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ABSTRACT. Continuum damage mechanics describes the progressive deterioration of
material subjected to loading. Jointly used with a level-set method, it proves to be apromising
approach to computing the interface motion of a damaged material. For polycrystalline ice,
a local isotropic damage evolution law (generalized Kachanow’s law) applied to Glen’s flow
law allows the description of tertiary creep and facilitates the modeling of crevasse opening
using a failure criterion based on damage accumulation.The use of a level-set method per-
mits the description, in a continuum approach, of the motion of a fractured glacier surface.
Using these methods, a model is developed.The ability of this model to describe phenomena
connected to crevasse opening is presented.The rupture of a large ice block from a hanging
glacier is computed and analyzed. The regular acceleration of such an unstable ice block
prior to its collapse is calculated and compared to the acceleration function obtained from
observations. A good agreement between the two acceleration functions was found.

INTRODUCTION

The prediction of large icefalls from hanging glaciers can
reduce loss of life and damage to settlements. A common pre-
dictive method is based on the regular acceleration observed
on large ice masses prior to collapse.The time of breaking-off
was forecast quite accurately by Flotron (1977) and Ro« thlis-
berger (1977) on a hanging glacier located on the east face of
the Weisshorn, Valais, Switzerland. They extrapolated the
velocity^time function measured on the unstable glacier
during the months preceding the icefall. The extrapolation
was performed according to the equation

v…t† ˆ v0 ‡ a

…tf ¡ t†m ; …1†

which describes the increasing velocity v…t† of the unstable
ice mass before breaking-off. v0, a, m and tf are parameters.
tf corresponds to the failure time. Describing a stepwise crack
extension coupled to a viscous flow, Iken (1977) showed that
the acceleration of an unstable ice mass can be expressed by
Equation (1). This equation is widespread. It describes the
fracture of materials such as rock, soil and high-performance
metal alloys (Varnes, 1983) and allows high-magnitude
earthquakes to be predicted with an uncertainty of 2 years
(Bufe and Varnes, 1993; Bowman and others, 1998). To
improve this approach for hanging glaciers, a numerical
model is developed to describe breaking-off processes.

The influence of crevasses on glacier motion and cre-
vasse pattern formation are severe problems for glacier flow
modeling. The material discontinuities due to crevasses re-
quire a complex, time-dependent model geometry.To avoid
the description and the continuous adaptation of the glacier
geometry, the ice and the crevasses are treated in a contin-
uum approach as a unique domain composed of regions
with distinct material properties. The difficulty of interface

location can be solved appropriately by a level-set method
(Sethian,1999; Osher and Fedkiw, 2001). A level-set function
’…x; t† localizes the material position, and is defined by
’…x; t† ˆ 1 inside the material and by ’…x; t† ˆ ^1 outside
it. The interface is defined by ’…x; t† ˆ 0. The variation of
’…x; t† in time and space at the interface is described by
the transport equation

@’

@t
‡ ~v ¢ r’ ˆ 0 ; …2†

where ~v is the velocity field at the interface.
The description of crevasse opening based on fracture

mechanics implies a non-trivial criterion (C*-Integral) for
crack propagation in a viscoelastic medium (Saxena,1998)
or assumes a linear elastic description of the fracture in ice
(Van der Veen, 1998; Rist and others, 1999, 2002). Further-
more, the subcritical crack growth process (Atkinson and
Meredith,1987), which is crucial for describing the dynamics
of crack opening, has yet to be studied for ice. If multiple
interacting crevasses or macro-fractured ice domains are con-
sidered, further difficulties emerge from fracture mechanics.
To describe the progressive fracturing of a hanging glacier,
continuum damage mechanics is an efficient alternative to
fracture mechanics. An equivalence principle (Skrzypek
and Ganczarski,1999) is used, which `̀allows to describe the
mechanical behavior of the damaged material using the
constitutive equation formalism of the undamaged material’’
(Weiss,1999). It results in a modified rheologyof the undam-
aged material which accounts for material deterioration due
to damage. A variable, D…x; t†, is introduced to describe the
progressive deterioration. Isotropic damage is represented by
a scalar variable; orthotropic damage by a second-order ten-
sor; and total anisotropic damageby a fourth-order tensor. In
case of isotropic damage, the variable D is increasing from
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D ˆ 0 (no damage) to D ˆ 1 (full damage). Isotropic
damage evolution in time and space is described as

