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Abstract. The single pendulum is one of the fundamental model problems in the
theory of dynamical systems; coupled pendula, or equivalently, two elastically
coupled particles in a periodic potential on a line, are a natural extension of intrinsic
interest. The system arises in various physical applications and it inherits some
rudiments of the behaviour exhibited by its finite-dimensional parent, the sine-
Gordon equation. Among these phenomena are the so-called caterpillar solutions,
whose behaviour is reminiscent of solitons. These solutions turn out to have a
transparent geometrical explanation. There is an interesting bifurcation picture
associated with the system: the parameter region is broken up into the set of
'pyramids' parametrized by pairs of integers; these integers characterize the
behaviour of the associated solutions.

1. Introduction
In this paper we use geometrical methods of dynamical systems to carry out a
detailed analysis of the system of two coupled pendula with damping and forcing:

0 ,+ ?<£, +sin </>1 + fc(tf,1-<£2) = /1 , (1.1a)

$2+y<f>2 +sin <t>2+k(<f>2-^ = 12. (1.1b)

Results of our analysis of the special case were announced in [10]; one is referred
to that note for the details on the motivation and the background. Equation (1.1)
is of basic interest; besides having a simple mechanical interpretation as a pair of
pendula subject to elastic and torsional coupling (figure 1.1), it serves as a model

FIGURE 1.1. Pendula on rods are constrained to two parallel vertical planes; the horizontal axis
perpendicular to these planes provides torsional coupling. External torques /, and I2 are applied to the

pendula.

for coupled Josephson junctions [7] as well as for some aspects of charge density
waves in anisotropic crystals [6]. Mathematically, equation (1.1) can be obtained
as the two-point discretization (in space) of the damped sine-Gordon equation on
the finite interval with Neumann boundary conditions. Further details and references
are given in [10].
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Elastic coupling = k{<f>, - </>,)

FIGURE 1.2. <£, and 4>2 are the positions of two particles in the periodic potential -cos <f>; the particles
are coupled by an elastic 'rubber band' with tension k{<j>l - <f>2) proportional to the distance, and the

particles are subject to constant forces / , , I2.

Despite the basic nature of equation (1.1), until recently very little was known
about its behaviour. Perhaps the most intriguing and interesting property of the
system was discovered by Imry and Schulman [7] numerically and by Zimmerman
and Sullivan [24] experimentally. There exist solutions for k not too large, called
the 'beating modes' by Imry and Schulman, in which only one pendulum rotates
at a time. Another mechanical interpretation of these solutions is shown in figure
1.2. For a proper choice of k« 1, /2 = 0 and /, the following motion is observed:
as one particle stays in a bounded (by, say, 1) neighbourhood of a minimum of the
potential, the other travels to the right, eventually settling in a local well, at which
point the previously resting particle climbs out of the well and travels to the right,
finally settling in another well, etc. This periodic motion invites the name 'caterpillar'
solutions, which we use instead of the term 'beating modes', since the standard
beating modes have a simple local and, in fact, linear nature, while the mechanism
of the solutions discussed here is non-linear and non-local. Actually, these solutions
are the finite-dimensional analogues of solitary waves. This low-dimensional setting
allows us to give a simple geometrical explanation of the mechanism of these
finite-dimensional 'solitons'.

Equation (1.1) is remarkable in that it is complex enough to exhibit interesting
wave-like (non-linear) behaviour inherited from its sine-Gordon parentt and yet
simple enough to be amenable to geometric analysis.

2. Results
We will give a bifurcation diagram in figure 2.3, providing a near-complete picture
of the behaviour of equation (1.1) for all k less than a certain value ko = ko(y). To
help the reader follow the path of least time, we recommend going directly to figure
2.3 and to the main theorem immediately following it, referring to the definitions
below as necessary.

2.1. Definitions of caterpillar solutions

Definition 1. We will call a solution (#,, </>2) of equation (1.1) a running periodic
solution if there exists (a period) T>0 and an integer m>0 such that

<j>h2(T) = * u ( 0 ) .

t With damping and forcing, which destroy all the integrals. Very little is known about the qualitative
behaviour of that system. Some very interesting results in that direction were obtained in [3].
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Time

FIGURE 2.1. A 'caterpillar' solution.

Definition 2. A 'caterpillar' solution is a running periodic solution of (1.1) whose
period consists of two intervals, during the first of which </>, increases by 2vm + Rt,
m being an integer and 0 < Rt < IT/2, while <f>2 changes by less than TT/2, and during
the second of which <I>1 and <j>2 exchange roles: </>2 increases by 2irm + R2,0<R2<
tr/2, while 4>x changes by less than TT/2 (figure 2.1).

More precisely, there exists T e (0, T) and an integer such that

0<Rl<n/2,

forallO<r<T

and

($>2\T) — $2\T) = 2T77W~f~R2 , 0*~̂  R2< IT/2,

| * I ( 0 - * I ( T ) | < I T / 2 , r<<<T.

Definition 3. A caterpillar solution has the type (p, q) with p,qeZ if the distance
<f>j - <f>2 changes from the minimum 2irq + R3 to the maximum 2*irp + R4, \R3A\ < IT/2
during one period (figure 2.1). Thus q is the smallest and p is the largest integer
length of the caterpillar.

To state our main result, i.e. to describe the bifurcation diagram, we need an
auxiliary construction which is reproduced here for completeness.
2.2. An auxiliary construction. The key to the construction of the bifurcation diagram
of equation (1.1) is the autonomous system

4> + y<f> + s in <f> + k<j> = a, a = c o n s t , (2.1)

which governs the motion of one pendulum in our system when the other is held
fixed. If the pendulum is wound backwards so that the net torque a-k<f> builds up
to, say, 1, and then released, the pendulum will tumble O{\/k) (k« 1) times before
settling in a sink - or a saddle if the initial data lie on the stable manifold. The
position of the final sink is very insensitive to the initial condition for the initial
conditions 'not too close' to the stable manifold.

