
When comparing two indices, the use of joint confidence regions is
even less common.

Hereafter, we will refer to the above-mentioned coefficients,
measures, and indices simply as “indices” and will work only in
the setting of presence–absence information. Also, we will use
“association” instead of “joint occurrence,” “co-occurrence,”
“coincidence,” or any other similar term. Regarding the analysis,
we will make use of Bayesian statistical theory and show that a
probability distribution can always be obtained that adequately
describes the available information concerning a population
association index. This so-called posterior distribution combines
the observed data with a prior distribution that encapsulates the
knowledge available before the study is conducted. The prior
distribution could be used, for example, to suggest independence in
a statistical sense or lack of association according to a specific
index. The Bayesian analysis produces inferences – in particular,
interval estimations – that do not require analytical approxima-
tions. Moreover, this approach allows us to deal simultaneously
with several indices, and thus to gain insights into their joint
behavior. Admittedly, in recent years, different options to analyze
patterns of association of pairs of species have emerged, most of
them associated with the increased suite of packages of the open-
source program R. Some of them are mainly focused on providing
new tools for assessing species association patterns such as the
package cooccur (Griffith et al. 2016), whereas others provide
miscellaneous functions for analyzing species association and
niche overlap, such as spaa (Zhang and Ma 2014). However, these
packages rely on the use of frequentist statistical methods – with
the limitations mentioned above – and do not always offer the
possibility to calculate some of the most common indices. The
purpose of this paper is to introduce a statistical procedure that can
be used to obtain probability intervals for any association index.
This procedure allows the researcher to produce other inferences
regarding the index of interest, such as pointwise estimates and
tests of hypotheses.

The paper is organized as follows. In the next section, we first
discuss the structure of the data and describe a Bayesian approach
to the analysis of the multinomial model. We also discuss the
difference between ecological measures of association and
statistical measures of stochastic dependence. We close the section
by applying these ideas to produce inferences on association
indices. In “Association indices,” we illustrate our method in the
context of the analysis of a real dataset concerning camera-trap
data of two species inhabiting theMontes Azules Biosphere Reserve
in Southern Mexico. In “Discussion,” we discuss these results and
introduce a complementary analysis. Finally, “Concluding
remarks” contains some concluding remarks.

Methodology

Data structure

In a general setting, if a number r of species is considered and
presence–absence observations are collected at c different sites, the
information can be organized in a r x c table which is a particular
instance of the ecological data matrix as discussed in Legendre
and Legendre (1998, Chapter 7). Although some authors have

addressed the study of association when more than two species are
simultaneously considered (see Pielou 1972, for example), most of
the association indices are designed to measure the association
between two species. Hence, we will concentrate on the case
r ¼ 2, where only two species, E1 and E2, are studied. In this case,
if a sample of N observations (presence–absence) is available at a
selected collection of sites, the data are usually summarized in a 2 x
2 array as shown in Table 1.

In this table, the cells contain the frequencies of the only four
possible cases, where: both species were observed (n11Þ; species E1
was observed but species E2 was absent (n10); species E1 was absent
but the species E2 was observed (n01); and finally, when neither of
the species was observed (n00); here, n11 þ n10 þ n01 þ n00 ¼ N .
In the margins of the table are also reported: n1: ¼ n11 þ n10, the
total number of cases where E1 was present; n0: ¼ n01 þ n00,
the total number of cases where E1 was absent, and, in a similar
fashion, n: 1 and n: 0, the total number of cases where E2 was
present and absent, respectively. An equivalent summary is
obtained if the observed frequencies are transformed into
proportions, as shown in Table 2.

Here, we have pij ¼ nij=N for i; j ¼ 0; 1; the observed propor-
tions in the sample for the four possible cases. In any case,
these sample data are used to describe the population they
come from. For this purpose, statistical methods assume that
n11; n10; n01; n00ð Þ is generated by a probability model. To this
end, each observation is recorded as a vector of dimension 4.
If the observation is allocated to the cell i; jð Þ of Table 1, the
associated vector X has three entries equal to zero, and one entry
equal to one where the only nonzero entry corresponds to the
position 4� 2iþ j. Thus, the observed data are a collection of
vectors X1; : : : ; XN . These vectors are usually assumed to be
randomly and independently sampled from the same popula-
tion, so the statistic X ¼ ΣN

k¼1Xk can also be written as
X ¼ n11; n10; n10; n11ð Þ and follows a multinomial distribution
with parameters � and N , where � ¼ �11; �10; �01; �00ð Þ with
�ij > 0, i; j ¼ 0; 1ð Þ and �11 þ �10 þ �01 þ �11 ¼ 1.