@D

@t
‡ ~v ¢ rD ‡ D div~v ˆ f ; …3†

where f ˆ f… _°; D; T; »† is the dynamic function of damage
depending on the strain rate _°, the damage D, the tempera-
ture T and the density ». It was evaluated for ice thermo-
dynamically (Sjo« lind,1987; Derradji-Aouat and Evgin, 2001),
in a microscopic (Choi and Karr,1989; Santaoja,1989) and in
a mesoscopic approach (Pulkkinen,1989; Mahrenholtz and
Wu, 1992), or with a correspondence to fracture mechanics
(Schapery, 1984,1991). Fracturing occurs in a material if the
damage D passes a critical Dc (Lemaitre, 1992). The ice is
then considered to be broken and D is instantly set equal to
1. This can be associated with the transition of subcritical to
critical crack growth.

MODEL

To compute in a continuum approach the motion of a glacier
with crevasses, the behaviors of ice, broken ice (where
damage has reached the value Dc) and air have to be defined.

Ice rheology

The loss of area in a material section due to microcracks is rep-
resented by the damage variable D. To preserve a dimension-
less variable, the loss of area is scaled by the considered area
section. To guarantee the validity of a continuum approach,
the section area must be chosen large compared to the size of
individual microcracks. A representative volume element is
defined at the mesoscale. It delimits the resolution and the
validity of the model. For polycrystalline ice, this volume cor-
responds to 103^106 times the volume of an ice grain.

To simplify the model, it is postulated that damage does
not affect the ice density. It is also postulated that damage in
ice is sufficiently described by one single scalar variable (iso-
tropic damage).Thebehaviorof undamaged ice is described
by Glen’s flow law. The total energy equivalence principle
(Chow and Lu, 1992) couples the damage and Glen’s flow
law to describe the rheology of damaged ice. The modified
Glen’s flow law is

…~¼†
0
ˆ 1

A
…¦~_°†

1¡n
2n ~_° ; …4†

where …~¼†
0
is the deviatoric part of the effective stress tensor

replacing the deviatoric part of the stress tensor …¼†
0

in
Glen’s flow law, ~_° the effective strain-rate tensor replacing
the strain-rate tensor _°, and ¦~_° the second invariant of the
effective strain-rate tensor. The effective stress and strain
rate for isotropic damage are

~¼ ˆ ¼

1 ¡ D
and ~_° ˆ …1 ¡ D† _° : …5†

Equation (4) can be expressed in classical terms of stress,
pressure and strain rate:

¼ij ˆ ¡p¯ij ‡ 2² _°ij …6†
with the ice viscosity

2² ˆ A¡1
n…1 ¡ D†

n‡1
n …¦ _°†

1¡n
2n : …7†

To avoid an infinite viscosity, ¦ _° cannot be smaller than a
value ®. The use of the total energy equivalence principle
leads to the same equation of ice rheology as the use of a dis-
sipational potential for creep-damaged material described

by Wu and Mahrenholtz (1993). By using the total energy
equivalence principle, the physical definition of damage is,
however, lost (Lemaitre and others, 2000). The damage
variable D then no longer describes the loss of area due to
cracks. But the variable D introduced in the effective stress
and strain rate (Equation (5)) is defined by satisfying the
total energy equivalence principle.