Definition 4. The distinguished sink (5,0) = (5(a; k), 0) of equation (2.1) is that sink
which captures the solution with initial data

a - fc$ 0 = l , <̂ 0
 = 0- (2-2)

The first saddle equilibrium to the right of S(a; k) is denoted Sa(a; k); we will
call it the distinguished saddle. When (<f>0, <j>0) lies on the stable manifold of a
saddle, the distinguished sink S(a; k) is undefined; for such (a, k) the function S
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FIGURE. 2.2. Phase portrait of equation (2.1) and the discontinuity lines a = am(k) of S(a; k).

undergoes a jump (by 2ir + O(k)). We list here the properties of S(a; k) needed
below.

(1) Periodicity: S(a + 2irk; k) = S(a; k) + 2-jr.
(2) (d/da)S(a;k) = l/(cosS + k)>c(y)>0, where c(y) depends on y only.
(3) kS(a; k) = a - Tc +p, \p\<3irk, where Tc= Tc(y) is that (unique) value of

torque T which gives rise to the saddle-saddle heteroclinic connection for the single
damped pendulum system ij> + y(j> + sin <f> = T. (See [22], [1] and [11] for the details
on this system.)

(4) The discontinuities of S(a; k) form a countable set of curves a = am{k), meZ
in the (a, &)-plane (figure 2.2). These curves fan out of the point (Tc, 0), as follows
from:

(5) The jump in S across each curve (crossing to the right) is 2rr+ O(k). Finally,

Proof of (l)-(5) amounts to the phase plane analysis of equation (2.1) and is
omitted.

2.3. Construction of the caterpillar domains Cpq. Consider the half-planes of discon-
tinuity of two functions 5(/, + fc7r/2; k) and S(I2+kir/2; k), both defined in the
(/,, I2, it)-half-space k>0. Each wedge am(k) < I2+ kir/'2< am+i{k) is assigned its
own integer

similarly, the wedges am(fc)</, + /c7r/2<am+1(fc) which are parallel to the J2-axis
are enumerated by

(figure 2.3).
The discontinuity half-planes Il + kir/2= am(k), J2 +for/2 = am(fc), /c>0 sub-

divide the half-space fc>0 into pyramidal cells; each cell is labelled by a pair
(/>, q) of integers indicating the numbers of wedges to which the cell belongs. We
define the caterpillar domain Cpq by removing an afc-neighbourhood of the boundary
from each pyramid, where a can be chosen arbitrarily small; we pick a = ĵ g to
avoid technicalities.

t With [ ] denoting the integer part.
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FIGURE 2.3. Caterpillar domains Cpq for equation (1.1) are the pyramids Cpq with the common vertex

at (7;, 7"c,0).

MAIN THEOREM. Fix y > 0 and fix two arbitrary constants C + >C_>0. t There
exists ko=ko(y, C_, C+)>0 such that for any parameter point (/,, I2, k) satisfying
0<k<ko and lying in the intersection of a caterpillar domain Cpq with the wedget
l + Tc+fcC_</, + /;,< l + rc+fcC+, figure 2.3, equation (1.1) possesses a pair of
(p, q)-caterpillar solutions, one exponentially asymptotically stable and the other
unstable. The orbits of these two solutions are within distance it of each other.

COROLLARY 1. Letting /2 = 0, /, = / we obtain the bifurcation diagram in the (I,k)-
plane by slicing the diagram in figure 2.3 by the plane /2 = 0 (figure 2.4).

We note that an alternative way to obtain this diagram is to take the square lattice
in a k = const plane, denned by the lines /] = am(k), I2 = am(k),me Z, and to project
it centrally onto the I2 = 0 plane from the point (Tc, Tc, 0). In other words, the lines

F I G U R E 2.4. Bifurcation diagram for the system (1.1) with I,= /, / 2 = 0. Dpq are the intersections of

the caterpillar domains Cp , with the 72 = 0 plane.

t One should think of C + » C_.
t We recall that Tc = 7C( y) was defined as the heteroclinic value of T in the equation 4> + y<j> + sin <f> = T.
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FIGURE 2.5. Bifurcation diagram for /, = I2= I.

defining the lattice in the 72 = 0 plane are the shadows of the lines defining the rectangular
lattice when the source of light is placed at (Tc, Tc, 0).

COROLLARY 2. Setting Ix = li—lgives rise to the system with 'constant bias'. In this
case p = — q; in the resulting motion each particle alternately overtakes the other by
2irp + E, \E\<TT/2. The bifurcation diagram looks somewhat simpler (figure 2.5).

In this particular case of 7, = I2 one can interpret (1.1) as describing two particles
in the 'staircase' potential -7<£-cos <j>. The caterpillar motion looks like that of a
'slinky'.

Fixing C+ » C_ > 0 and fixing k < fco( C_, C+, y), we vary the slope 7 through the
long interval 5(1 + Tc+ikC_)<7<|(l + Tc+kC+). While doing so, we will pass
'forbidden' intervals of small length <ak for which no caterpillar solutions exist;
in the remaining intervals of length lirk-ak we will obtain (p, -p)-caterpillars
corresponding to the particles overtaking one another alternately with maximal
separation reaching 2irp + R, \R\<ir/2. Here

'Remark 1. Global behaviour. One can actually give # complete analysis of the system
by specifying all possible fates of its solutions. As it turns out, any solution does
one of the following: it either (1) tends to one of the two caterpillars, (2) tends to
one of the O(l/it) equilibria or (3) enters a tubular neighbourhood of the syn-
chronous solution, i.e. the solution for which the pendula undergo an in-phase
rotation with the phase difference 4>\ ~ $2 bounded by a constant independent of fct

The incompleteness of this description is due to the lack of full understanding
of the flow in the tubular neighbourhood, although some interesting examples of
coexisting solutions are known [7]. It is unclear, in particular, whether every solution
tends to a periodic one.