Thus:

p xj�ð Þ ¼ N!
Π1

i¼ 0Π
1
j¼ 0 nij!

� Π1
i¼ 0Π

1
j¼ 0�

nij
ij

For every nonnegative integer n11; n10; n01; n00 such that
n11 þ n10 þ n01 þ n11 ¼ N . In this model, �ij represents the
probability that an observation be allocated to the i; jð Þ-cell.
Within this framework, the analysis aims to provide inferences
about the population probabilities �11; �10; �01; �00 using the
observed frequencies in Table 1 or, equivalently, the observed
proportions in Table 2.

Table 1. Presence–absence of species E1 and E2.
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Bayesian analysis for our multinomial model

Bayesian inference requires a prior distribution for �, the only
unknown parameter of the model. This prior distribution is then
updated with the sample information to obtain the posterior
distribution, given by pð� jxÞ / p �ð Þpðx j �Þ. In the specific case of
our multinomial model, we have

pð � j xÞ / p �ð Þ Π1
i¼0Π

1
j¼0�

nij
ij :

We can use any prior p �ð Þ in this expression if it describes the state
of knowledge of the researcher before the sample information is
available. A convenient class of models from which this prior can
be chosen is the family of Dirichlet distributions,

p �ð Þ / Π1
i¼0Π

1
j¼0 �

αij�1
ij ;

where αij > 0; i; j ¼ 0; 1:
� �

is a set of fixed constants. In this
model, it can be verified that E �ij

� � ¼ αij=α and Var �ij
� � ¼

αij 1� αij
� �� �

= αþ 1ð Þ, where α ¼ Σ1
i¼0Σ

1
j¼0αij. Among other

convenient features of the Dirichlet family of distributions,
it is well known that it is conjugate to the multinomial sampling
model. This means that, if the prior distribution is Dirichlet and
the sample is distributed as multinomial, then the posterior
distribution is also Dirichlet. Thus, in our case, we have the
Dirichlet posterior:

p � j xð Þ / Π1
i¼0Π

1
j¼0 �

αijþnijð Þ�1
ij :

Of particular interest is the situation where the researcher has little
prior information or is not willing or allowed to make inferences
based on his/her prior beliefs. This can be addressed using a
reference prior within the Dirichlet family. A common choice is to
take αij= 1/2 (see Box and Tiao 1973, Section 1.3, and Berger and
Bernardo 1992). The corresponding posterior distribution is then:

p � j xð Þ / Π1
i¼0Π

1
j¼0 �

nij�1=2ð Þ
ij ;

and thus Eð�ijj xÞ ¼ nij þ 1=2
� �

= N þ 2ð Þ. This conjugate analysis
in the general setting of contingency tables has been extensively
discussed in the Bayesian literature. A recent review can be found
in Gutiérrez-Peña and Mendoza (2017). Once the posterior
distribution p � j xð Þ is obtained,inferences about � describing
some of its characteristics (location measures as point estimates
or probability intervals, for example) can be produced. These
features can be obtained analytically, as in the case of the mean and
variance, or computed via numerical or simulation-basedmethods.
For the interested reader, a brief account of the general Bayesian

approach to inference is included in Section S.1 of the
Supplementary Material.

Association indices

For the sake of simplicity, in this section, we will focus on the
Ochiai and Pearson indices to illustrate our ideas, although it must
be clear that the proposed analysis can be applied to any index.
First, we will recall how the Ochiai and Pearson indices are
calculated. For details, see Hubálek (1982).

(i) Ochiai: O ¼ n11=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n10 þ n11ð Þ n01 þ n11ð Þp

; O 2 0; 1½ �:
(ii) Pearson: R ¼ ðn00n11 � n10n01Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn0:Þðn1:Þðn:0Þðn:1Þ
p

;
R 2 �1; 1½ �.

