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NUCLEAR SPACES OF GENERALIZED 
TEST FUNCTIONS 

BY 

H. MILLINGTON 

1. Introduction. It is well known that a large proportion of the locally convex 
spaces encountered in distribution theory are nuclear (Grothendieck [4], Treves 
[10], Schaeffer [8].) In [1] Beurling introduced spaces of test functions more 
general than those previously used. In this paper we shall show that many of these 
spaces, and resulting spaces of distributions, are also nuclear spaces. 

We shall use the following notation and definitions. R denotes the real field, C 
the complex field. For any abstract space X, topology G on X, and '"Carathéodory 
measure u on X [9]". 

Mu = {A c= X:u(T) = u(T n A)+u(T-A) for all T <= X) 

u is a (j-Radôn measure on X iff G^MU, for any A^X, 

u(A) = inî{u(G):A c GeG}, 

for every closed compact K^ X, 

u(K) < oo 
and for every GeG, 

u(G) = sup{u(K):K c: G is closed and compact}. 

For any positive integer n, Xn denotes Lebesgue measure on Rn. We put A=AX. 
For any / in L^R"), the Fourier transform/* of / i s defined by 

f*(x) = J(exp-*<x, y))f(y) dXn(y), x e Rn, 

2. D^-spaces. We shall define a class of spaces introduced by Beurling in [1], 

2.1 DEFINITIONS. Let « be a positive integer. 

(1) M is the set of all continuous real-valued functions h on Rn such that 
(i) 0 = h(0)<h(x+y)<h(x)+h(y), xeRn,ye Rn

9 

(il) SKx)l(l + \h\)',+1 dkn(x)<ao, 
(iii) for some aeR and b>0, 

h(x)> a + b\n(l + \x\) for all x e £ n . 
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(2) For any h G M, t e R, and /G Lx(R
n), 

\f\n.t = f l/*(*)l exp th(x) dk\x). 

(3) For any h in M and compact K^Rn 

Dh(K) = {fell(Rn): support/ c X and | / | M < oo for all t > 0} 

endowed with the locally convex topology generated by the seminorms | • \hit9 

t>0. 

(4) For any h in M and open G^Rn 

Dh(G) = {fe l}(Rn): support/ c G is compact and |/ |A t t < oo for all t > 0} 

endowed with the strict inductive topology ([8, p. 57]) determined by the family of 
subspaces 

{Dh(K):K e G is compact}. 

(5) For any heM, f > 0 , and /G LiCRn), 

l l / l k t = sup |/*(x)|exp *!<*)• 

2.2 REMARKS. Let K^Rn be compact and G^Rn be open. 
(1) For every/in Lx(R

n),f* is continuous ([7, p. 9]). 
(2) Dh{K) is a Fréchet space [2]. 
(3) For any sequence C of compact subsets of Rn with Ck^ interior Cfc+1 for 

each integer k, and (J Ck=G, Dh{G) is the strict (countable) inductive limit ([8, 
p. 57]) of the spaces Dh(Cn), and is necessarily HausdorfT. 

(4) For every compact K^Rn with nonempty interior, condition (ii) of 
Definition 2.1.1 implies that Dh(K)^{0} ([2, Theorem 1.3.7]). 

(5) By Corollary 1.3.21 of [2] and conditions (i)-(iii) of Definition 2.1, 

fe Dh(G) =>/is infinitely differentiable. 

(6) From Corollary 1.4.3 of [2] we have the following. For any t>0 there exist 
positive real numbers A, B, u, v, such that t<u<v and for a l l / in Dh{K) 

A\f\h.t<\\fL,u<B\f\h,v 

We shall use the following characterization of nuclear spaces which is due to 
Pietsch [5, 8]. 

2.3 DEFINITION. Let X be a Hausdorff locally convex space. X is a nuclear space 
iff for each neighbourhood U of the origin in X there exists another neighbourhood 
V of the origin, and a w*-Radon measure \x with support /u^V0 such that 

{x G X: f |x*(x)| d/jL(x*) < 1} <= u 
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where 
X* is the algebraic dual of X, 
w* is the topology on Z* of pointwise convergence on X, 
V° is the polar of F i.e. F°={x* e X* : |**(x)|£l for all x e V}. 
We shall now prove the following. 