Remark 2. The so-called 'period-adding' phenomenon in forced oscillators [4] bears
a certain similarity to the bifurcation leading to the change of integers p, q. In fact,
while the effect of period-adding in forced oscillators is different from the effect of
change of relaxation integer p — q, there is a strong similarity, both in the underlying
geometry (despite the difference of dimensions between the problems) and in the
additive nature of the change.

t We omit the proof of the existence of synchronous solutions. One can give such a proof using the
Bohi-Brower fixed point theorem just as was done in [11] in proving the existence of periodic solutions
for the damped sine-Gordon equation.

https://doi.org/10.1017/S0143385700009408 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009408


Caterpillar solutions in coupled pendula 159

Remark 3. Relaxation oscillations. It is interesting to observe that each pendulum
taken individually behaves as a relaxation oscillator: the slow ('standing') phase
alternates with the fast ('running') phase. It is remarkable that this relaxation
behaviour is unexpected a priori, unlike in the standard cases of fast-slow systems
in the plane, where the solutions 'fall' and 'drift' alternately [20]. The full solution
3* = (4>i,<f>i,<t>2, 4>2) in R \ rather than its two components, does not have the same
fast-slow behaviour.

Remark 4. Taking small k amounts to dealing with a singular perturbation problem.
Taking fc-»0 leads to a singular limit: the period as well as the separation between
4>i and <f>2 tend to oo. If we set k = 0, all information on the interaction is lost, so
that starting the perturbations procedure with k = 0 is of no help.

Remark 5. Invariance of the bifurcation diagram. Linear transformation
T : ( / , , I2, k)*+(Ix + 2irk, I2 — 2rrk, k) in the parameter space leaves the bifurcation
diagram invariant and is equivalent to the shift in the domain indices

Proof. Let (It, I2,k)e Cpq and let {<f>x, <t>2) be any solution satisfying equation (1.1).
Then (<£,, <£2) = (<£1 + 2ff, <j>2) is a solution to (1.1) with Ix = Ix + 2trk replacing / ,
and T2 = I2 — 2irk replacing I2. Now let (<£,, <f>2) be a (p, g)-caterpillar solution of
(1.1). Then (< ,̂ + 27r, <t>2) is a (p + l, q + l)-caterpillar solution of the equation with
/ , , 72; thus (7 , , I 2 , k )e Cp+1,,+1. •

Remark 6. The linear nature of damping and coupling plays no role in the proofs,
and the theorem could easily be extended to include non-linear dissipation and
coupling subject to mild monotonicity conditions. This can be done using the same
arguments as the ones we use below; we look at the simplest case to avoid the
unnecessary technicalities.

Open questions. (1) What is the behaviour in the tubular neighbourhood of the
synchronous solution? This neighbourhood can be given explicitly as the neighbour-
hood of the curve (not the solution) in R4 given by (# i , # i , # 2 , <j>2) with <£2 - <£i =
{I2-h)/2k, <£,=/>(<£,, (/, + /2)/2), <t>2 = p(<t>2,ih-h)/2), where <f>=p(4>, T,y)
gives the graph of the running periodic solution of <f>> + y<j> + sin <f> = T in the (</>,<j>)-
plane [11].

(2) What is the qualitative behaviour of the chain of n pendula?
(3) What is the effect of periodic forcing / = / 0 + e sin t ?

3. Proof of the theorem

3.1. Heuristic discussion. Heuristic arguments for the particular case 72 = 0 can be
found in [10]; here we indicate a brief outline for completeness. The mechanism
responsible for the caterpillar effects works as follows.

Assume that one pendulum, say #! , starts near a (slowly moving) sink of the first
equation <£I + -y(̂ 1 + sin <£, + &#, = fo£2+/i with the right-hand side treated as a
near-constant (k is small). Assume that the other pendulum, <f>2, is running mean-
while according to </>2 + - y ^ + sin <f>2+k<f>2 = k<f>2 + (I2-k<l>l); the last difference in
parentheses changes by O(k) during the time that <j>x stays near its sink. Now, if a
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caterpillar solution is to exist, then 0, will have to start, i.e. the sink of the first
equation which has held 0, must disappear in a saddle-node bifurcation at about
the same time that 02 stops running, i.e. when the equation for 02 with the right-hand
side treated as a constant acquires a heteroclinic connection. To summarize, a vague
and approximate necessary condition for a caterpillar is the near-simultaneous
occurrence of the saddle-node bifurcation for one pendulum with the heteroclinic
bifurcation for the other.

So far this explains or predicts nothing about caterpillar solutions. The crucial
point is this: near the saddle-node the vector field is quadratically slow, while near
a saddle it is linearly slow. Consequently, it should take 'much longer' for a point
(e.g. (0i , 0t)) to leave the saddle-node neighbourhood than it takes a point (e.g.
(02, 02)) to pass by a saddle (if it is not too close to its stable manifold).

In physical terms, the slowness of the vector field near the saddle-node can hold
one pendulum slow long enough, providing the other enough time to lose its speed
and to settle into an equilibrium. The parameters /, k have to be adjusted so that
when one pendulum settles, the torque on the other is larger than 1 (so that it will
start) and yet not too large (so that the locking effect of the saddle-node be still
valid). This is expressed by equations (3.12) (for 0j) and (3.13) (for 02) below.
Furthermore, one must avoid parameter values for which the points come too close
to a stable manifold of the saddle; this condition is responsible for breaking up the
bifurcation diagram into wedges Cpq; cf. (3.14) and (3.15).