Here a generalized Kachanow dynamic function of
damage byWu and Mahrenholtz (1993) (for damage satisfy-
ing the total energy equivalence principle) was adopted and
extended. For isotropic damage this function is

f…¼; D† ˆ B
À…¼†¡

…1 ¡ D†k…¼† ; …8†

with

À…¼† ˆ ¬¼I ‡ …1 ¡ ¬†…3 ¦¼0 †
1
2 …9†

k…¼† ˆ a1 ‡ a2…3 ¦¼
0 †

1
2 : …10†

Here À…¼† is the characteristic stress inducing damageaccu-
mulation, ¼I the maximum principal stress and ¦¼

0 the
second invariant of the deviatoric part of ¼. For our model
calculations, the values used for the material parameters B,
¬, ¡, a1 and a2 were taken from Mahrenholtz andWu (1992)
and Wu and Mahrenholtz (1993). They analyzed the creep
damage behavior of polycrystalline ice under tension and
compression by using cylindrical specimens (120 mm length
and 43 mm diameter) with grain-size of approximately1mm.
Thus, their experiments are assumed to describe a mesoscopic
damage process. Only the parameter B is considered to be
temperature-dependent. It is supposed to vary with tempera-
ture according to the Arrhenius relation with an activation
energy of 67 kJ mol^1 (Derradji-Aouat and Evgin,2001).

It is proposed to add a crack-healing effect depending on
hydrostatic pressure. Considering that À…¼† enhances the
growth of microcracks and the pressure p counteracts their
increase, a new characteristic stress Á is introduced in
accordance with Derradji-Aouat and Evgin (2001). Á is
expressed such that Á ˆ ¼ for uniaxial tension,

Á…¼† ˆ 3

4
…À…¼† ¡ p† : …11†

Without hydrostatic pressure, crack healing occurs due to
recrystallization and pressure melting between grains.
Damage is allowedto increase when Á exceeds a stress thresh-
old ¼th, otherwise it decreases. The characteristic stress Á…¼†
is thus redefined as

Á…¼† ˆ 3

4
…À…¼† ¡ p† ¡ ¼th : …12†

¼th is assumed to be equal to the macroscopic threshold for
crevasse opening (Vaughan, 1993). Crack healing is sup-
posed to follow the same damage evolution law as crack
growth. If Á…¼† < 0, damage decreases. Expressing ¼ as a
function of _°, D and p, Equation (8) becomes

f… _°; p; D† ˆ sgn…Á†B
jÁ… _°; p; D†j¡

…1 ¡ D†k… _°;D† : …13†

For positive Á, the dynamic function of damage leads to an
asymptotic damage accumulation. When damage D passes
the value Dc, D jumps to 1. Damage localization occurs in
ice for two reasons. First, the dependence on D of the dynamic
function of damage (Equation (13)) involves damage localiz-
ation (Bai and others, 1999) when D ¶ 1=…1 ‡ k…¼††. Second,
the openingof a macrocrack is described bya jump of damage.
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It results in a localization of the damage due to the local
feature of the failure. Furthermore, around this macrocrack,
damage decreases with stress relaxation.The propagationof
the macrocrack occurs at its tip with damage accumulation
(due to a positive feedback loop between the stress concen-
tration and the damage production) and damage localiza-
tion. This process leads to the formation and the
enlargement of crevasses in the model.

Rheology of air and broken ice

To simplify the model, the rheology of `̀air’’ is described by
Equation (6) with a small viscosity ². A small value of ² is
necessary to avoid a mathematical degeneration of Equation
(6) (in case of ² ˆ 0). The viscosity is calculated using Equa-
tion (7), setting D ˆ1 ^ ° (with small °).The viscosity is thus
equal to the viscosity of undamaged ice multiplied by a
factor °

n‡1
n . Free surfaces are adopted as boundaries for air,

and the air density is set to 0. With these assumptions, an
accurate solution for the ice flow is obtained. Figure 1 dis-
plays the velocity profile through an inclined parallel-sided
slab surrounded by air as computed by the numerical model.
This profile is compared to that derived from the analytical
solution of the problem (Paterson, 1994). The rheology of
broken ice is also described by Equation (6). The viscosity is
computed in Equation (7) with D ˆ1 ^ °.The densities of ice
and of broken ice are assumed to be equal.