2.4 THEOREM. For any he M and compact K^Rn, Dh(K) is a nuclear space. 

Proof. Let />0. By Remark 2.2.6, choose positive A, B, u, v, such that t<u<v 
and for all/in Dh(K) 

A\f\h,t<\\f\\h,u<B\f\Kv. 
For each x e Rn let 

lx:fe Dh(K) ->/*(x)exp uh(x) G R. 
Let 

liQ:A a Rn-»riAexp(--(u--t)h(x))(ttn(x)> 

where J* denotes the outer integral ([9, Ch. 7]), and 

lA:xeRn-+l ifxeA, 

0 ifx$A. 
For any w*-open Gc (Dh(K))* let 

g(G) = jMoa"1[G]) 
and for any Ac(Dh(K))*9 

fx(A) = mî{g(G):A c G, G c (DA(K))* is w*-open}. 

We have that 
sup{|Ie(/)|:|/k. £ 1} < B, for all xeRn 

and therefore 

« r a n g e / e B { / e D , ( X ) : | A , ^ l } ° . 

(2) Since/* is continuous for every fe Dh(K), I is continuous with respect to 
the w*-topology on (Dh(K))*. 

(3) ju0(R
n)< oo; for there exists aeR, b>0, such that 

*W > tf+£ ln(l + |x|), x G Rn, 

and therefore for every x e Rn 

exp[-(u-t)h(x)] < exp[—(u-t)(a + bln(l + \x\))] 

= (exp~a(M~0)(l/(l + l^l))6(w-°, 

https://doi.org/10.4153/CMB-1973-045-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-045-x


272 H. MILLINGTON [June 

from which one concludes that 

f,0(R
n) < ( exp -a (u -O) f(l/(l+|x|)b ( w- f ) dl\x) < oo, 

using spherical coordinates ([3, p. 321]), and choosing u large enough. 
Using standard measure theoretic techniques and (3) one may now show that /u0 

is Radon. 
Using (2) and (3) one can then show that /u is a w*-Radon measure, and further, 

by (l), 

supports c B{fe Dh(K):\f\h,v < 1}°. 

Then, for every/e Dh(K), 

\f\*.t=j\f\x)\wth(x)Mn(x) 

= fl/*(*)l (e*P uh(x))(exp-(u-t)h(x)) dX\x) 

= (\x*(x)\df*(x*). 

Since / was arbitrary it follows that Dn(K) is nuclear. 
Taking Theorem 2.4 together with known properties of nuclear spaces (as in 

[8]) we can deduce the following results. 

NOTATION. For any topological vector space X, X'h denotes the continuous dual 
of X endowed with the topology of uniform convergence on the bounded subsets of 
X. 

2.5 THEOREMS. Let he M. 

(1) For every open G<^Rn, Dh{G) is nuclear. 
(2) For every compact K^Rn, {Dh(K))'h is nuclear. 
(3) For every open G^Rn, (Dh(G))'b is nuclear. 

Proof of 2.5. By Remark 2.2.3, Theorem 2.4, and the fact that a countable 
inductive limit of nuclear spaces is nuclear ([8, p. 103]). 

Proof of 2.5.2. By Remark 2.2.2 and Theorem 2.4, since the strong dual of a 
nuclear Fréchet space is nuclear ([8, p. 172, Theorem 9.6]). 

Proof of 2.5.3. Let C be a sequence of compact subsets of Rn with Ck<=- interior 
Ck+i f ° r e a c h integer k, and U Ck=G. For each k let Bk be the family of bounded 
subsets of Dh(Ck) and let Bœ be the family of bounded subsets of Dh(G). Since 
Dh(G) is a strict inductive limit of spaces Dh(Ck)9 and for each k, Dh(Ck) is a closed 
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subspace of Dh(Ck+1), it follows that 

£00 = U Bk. 

Hence, noting that Bm is closed under finite unions, we have that (Dh(G))'b is the 

projective limit of the spaces (Dh(Ck))'b by the maps uk, where u\ is the transpose of 

the canonical injection uk:Dh(Ck)->Dh(G) ([8, p. 85, Proposition 15]). Since the 

spaces (Dh(Ck))b are nuclear (Theorem 2.5.2) and the projective limit of nuclear 

spaces is again nuclear ([8, p. 103]) it now follows that (Dh(G))b is nuclear. 

2.6 REMARK. We point out that the spaces Dh(K), Dh(G), being complete and 

barrelled (2.2.2, 2.2.3, [8, pp. 59, 61]) nuclear spaces, are necessarily Montel 

spaces ([10, pp. 356, 520]) and therefore so also are their strong duals ([10, p. 376]). 

In particular Dh(K) and Dk(G) are reflexive. 
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