It is important to point out that the requirement of the near-simultaneous occurrence
of the saddle-node and the heteroclinic bifurcations is much less rigid than it may seem.
In fact, the smaller k is, the more lax this condition becomes: the locking effect of
the saddle-node becomes stronger and stronger. This suggests that the caterpillar
phenomenon is quite robust, which is in fact borne out in the analysis below. In
particular, the number of caterpillars is arbitrarily large if k> 0 is small enough; in
fact, the aperture C+ - C_ of the dihedral angle in figure 2.3 can be made to include
arbitrarily many domains Cpq, i.e. the number of distinct caterpillar solutions tends
to oo and fc-»0.

In the next section we present the proof of the theorem for the case I2 = 0, /, = / ;
the general case is a simple modification.

3.2. An outline of the proof. The proofs are given for the case I2 = 0, /] = /. The
general case involves no extra arguments. We will prove the existence of two
caterpillar solutions by constructing Poincare sections in R4. For the stable caterpillar
we will construct two three-dimensional sections X, and 22 transversal to the flow
of (2.2) in R4 such that for proper values of I and k every orbit starting in 2] crosses
some T-translatet of 22 and vice versa (figure 3.1). This will define two section
maps, Py :2i-»£,(mod T), i^j, i,j = 1,2, whose composition P = P21 ° P12:2ii-»Tm21

is into (mod T) and thus has a fixed point mod T. More precisely, we will show that
for (7, k) as above, P,2:2, -> TP12 and P2,: 22-» r~ql.x are into, where p > q > 0 are

t We recall that T is the translation in the 4>x- and <£2-direction T ( $ , , I/»,, <t>2, il/2)'-*(<t>i + 2ir, </<,, <t>2
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FIGURE 3.1. Poincare sections 2 , , 22 in R4.

the integers corresponding to the domain 3)p q. This shows the existence of a running
periodic solution whose homotopy type in the phase cylinder S'xR3 is m=p-q.
We will prove exponential stability of this solution in § 3.7.

Existence of the unstable caterpillar is shown in a similar way by constructing
different transversal sections tr, and o-2. The composition map Q: Q2\ ° Qi2 deforms
the 'cube' o-x as shown in figure 3.2; that is, the degree of the map Q relative to <JX

is —1, which shows the existence of a fixed point mod T for the map Q. Figure 3.2
also suggests that the point, and thus the corresponding caterpillar, is hyperbolic.

F I G U R E 3.2. Poincare sections <T,, <T2 giving rise to the unstable caterpillars.

3.3. Construction of Poincare sections. We first give a formal construction of sections
2, and 22 and follow it up with a short intuitive motivation. Fix r > 0, to be specified
later.

Definition of 2 , . Let X, be a direct product of the segment St in the 4>,=
($!, i/f,)-plane and the box B, in the <J>rplane (figure 3.3), where 5, and B, are
defined as follows.

F I G U R E 3.3. Projections of the section 2 , onto <£,- and <£2-planes: 2 , = S, x B, .
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Segment St. Fix any value of <f>° (the 4»t-coordinate of St) which satisfies

r c + c < l - f o £ ? < l - c , c>0; (3.1)

e.g. let / - k<f>° = (1 + Tc)/2 and let the vertical coordinates of the segment be given
by

£/>(*?,/-**?)=s*,=£2p(tf?-**?). (3.2)

Here tl/=p(<j>, F) is the running periodic solution of the single pendulum equation

Box B,. This is defined as the r-neighbourhood of the sink nearest (TT/2, 0) of the
autonomous equation

<fi + y<j> + s i n <l> + k<t> = k<t>o
l. (3.3)

This completes the definition of 2 j .

Definition of 22. 22 = S2x B2, where the segment S2 is given by {(</>2, <t>2)} with a
fixed tf>2 subject to

r c + c < - f c ^ ° < l - c , c>0; e.g.-tyS = (l + Tc)/2, (3-4)

and with <j>2 subject to

&(<£, -k<f>°2)< <j>2<2p(<t>°2, -k<f>°2). (3.5)
Box B2 is defined as the r-neighbourhood of that sink of

^ + y4> + sintf> + k(t) = I + k(t>2 (3.6)
which lies near (ir/2,0).

Sections <x, and a2. These are defined in the same way except that B,, B2 are replaced
by the r-neighbourhoods bx, b2 of the saddles of (3.3) and (3.6) which lie nearest
(TT/2, 0) (figure 3.4).

FIGURE 3.4. Section <r, = S, x 6,.

3.4. Fundamental lemmas: A, B, C. In the following two key lemmas (A and B) we
extract the properties of solutions of a class of equations

L<f> = <p + y<j> + s i n <f> + k<f> = b ( t ) (3.7)

when these solutions undergo transitions, i.e. when they 'start' or 'stop'. Lemma A
will be used to show that the starting is slow (cf. the heuristic argument in § 2.3),
while Lemma B will apply to showing that the capture into the sink is relatively
fast provided b(t) avoids 'bad' values.

The statements of lemmas below use a quantity associated with the autonomous
equation

</> + y<j> + sin # + k<f> = a, a= const. (3.7)'
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This quantity is the value of a which gives rise to the saddle-node bifurcation near
•TT/2; we denote this value by asn = asn(k). In other words asn(fe) is denned by the
requirement that the equilibrium equation

sin <f> + k(j> = asn(fc)

must have a double root near n/2; one concludes from this that

LEMMA A. Assume that for some c > 0 , b(t) satisfies^

(i) fc(0)<asn-c,

(ii) \b'(t)\<ck Vr>0 ,

(iii) b(t)<asn+Ck W > 0 .