Each one of these indices provides a measure of the association
between two species which can be used to assess the strength of
such association in the observed sample. In the case of the Ochiai
index, the closer the value of O is to one, the stronger the
association. In fact, O reaches this maximum if and only if
n10 ¼ n01 ¼ 0 (no discordant sites), whereas the minimum (zero)
is attained when n11 ¼ 0 if there is a positive number of discordant
sites (otherwise it is not defined). The Pearson index also reaches
its respective maximum value when there are no discordant sites.
On the other hand, when the Ochiai index takes the value zero, and
there are enough discordant sites, the Pearson coefficient can take a
value close to�1, suggesting a negative relationship. Conversely, if
the Pearson coefficient is zero (suggesting no association), then the
Ochiai index equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n11=N

p
which might be close to one. These

results suggest that the assessment of the strength of the association
of the species in the population, based on an observed value of a
particular index in a specific sample, must be made with caution.
The Supplementary Material (Section S.2.1) includes some
numerical examples that illustrate these differences among indices.

In any case, it is easy to see that the indices considered in this
section, as well as all others we reviewed in the literature, can be
calculated in terms of the observed proportions instead of using the
absolute frequencies. Take, as an example, the Ochiai index.
According to the definition, O ¼ n11=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n10 þ n11ð Þ n01 þ n11ð Þp

.
However, if we divide by N both the numerator and denominator
of this expression, we get O ¼ p11=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p10 þ p11ð Þ p01 þ p11ð Þp

.
The most noticeable consequence of this result stems from the

fact that pij is the observed proportion of cases in the i; jð Þ cell in the
sample and, thus, can be seen as an estimate of the true proportion
of cases in that cell for the entire population. If we were able to fully
observe the populations of each of these two species, we would
know the true population proportions (probabilities)
�11; �10; �01 and �00. However, since the investigation is only
conducted through a sample of size N , instead of observing each
�ij we obtain pij such that pij ¼ �̂ij ; i; j ¼ 0; 1:More importantly,
in the same way, since every index I can be calculated as
I ¼ g �̂11; �̂10; �̂01; �̂00

� �
, for some known function g , it can be

regarded as an estimate of the true value of the index in the
population ψ ¼ g �11; �10; �01; �00ð Þ. If the purpose of the study
is to investigate the pattern of association in the population,
then the relevant question is: What can be said about ψ , given
the information in the sample? The usual answer is to produce
the pointwise estimate ψ̂ ¼ I and then to say that ψ has an
approximate value equal to I. However, at this point, when a
frequentist approach to statistical inference is adopted, the
problems described in the introduction appear. It is necessary to

Table 2. Observed proportions. Presence–absence of species E1 and E2.

1 0

1 p 11 p 10 p 1 .

E 1

0 p 01 p 00 p 0 .

p . 1 p . 0 1

E 2
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evaluate how far ψ̂ is from ψ and which other values of ψ are
compatible with the sample, in addition to I itself. As discussed
above, the procedures used to answer these questions usually
make use of interval estimates for ψ . The frequentist techniques
rely on the sampling distribution of the estimate I, which is only
available in a few cases. So, for many indices, the uncertainty
regarding the true strength of the association in the population
cannot be properly assessed, although some approximations can
be used, such as those based on bootstrap methods. As an
alternative, in the following subsection, we introduce a Bayesian
solution for this problem, whose calculations are straightfor-
ward and provide a general mechanism to produce interval
estimates for ψ and thus measure the uncertainty of interest.