Level-set formulation

To couple the behavior of ice, broken ice and air in a unique
computational domain, a level-set formulation is used. The
level-set problem is computed for a variable Dls. It describes
the position occupied by ice, broken ice and air in time and
space. Ice is defined where 0 µ Dls < Dc, broken ice where
Dls ˆ Dc and air where Dls ˆ 1. Following this definition,
the variable Dls has the same value in ice as the damage
variable D. Equation (3) is used to describe the evolution of
the variable Dls in the ice. Considering the broken ice and
the air, the evolution of Dls is described by Equation (2). For

incompressible media, the variation in time and space of Dls

is described in the whole computational domain as

@Dls

@t
‡ ~v ¢ rDls ˆ f… _°; p; Dls† if Dls < Dc;

0 if Dls ¶ Dc :

»
…14†

The value of the damage variable D and the density » are
deduced from Dls. Table 1 summarizes the parameters used
for ice, broken ice and air.Table 2 gives the numerical values
of the parameters introduced in the model.

RESULTS

The temporal evolution of a horizontal ice block from an ini-
tial undamaged state to the break-off of a part of the block is
computed using a two-dimensional finite-element model
(FEMLAB 2.2). Figure 2a shows the initial geometry of the
ice block. The entire computational domain (ice and air) is
also represented. Ice is frozen to the bed (velocity vanishes).
Ice may slip on the left border without friction. This bound-
ary condition is expressed as

~v ¢ ~nbed ˆ 0 and ~tbed ¢ ~K ˆ 0 ; …15†
where ~v is the velocity of the ice at the interface with the
glacier bed, ~nbed the normal to the bed surface,~tbed the tan-
gent to the bed surface and ~K ˆ ~nbed ¢ ¼ the viscous force per
unit area at the interface, with ¼ the Cauchy stress tensor.

At the beginning of the damaging process, diffuse
damage appears at the top of the block (where damage pro-
duction is maximum). Then, damage concentrates at a point
creating a crevasse. With the relaxation of stress, damage
which was accumulated on both sides of the crevasse is
reduced. The opening rate of this crevasse controls the
accelerationof the unstable ice part. Figure 2b shows the state
of the ice block after 152 days. After about 180 days, a rapid
propagation of a second fracture in the unstable ice part

Fig. 1. Velocity profile through an inclined parallel-sided slab.
Ice is 10 m thick and above it is air.The analytical solution is
calculated for ice. The numerical solution is computed for ice
and air.

Table 1. Level-set dependent parameters. The level-set func-
tion Dls determines the repartition of the different media.
The damage variable D affects the viscosity of each medium

Medium Dls D Density

Ice 0 µ Dls < Dc D ˆ Dls »ice

Broken ice Dls ˆ Dc D ˆ1 ^ ° »ice

Air Dls ˆ 1 D ˆ1 ^ ° 0

Table 2.Values of the model parameters for ice of 0³C

Media rheology Dynamic function

A ˆ 2.6610^24 (Pa^n s^1) B ˆ 4.73610^12 (Pa¡¡s^1)
n ˆ 3 ¬ ˆ 0.31
»ice ˆ 910 (kg m^3) ¡ ˆ 0.9
Dc ˆ 0.455 a1 = 0.326
° ˆ 10^2 a2 ˆ 6.033610^6 (Pa^1)
® ˆ 10^30 (s^2) ¼th ˆ 105 (Pa)

Notes: A, n, »ice are usual values for ice. ° is to be set as small as possible, but
small valuesgeneratenumerical instability. ® is a small value introducedto
avoid infinite viscosity. B, ¬, ¡, a1, a2 and Dc are given by Mahrenholtz
and Wu (1992) and Wu and Mahrenholtz (1993). ¼th corresponds to a
macroscopicthreshold for crevasse opening (Vaughan,1993). It is assumed
to have the same value at the mesoscale.
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creates a new unstable block (Fig. 2c). This block collapses
first after 200 days. Calculation was stopped at this break-
ing-off event.The formation of secondarycrevasses occurring
during the separation of the unstable ice mass from a hanging
glacier has been often observed in nature (Fig. 3).