For any y > 0 , /3>0 there exist r = r(y), ko=ko(f}), c = c(/3) and C such that if
(iv) (<(>(0), <f>(0)) e r-neighbourhood of the sink of L$ = ft(0) which is nearest TT/2,
then for allk<k0 we have

|*(r)-ir/2|<j8 forfsn<r<fsn + c(/3)fc-1/2 (3.8)

and

<t>(t)<ir/2+Ck for f<fsn, (3.9)

w/iere tsn is the smallest t>0 for which b(t) = asn.
The key point of this lemma is that </>(t) stays near TT/2 for the time ~ l/Vk after

the saddle-node bifurcation.

Before stating the lemma, we need one notation. Let ̂ i=p{<j>, F) be the graph in
the (</>, <£)-plane of the running periodic solution of the forced pendulum equation
4< + y<j> + sin <£ = F; p is 27r-periodic in <f> and is defined only for F > Tc.

LEMMA B. Let S = S(k) satisfy e~k ;><5(fc)< irk with some 0<p<l. Choose
C\, c2, c6>0 subject to Tc + c, < 1 - c 2 , c6>2n. There exists r= r(cl,c2,y) such that
for any solution <j>(t) of (3.7) with b(t) e [am + 8(k), am+x - S(k)] for all t and with
initial conditions subject to

Tc+C l<am-^(O)<l-c2 (3.10)

and

|<M0)-p(<M0),am-fc<M0))|<r, (3.11)

(i)-(iv) below hold for k small enough.
(i) Ift>0 is large enough so that for some c3, c 4 >0

and

b(t)-k<t>(t)>Tc+c4,

then for some c5 > 0

\<f>(t)-p(<f>(t),am-k<t>(t))\<c5k.

t T h r o u g h o u t th is p a p e r c, ct, c2,- • • s t a n d for c o n s t a n t s i n d e p e n d e n t o f y , k.
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Given any c6>2n and r>0 there exist t'= t'(c6, k) and t"=t"(r, k) such that (ii),
(iii), (iv) hold.

(ii) <t>(t') = Sa(am,k)-c6;
such t' is unique.

(iii) |(0(r), 0 (0 ) - (5 (o , fc),0)|<r for any ra/", ae(am,am+]).

1 c
(iv) 0<f"-r'<cln——, t>T, figure 1.5,

O\K) K

for some c = c(r) > 0. Furthermore, fixing any c > 0, we have for k small enough

(v) <t>(t)<Sa(b;k) + c W > 0 ,

where b = ma.x,b(t); the condition on b(t) avoiding am(k) is not necessary for this
last statement of the lemma.

We will also need a simple but crucial 'parametric non-resonance' lemma which
states roughly that the pendulum (3.7) cannot 'start' as long as the net torque on it
is <1 and as long as that torque changes not faster than O(k):

LEMMA C. Ifb(t) satisfies the following estimates with all k>0 small enough:

\b(t)\<ck and b(t)<asn

b(T)>asn-ck for some c>0,

then any solution of (3.7) with (0,0),=o subject to (iv) in Lemma A satisfies

Proof of lemma A consists of two parts: first we show that for f<fsn =
inf {t: b(t) = asn} the solution $ ( 0 = (0, 0) with 4>(0) satisfying (iv) with r> 0 small
enough does not cross the strong stable manifold of the saddle-node of the auxiliary
autonomous system Li/> = asn; in the second part of the proof we show that it takes
times c/yfk to leave a /}-neighbourhood of the saddle-node.

Part 1. For 0< t< tsn, $(f) does not cross the part BCD of the curve Ws, the strong
stable manifold of the saddle-node of the flow of Li/> = asn (figure 3.5(a)). Indeed,
at a point (0, t/») e W^ the velocity vector 4> = {<p, -sin 0 -k<j> + b(t)) lies below the
tangent vector V = (i/>, -sin 4>-k</> + asn) to IVs since b(t) < asn for 0< t < tsn (figure
3.5(a)). Finally, <1> cannot reach the arc AB of W* shown in the figure, as follows

FIGURE 3.5. Times /' and /" satisfy r"-» 's c In (I/A:).

from assumptions (ii) and (iv) of the lemma, provided r is chosen small enough
(independently of k).

Part 2. To show that it takes times ck~xn for 3>(0 to leave the /3-neighbourhood
of the saddle-node of L0 = asn, we bring the non-autonomous vector field of
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L<f> = b{t) to a normal form using a normalizing transformation for the autonomous
vector field of L<f> = asn. In the neighbourhood of the saddle-node (<f>sn,0) the
deviations <f> = </> -i//sn and ij/ = \p, where L</> = b(t), satisfy

A diagonalizing linear transformation

-CHJ ri )(*)z

yields

0

- y y

Now, using a quadratic transformation

where h(w) is a vector whose components are homogeneous quadratic
polynomials in (u, v), we kill the non-resonant quadratic terms in the last system,
obtaining (cf. [2])

<?-(r;')(-.(«

with c,, c2>0 independent of fc
We conclude from this the existence of a constant /3'>0 independent of k such

that in the ^'-neighbourhood of the origin in the w-plane the inequalities hold:
ti<2c,u2 + cfc, -2yv-ck<v<-(y/2)v + ck.

The image of the )8 '-neighbourhood in the w-plane covers a /3-neighbourhood of
the saddle-node in the (<f>, <^)-plane, where /8 =)3(/8') is independent of k.