Bayesian analysis of association indices

Consider an association index ψ . As we discussed previously,
ψ ¼ g �11; �10; �01; �00ð Þ is a known function of the (unknown)
population parameter � ¼ �11; �10; �01; �00ð Þ. On the other hand,
we have the sampling data x ¼ n11; n10; n01; n00ð Þ. To produce a
Bayesian analysis of ψ , the quantity of interest, we can proceed via a
two-step procedure. First, we can get, as described in Section 2.2,
the posterior distribution of �. Then, in the second step, we can use
the function ψ ¼ g �ð Þ to get the posterior distribution pð ψ j x Þ;
via the transformation technique. Recall that if only vague prior
information is available regarding �, the recommendation is to use
the reference prior:

p �ð Þ / Π1
i¼0Π

1
j¼0 �

�1=2
ij :

This prior leads to the posterior:

p � j xð Þ / Π1
i¼0Π

1
j¼0 �

nij�1=2ð Þ
ij ;

a Dirichlet distribution with parameter α� ¼ ðn11 þ 1
2 ; n10 þ 1

2 ;
n01 þ 1

2 ; n00 þ 1
2Þ. Before discussing the calculation of the

posterior distribution of interest, p ψ j xð Þ, let us note some
characteristics of this reference prior. It can be shown
that Eð�ijÞ ¼ 1

4 ; Eð�i:Þ ¼ 1
2 ; Eð�:jÞ ¼ 1

2 ; i; j 2 f0; 1g so that
Eð�ijÞ ¼ Eð�i:Þ � Eð�:jÞ for every pair i; jð Þ. Thus, a priori the
expected value of � satisfies the condition for stochastic
independence, which can be regarded as noninformative since
any other condition would imply some particular kind of
association and, hence, some specific prior information. If we
use this reference prior for �, any posterior evidence against
independence can be attributed solely to the information provided
by the sample. In fact, examination of the corresponding prior
distribution of ψ may be useful to see the type of results that the
index can produce under this scenario of independence. Going
back to the posterior distribution of the index, since ψ ¼ g �ð Þ we
can describe the updated knowledge about the value of ψ just by
calculating pðψ j xÞ. Once we have this posterior distribution, and
following De Cáceres et al. (2008), we can produce a probability
interval for ψ . There are some indexes for which pðψ j xÞ can be
obtained from p � j xð Þ very easily using probability calculus.
However, in some cases, the required analytic calculations may be
cumbersome or may not be possible in closed form. Alternatively,
we can use a Monte Carlo approach, simulating a sample �kf gMk¼1
from the Dirichlet model pð� j xÞ and then obtaining a sample
from pðψ j xÞ by applying the transformation directly to the
simulated values of ðψk ¼ g �kð Þ, for each k ¼ 1; . . . ; MÞ. For

M large enough, any characteristic of the distribution pð ψ j x Þ
can be approximated with an arbitrary level of precision using the
simulated sample ψkf gMk¼1. Simulation from pð � j x Þ is rather
easy using ratios of Gamma random variables (see Kotz et al. 2000,
chapter 49, for example). Note that, when we simulate from this
distribution, we will get a set of scenarios for the true population
proportions that are compatible with the observed data. Moreover,
the most probable scenarios, according to the data, will appear
more frequently in the sequence �kf gMk¼1. In a similar way, if we
calculate ψk ¼ g �kð Þ, for k ¼ 1; . . . ; M the set ψkf gMk¼1 is a
collection of values of the true population index that are
compatible with the information in the sample x and the most
probable values will appear more frequently in this set. To produce
interval estimates, ifM is large enough (say several thousand) and
we find that 95% of the simulated values lie, for example, in the
interval 0:78; 0:84½ �, we will be able to say that the true value of the
population index ψ lies in the interval 0:78; 0:84½ �with probability
0:95. This sort of assertion clarifies the uncertainty that remains a
posteriori about the value of ψ . It must be clear that the simulation
algorithm in our proposal is just a tool to calculate, exactly, the
posterior distribution pðψ jxÞ. We are not using any bootstrap
method; we are not resampling the observed data nor applying any
form of a null model technique.

Our proposed Bayesian approach produces inferences that are,
for all practical purposes, numerically exact for any sample size.
These ideas will be illustrated in the following section. To conduct
the corresponding analyses, we have developed the R package basa
(Bayesian Analysis of Association Indices). This package auto-
matically takes care of the simulation step and allows the user to
calculate the posterior distribution and the relevant summaries for
any association index, not just for those discussed in this paper.