DISCUSSION

Figure 4 illustrates the velocity as a function of time for the
two points indicated in Figure 2c (located in the unstable ice
mass) and advecting with the ice during the whole process.
The velocity of point 1(Fig. 4a) increases until the second
fracture emerges in the unstable ice block.Then the velocity
decreases with stress relaxation due to the extension of this
new fracture. Instead, the velocity of point 2 (Fig. 4b) is
increasing until collapse.The acceleration of point 2 is com-
pared to Equation (1), which is rewritten as

ln…v…t† ¡ v0† ˆ ln…a† ¡ m ln…tf ¡ t† ; …16†
where tf ˆ 200 days and v0 º v…t ˆ 0) are given by the simu-
lation. Figure 5 shows the logarithmic velocity ln…v…t† ¡ v0†
as a function of the logarithmic time ln…tf ¡ t† of point 2.The
plotted curve is composed of two distinct sections (A and B
as shown in Fig. 5) which can be approximated by two
straight lines, in accordance with Equation (16). Section A
corresponds to the initial damage accumulation before cre-
vasse opening. It represents approximately the first 60 days
of the simulation. In the model, D ˆ 0 is applied as initial
condition in ice. However, in nature the ice might be already
pre-damaged. In Figure 2b, the production of such pre-
damage is noticeable at the upstream side of the large
crevasse. Therefore, the initial damage accumulation period
is expected to be shorter than the modeled one. Section B

corresponds to the acceleration of the unstable ice mass due
to crevasse enlargement. For this section, comparison of the
velocity calculated with the model and that inferred from
Equation (16) leads to a correlationcoefficient of 0.93.The dif-
ference is associated with assumptions on the dynamic func-
tion of damage and with numerical errors in the time
integration and the finite-element discretization. Comparing
the results of the model with the velocity^time function infer-
red from measurements (Equation (1)), the same behavior
hasbeen found.This does not amount to a rigorousvalidation
of the model, but it shows that a local isotropic damage evo-
lution law applied to Glen’s flow law is a promising method
for modeling the breaking-off of ice masses from glaciers.

Fig. 2. (a) Initial geometry of the ice block and global compu-
tational domain. (b) Crevasse after 152 days. The arrow
indicates the production of damage at the upstream side of the
large crevasse. (c) Unstable ice block before failure (199 days).
Numbers 1 and 2 indicate the location of the points where
velocities are discussed.

Fig. 3. Evolution of an unstable ice chunk detached from a
hanging glacier located at the south face of the Mo« nch,
Bernese Alps, Switzerland. (a) The large crevasse behind
the ice block is well developed (9 June 2000). (b) Two
secondary crevasses penetrate in the block (25 July 2000).
(c) The block is disintegrated due to the secondary crevasses
(1 August 2000).
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CONCLUSION

In the present study, the capability of continuum damage
mechanics and level-set methods to compute crevasse open-
ings in glaciers is presented. This study does not offer a rig-
orous validation, but focuses on the similarities observed in
nature and computed with the model. Further studies are
required to compare the acceleration of unstable ice masses
measured on hanging glaciers and simulated with the sur-
face geometry, the bed topography and the ice temperature
data of the observed glaciers.

A description of the damage and the level set with a single
variable leads to a reduction of the computing time. The dis-
advantage of this method is an interface between ice and air
that is not clearly defined. In the immediate vicinity of the
interface, it is not possible to determine whether the gradient
of Dls is due to the ice^air transition or damage accumu-
lation. Furthermore, this method does not allow prescription
of an accumulation or ablation function at the glacier surface
to model the glacier evolution.The level-set and the damage
functions have to be described by two separate variables to
overcome this limitation. This task is the topic of ongoing
research.
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