By part 1, 4>(<sn) lies below W5, and thus u(<sn)<0. '^n explicit calculation using
the estimates above shows that for some c'= c'(/J')>0

u(t)^p' and \v(t)\<ck for tsn< << <sn + c'fc-1/2;

this translates into the desired statement (3.8). •

Proof of lemma B is based on comparison of solutions of equation (3.7) with those
of the autonomous system (3.7)'. Let <J>(f) = (<f>, <£) and *f?(t, a) be two solutions of
(3.7) and (3.7)' respectively, with the same initial data <J>(0) = ^ (0 , a) satisfying
initial inequalities (3.10) and (3.11), and let ^(t, a) satisfy the same equation (3.7)'
but with initial conditions (2.4). We will show that <P(t) enters the r-neighbourhood
of the distinguished sink fast enough, thus proving the main parts (iii), (iv) of the
lemma, by comparing <l>(f) with ^ and ^ with ^ . By definition of am, <ji(t, am) lies
on the stable manifold of the distinguished saddle (Sa(am, k), 0). The distance
between the first crossings of ̂  and ¥ with the line tj> = Sa(am,k) — l = <£,, chosen
close but not too close to the saddle, is <e~c/k, c = c(y), expressing the very weak
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dependence on the initial conditions after a long time. One obtains this exponential
estimate by applying the divergence theorem to the strip in the (<f>, $)-plane bounded
by two curves V(t, am) and ^(f, am), and the lines ^ = ̂ , on the right and <f> = <f>0 =
max (<f>(0, am), <£(0, am)) on the left. The inequality follows from the facts that the
divergence of the phase flow of (3.7)' is —y and that the distance #, - 4>0 is Oik'1).

On the other hand, comparison of 4>(f) with ty(t, am) shows that the intersection
of 4>(0 with 4>-<t>i is above that for W(t, am) by at least cS(k), with some c > 0
independent of k, as a consequence of the conditions b(t)>am + S(k). Recalling
that 8(k)> e~k ", p< 1, we conclude that 4>(f) crosses ^ - ^ , a t a distance >c5(fc)
above the stable manifold *P(f, am). This proves that $(<) enters and leaves an
O(fc°)-neighbourhood of the saddle Sa(am, k) in time <c In (l/8(k)).

Similar arguments show that <t>(f) passes under the stable manifold W(t, am+l) of
the saddle Sa(am+J,k) of equation (3.7)' with a = am+1, and at a safe distance
>c8(k), so that it takes time s c In (1/5 (fc)) to enter the /--neighbourhood of the sink.

D

Proof of lemma C is contained in the first part of the proof of lemma A. •

3.5. Proof of the existence of stable caterpillars. Our aim in this section is to show
that both maps Pj,-:2,-'-»Tm2/- are into; according to the above remarks, this would
imply the existence of a caterpillar solution. More precisely, we will show

VC+,C-: C+-3IT>C- + 3IT>0, 3ko=ko{C+,CJ),

such that if (/, k) lies in the intersection of a caterpillar domain 3)pq in figure 2.4
with the triangle given by

l + Tc+C-k<Kl + Tc+C+k, k<k0,

then the Poincare maps Py are into.
To that end, we observe that the above restrictions on (/, k) imply the following

inequalities, where c± = C± =F3TT > 0:

[ ( y ) ] c+>c_>0, (3.12)

y , it) -c+] <flsn(fc)</ + fc[s(y; * ) - * - ] , (3-13)

am(k)-[l+ — >ak, (3.14)

>ak, VmeZ. (3.15)

Before showing how these inequalities imply that the maps Py are into, we give
their physical interpretation. Rewrite (1.1) in the form

(3.16a)

(3.16b)

reminiscent of the autonomous system (2.1). If we place <j>2 = ir/2, then we can
expect <f>i to tend to the distinguished sink s = 5(7 + kir/2) (lemma B): inequalities
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(3.12) say that the right-hand side of (3.16b) crosses the critical value asn when <£,
is between s — c+ and s — c_; this crossing destroys the equilibrium in which <j>2 has
rested (figure 2.1), and we should expect <t>2 to start, but slowly (lemma A) so that
4>x has ample time to settle into a sink (lemma B). For lemma B to be applicable,
i.e. for <f>t to settle into a sink fast enough, we need I + kir/2 = right-hand side of
(3.16a) to avoid 'bad' values of am(k); hence we require (3.14).

Inequalities (3.13) and (3.15) are interpreted analogously.
Let $(0) e £,; proof of the existence of t = t2, such that <&(<2) £ T P 2 2 , consists of

the following three observations on the dynamics of 4>(f)-

Step 1. Fix d>0, r > 0 . For k small enough, and (/, k) satisfying (3.12) and (3.14),
4>2(t) will reach ir/2+d at some f = f,<oo and it will do so before <j>x{t) reaches

• • « . ) •

(c)

FIGURE 3.6. Illustration of the three steps in the proof of the existence of t2>0 such that 4>(»2)eS2 if
<t>(0)eS,.

kir/2) + 3iT (see figure 3.6(a)). That is, 3f, such that

(3.17)

(3.18)

Step 2. The time fj given by <£2('i) = ir/2 + d is large enough (if k is small enough)
for $,(f) to enter an r-neighbourhood of (5(7 + kir/2), 0) (see figure 3.6(b)); namely
*! 2cfc~l/2 for some c > 0 independent of k.

Step 3. <J>(f) crosses S2 transversally at some f = t2> tx, i.e. 4>, crosses the segment
5 t transversally while 3>2 lies in the box B, (figure 3.6(c)).

Proof of step I. Assume the contrary, i.e. that f, = oo or that 4>x reaches the indicated
value first; while 0 < t < r, we have # 2 (0 < ir/2 + d. The last inequality shows that
fc<£2< k(ir/2 + di) for 0 s r < r, in equation (3.16a). Applying lemma B(v) to (3.16a),
we deduce that 4>i(tl)<S(I + k(ir/2 + dl)) + c (if d,, c are chosen <ir /2) < S ( / +
kir/2) + 3ir, which contradicts our assumption.
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Proof of step 2. Let us modify <t>x in equation (3.16b) by freezing it for t > tx, i.e. define

l
\k(f>x(tx), / > * , .