Application to field data

As part of a project conducted in the Montes Azules biosphere
reserve (Southern Mexico) in 2015, a camera-trap dataset
recording the presence–absence of several species was generated.
We will only be concerned with a specific pair of mammal species,
namely the Central American agouti (Dasyprocta punctata) and
the white-nosed coati (Nasua narica), for which we have a sample
of N ¼ 40 records (see Table 3). Also, we will focus on two
association indices (Ochiai and Pearson); however, the analysis can
be replicated for any other index. In all cases, we used a reference
prior and a simulated sample of size M ¼ 10; 000 from the
posterior distribution of � to obtain the results. For the sake of
comparison, we searched for a computation resource to produce a
frequentist counterpart of our results. In the case of the Ochiai and
Pearson indexes, we only could find the R package spaa (Zhang and
Ma 2014), which only produces pointwise estimates. The
comparison is then based on these estimates.

We compare the results obtained a priori with those obtained a
posteriori. In this way, we can assess the impact of the data when we
initially assume that there is no association.

(i) Ochiai index.

The prior distribution for this index is shown in Fig. 1(a) (left
panel). Apart from amode at zero, the density is rather flat over the
interval 0; 1ð Þ. The prior mean and median are given by 0:453 and
0:440, respectively. A 0:95 interval estimate is given by 0; 0:944ð Þ,
showing that the Ochiai index can be practically anywhere even
though there is a clear mode at zero. Once the 40 observations are
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considered, the posterior distribution is that shown on the right
panel of Fig. 1(a). The distribution is now bell-shaped, with a mean
of 0:291 and a median of 0:288. Any one of these two values could
be used as a point-wise estimate of the true value of the index. If the
usual frequentist based Ochiai index is computed with the
observed frequencies, we get 0:298, a quite similar value. In
comparison, with our method we can say that a posteriori, the true
value of the index lies in the interval 0:100; 0:498ð Þ with
probability 0:95, thus providing more information and suggesting
a moderate level of association.

(ii) Pearson index.

The prior and posterior distributions for the Pearson index are
shown in Fig. 1(b). On the left-hand side, we have the prior
distribution. It is symmetric around zero, with mode, mean, and
median all equal to this value. The 0:95 prior interval estimate is
given by �0:903; 0:906ð Þ. On the other hand, the posterior
distribution (right-hand side) is a more concentrated bell-shaped
curve with a mean of 0:026 and a median of 0:031, both quite like
the value of the usual frequentist coefficient 0:038ð Þ. Again, our
method provides more information. We can say that a posteriori,
the true correlation coefficient lies in the interval �0:263; 0:285ð Þ
with a probability of 0:95. This suggests that the two species have a
low level of association and, since the value zero belongs to this
interval, it can be reasonable to say that the posterior distribution
suggests that there is no association between these two species.

Discussion

Ecological indices are designed to measure association (or lack
thereof) differently compared to statistical indices, whose purpose
is to measure stochastic dependence. The results obtained for the
Dasyprocta punctata and the Nasua narica data make this point
very clear. The posterior distribution of the Pearson statistical
index shows a mode close to zero and is rather concentrated
around this value, thus suggesting stochastic independence. This is
confirmed by the Bayesian test of independence mentioned at the
end of Section S.2.2 of the Supplementary Material.

On the other hand, the prior-posterior analysis of the Ochiai
index shows that the prior mode at zero has been replaced by a
positive value in the posterior distribution, and, for example, the
probability of the interval 0; 0:1ð Þ changes from 0:188 a priori to
only 0:012 a posteriori. Thus, it can be said that global analysis of
these two indices points to a moderate level of association.

The posterior distribution of an association index can also be
used to answer other questions of interest. For example, if the idea
that ψ 2 A for a given set A has been entertained before the data are
collected, the validity of the hypothesisH0 : ψ 2 A can be evaluated

using its posterior probability, Pð ψ 2 A j x Þ. Specifically, in the case
of our application regarding the Ochiai index, let us denote the
population version ofO asO. Then, if the hypothesisH0 : O � 0:2
was of interest, we could decide on its validity by considering
that Pð O � 0:2 j x Þ ¼ 0:8:

Furthermore, if we have two indices that are not functionally
related and measure different kinds of association, it could be
useful to analyze their joint posterior distribution. This type of
analysis might shed some light on the complementary nature of the
indices and is essentially unfeasible with the frequentist approach.
This information can be obtained using the simulated sample
�kf gMk¼1 from the posterior distribution �. More specifically, if we
have two indices, ψ1 and ψ2, and for each �k in the sample we
calculate ψ1 �kð Þ; ψ2 �kð Þð Þ, then the set ψ1 �kð Þ; ψ2 �kð Þð Þf gMk¼1 is a
random sample from the joint distribution of ψ1; ψ2ð Þ. To
illustrate this, Fig. 2 shows the joint posterior distribution of the
population version of R; Oð Þ for the Dasyprocta punctata and
Nasua narica data.