With this modification of <f>x lemma A becomes applicable to equation (3.16b) -
indeed, b(t) satisfies (i)-(iii) (here we use step 1) and 4>2 satisfies (iv) since 4>(0) € 2 , .
The lemma gives us: there exists c > 0 such that

<f>2(t)<Tr/2 + d forO<f<fsn + cfc~1/2, (3.19)

where <f>2 is the solution of (3.16b) with b(t) replacing the right-hand side k<f>x, and
rsn is given by b(tsn) = k<t>x(tsn) = asa.

From (3.19) and from the definition of /,: 4>2(ti) = <t>2(ti) = ir/2 + d it follows at
once that tx > tsn + ck~l/2. With this bound on tx we turn our attention to (3.16a) to
show that (f>x{tx) belongs to an r-neighbourhood of S{I + kir/2). Indeed, equation
(3.16a) for <£, satisfies lemma B for 0 < ; < ( , ; the crucial point here is that the
right-hand side I + k<f>2{t) avoids 'bad' values: for 0< t< i, we have

>(a-d)k>(a/2)k

if we pick d < a/2.
For t > t, these inequalities may fail; to make lemma B applicable, we set

l l + k<f>2(t), f < / , ,

Let $x be the solution of (3.16a) with the right-hand side thus modified, with $x = 4>x

on [0, / , ] .
The remaining prerequisites of lemma B hold for <f>x (but not <)>x) and we can

conclude: 30 < t'< t", r"< t'+c In (1/fc) such that

|*,(r") - (5(/ + tor/2), 0)| < r, (3.20)

0,(t') = 5(7 + to r /2 ) - c + . (3.21)

To complete step 2, it remains to show that the capture (3.20) occurs early enough,
i.e. t"< tx, which would allow us to remove the tilde from (3.20), thus leading to
the desired estimate.

To that end we note that

i.e.

^ , ( O >S(7 +tor /2)-c+ ,

implying the existence of t < fsnt for which

0,(0 = S(7 +tor /2)-c+ . (3.22)

t This is the crucial point where we use (3.12); it is of essence that (' occurs before k<f>, = asn, i.e. before
<t>2 may start.
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This relation also holds for <£, (since <£, = <£i on [0, r,]); comparison with (3.21)
shows that t = t' by the uniqueness of t' (lemma B(ii); choose c6 = c+>2TT).

This shows that t' < tsn and thus

t"<t'+ c In (1/k) <tsn + c In (1/k) < tsn + ck'V2< r,,

with which (3.20) becomes valid without the tilde:

!* , (* , ) - ($ 0)| <r. (3.23)

Proof of step 3. The idea of the proof is simple: <£>, is now (i.e. for r > tt) trapped
in the basin of the moving sink, while 4>2(0 is running and thus will have to cross
the line c62 = <j>°2 (at the proper height), provided <f>2 is chosen large enough so that
(f>2 has enough time to settle into a running mode, and yet not too large for <f>2 to
stop before reaching <f>2 due to the settling down of the running mode (see the
heuristic argument). Here is the precise proof.

Consider two statements:

We have, using lemma A,

P(h,T) implies Q(tltT),

due to the choice of <f>2 (given in the definition of 22).
There exists t2> h for which P fails but Q still holds: f2 = sup{T: P(tu T) holds

true}. Clearly t2<<x>, otherwise Q(ti,oo) holds, and thus 4>! forever lies in an
O(fc°)-rieighbourhood of (S(/ + fc7r/2),0) so that <f>2 satisfies

L4>2 = Jfĉ , = k[S(/ + kit IT) + O(k0)].

By lemma B <f>2 must reach the value

which contradicts P(f,,oo).
Summarizing, we have obtained t2 > tt such that

By lemma B(i) we have

This shows: P,2*(0) = 4>( t2) e x"S2. D

The proof of the into character of P21:12-j*T~q1,l goes similarly and is omitted.

3.6. Proof of the existence of the unstable caterpillar. We can represent cr, = S, x b,
as parallelepiped (see figure 3.7) in the three-dimensional hyperspace
{(<t>°u ty\,4>2, ̂ 2)} in R4, which we identify with R3 = {(t^, <f>2, ^2)} by dropping the
first coordinate. Here we will show that the image of cr, in the section (</>2 = 02 +
2-n-p} 3 TPO-2 under Poincare map cuts across the parallelepiped cr2 as shown in figure
3.2. Here p is the same integer as in the previous section.
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<ri

{
Qn

-4-
\^

l+2trp

(III)'

(c)

ID'

(I)'

( , (3, increases along the
indicated direction

(b)

FIGURE 3.7. Images of o-, in the hyperplane <t>2 = <j>\ + 2irp and the intermediate hyperplane {<t>2 = <t>*}-
Superscripts p (as in fcf) denote the 2?rp-translates in the horizontal (i.e. <£, or <f>2) direction.

The precise meaning of this 'cutting across' is expressed in the following:

THEOREM. If (I, k)e Cpq, where CM is an admissible domain, then the image & of
the section or, in the hyperplane {<f>2 = <j>t+2irp}( => TPO-2) looks as shown in figure 3.2;
its projections a[ and a2 onto <r,- and a2-planes are shown in figure 3.7(c).