This graph shows that when the Pearson index takes relatively
high values (suggesting a positive association among species), the
Ochiai behaves similarly. On the other hand, when the Pearson
index takes low values (evidence of a negative association), the
Ochiai index takes values near zero which suggests no association.
Finally, if the Pearson index takes values very close to zero, suggesting
no association, the Ochiai index can take values between 0.2 and
0.4, which may be interpreted as evidence of a moderate positive
association. It is interesting to compare this joint posterior
distribution with those obtained for the two pairs of tree species
discussed in Section S.2.2 of the Supplementary Material. There we
examine the posterior distribution of the Ochiai index and the
Pearson index corresponding to the pairs Bur oak and Black oak
(Fig. 3a) and Red oak and American elm (Fig. 3b), respectively. The
most relevant issue here is that there ismore uncertainty regarding the
relationship between the Ochiai index and the Pearson index in the
case of the two tree datasets compared with our dataset concerning
mammal species. This result is not surprising if we note that the tree
datasets involve smaller sample sizes (10 observations against 40 in
our data set). In any case, the relevant lesson here is that the single
value of an index cannot be properly evaluated and interpreted
without regard to the corresponding uncertainty which, among other
factors, is related to the sample size.

We can say that ecological association and statistical association
are not synonymous. In fact, some ecological indices suggest a high
degree of association between species when, in statistical terms,
there is independence. Similarly, for some datasets, the degree of
ecological association can be low, but the corresponding statistical
measures can indicate strong dependence. This fact is extremely
interesting from a statistical point of view. It is also important
because some of these ecological indices are widely used. See
Kalgaotra et al. (2020), for example, where the Ochiai index is used
to define edges between the nodes of a network in the context of
medical research. A careful analysis of each ecological index would
allow us to fully understand what kind of patterns it can detect. In
any case, and regardless of the type of association that it describes,
an ecological association index calculated from a sample is
intended to shed light on the relationship between the species
under study and is thus part of an inferential process. We believe
this study can help promote a better understanding of the statistical
basis of species association indices, thus facilitating a better
interpretation of their ecological implications.

Table 3. Dasyprocta punctata and Nasua narica camera trap data.
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Figure 1. Prior and posterior distributions of
the unknown population value of: (a) Ochiai
index and (b) Pearson index. Dasyprocta punc-
tata and Nasua narica data.

Figure 2. Joint posterior distribution of the unknown population values of the R (Pearson) and O (Ochiai) indices. Dasyprocta punctata and Nasua narica data.
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Figure 3. (a) Joint posterior distribution of the unknown population values of the R (Pearson) andO (Ochiai) indices. Bur oak and Black oak data; (b) joint posterior distribution of
the unknown population values of the R (Pearson) and O (Ochiai) indices. Red oak and American elm data.
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Concluding remarks

We have shown that a Dirichlet prior distribution for the
probabilities of a multinomial model provides a suitable framework
to easily obtain an adequate description of the uncertainty about any
of the association indices. Our proposal uses a reference prior that
does not depend on the index under study, but informative priors can
be easily accommodated. In addition, the method proposed here also
allows the researcher to obtain the joint posterior distribution of any
set of indices. This is relevant because examination of the distribution
for a pair of indices can be useful to understand what the indices are
measuring, both individually and together. For example, the joint
posterior distribution allows us to compute conditional interval
estimates for one index given a fixed value of another index. In any
case, the researchers who wish to explore the advantages of our
proposal can do so using the R package basa available from: http://la
cb-inirena.mx/bayesian-analysis-of-species-associations/. A tutorial
on the use of this package is included in the Supplementary Material
(Section S.2.3).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0266467424000105
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study are included in this article.
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