More precisely, the box bx consists of three domains I, II, III such that (l)-(4) hold
{see figure 3.7):

(1) ( I ) 'u( I I ) ' belongs to an O{k)-neighbourhood of the unstable manifold of the
distinguished saddle of equation L<j> = I + k</>2- Here ( )' denotes the projection onto
the Q>!-plane of the image under the Poincare map Q12: (I)' = proj<Pl (Qi2(bi xS,));
(II)', (III)' are defined analogously.

(2) The image L' of the left boundary L of bt lies to the left of b% (superscript p
denotes 2np-translate in the horizontal (i.e. <f>i or (j>2) direction). The image of the
boundary II n III lies to the right ofbl (see figure 3.7).

(3) ( I I I ) 'nb 2 = 0 .
(4) Moreover, similar statements hold for the map Q2l: er2-»{<£i = <f>1 — 2irq}.
From (l)-(4) we conclude that the index of the map T*" P Q 2 1 ° Q12: ax-+

{<t>i = 4>ti => c , is - 1 , implying the existence of a fixed point. The corresponding running
periodic solution is easily seen to be a (p, q)-caterpillar.

We outline the proof of the above theorem. The first step is to look at the section
<f>2 = <P*, where $2* = const > ir/2 is to be chosen shortly, i.e. to analyse the set of
4>i when <f>2 = <f>*. The reason for choosing such a section is this: as long as 4>2 — $2,
we have the bound / + ktf>2£ I + k<p* in equation L<j>1 = 1 + k<j>2 = b; this bound on
the right-hand side makes it easy to estimate the set a* = {$>i(t2): t2 = f2(4>(0)) denned
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This set cr* is sketched in figure 3.7(b). It is easy to prove that, given any C > 0 ,
there exists ko = fco(C) such that Vfc< k(C) there exists a partition or* = I*u I I*u
II*, where I*<= O(fc)-neighbourhood of Wu (the unstable manifold of the distin-
guished saddle for L<f> = / ) , II* <= O(fc)-neighbourhood of the upper branch of W*,
and that sup {^>,-projection of III*} = Sa(I) - C*. Pre-images of I*, etc. in <r, define
I, etc. of the above theorem.

The above statement uses only the bound on b(t) and the fact that $(0) e S,; it
is a statement on the non-autonomous one-degree-of-freedom systems L</> = b.

Proof of (1). The first assertion of the theorem is proven as follows: (i) the unstable
manifold of the saddle of L</>1 = I + k<f)2= b nearest Sa(I) varies with the speed
O(fc); (ii) with any b frozen between / + k<p* and / + k(<f>2 + 2irp) (i.e. </>* < 4>i < <£•> +
2trp), this manifold is an attracting set with the exponential rate of attraction O(k°),
uniformly in $ , . Thus any point in II u III will enter (and will stay in) the O(k)-
neighbourhood of the unstable manifold before <j>2 will reach <t>2'+2iTp = 0(1/k).

Proof of (2) makes crucial use of the inclusion (/, fc) e C M . The fact that L' is near
the sink and thus lies to the left of bp

2 follows from the arguments of the previous
section: these solutions are close to the stable caterpillar. The key step is to trace
the evolution of the boundary d* = II* n III* in order to show that d' lies to the
right of fc2

p.
To that end it suffices to show that 4>l reaches the value Sa(I) + 2ir before <f>2

reaches $ ° . Here (</>,, < 1̂( <f>2, <i>2) starts in our intermediate section d*x{$2 = </>*}
at t = t*. We have L<f>l = I + k<f>2>I + fc<£f = const for t & t*, and, moreover, 4>,(f*) e
3* lies above the solution of Lx = I with X(0) = (x, jc),=oe S, (see figure 3.8).

Actual solution

X
F I G U R E 3.8. Showing that <£, reaches Sa(I; k) + 2ir before <t>2 reaches <t>°-

This allows us to compare </>l subject to L<£, > / + fc<£f with <£ subject to L<£ = I.
It is not hard to prove that if <f>* is chosen sufficiently large, then <l>\(t) will go
beyond Sa(I) + 2IT in time T ^ c In (1/fc). Moreover, <f>^ can be chosen independent
of k, and thus the time it takes for <j>2 to go from <t>* to <£° is O(k~l) > c In (1/fc) = T
That is, 0, reaches 5a( / ) + 27r first. This proves (2).

Proof of (3) uses the facts that all solutions starting in III* satisfy differential
inequality

and that </>,(()) e III* lie above the solution X(t) of Lx = I with X(0)eS,. The
argument is the same as in the proof of (2). D
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3.7. Proof of stability. In this section we will show that the caterpillar solutions
found in § 3.5 are indeed stable.

Let <J>(f) be the caterpillar solution found in § 3.4. We will construct five sections
2', i = 1 , . . . , 5 (figure 3.9) transversal to «&(/), 25 being a r-translate of 2 ' , such
that the composition M = M 4 « M 3 » M 2 » M ' : S ^ I i = 2 l mod T of Poincare maps
M': 2 ' -* 21+1 is a contraction. Such decomposition of M corresponds to two running
stages and to two transitional stages during one period. The running stages give rise
to an exponentially strong contraction, while the transitional stages cannot overcome
this effect.

Transitional
stages

FIGURE 3.9. Decomposition of the Poincare map M: 2 ' ->25s Tp~q'Ll

We define

Let 0= t1 < t2< t*< t4< t5 = Tbe the times when <J>(r) crosses 2'.
Sections 21, 22 have natural coordinates ((/»], <f>2,1A2), while 23, 24 are described

b y (<f>i, ip\, *l>2)-

Since <J>(f) is transversal to every 21, the Poincare maps M,: 2' -»21+1, i = 1,2,3,4
are well defined near <!>(/'). The proof of stability reduces to showing that there
exist constants clt c2>0 such that (for fc>0 small enough) we have

|dM,(<D(f1))|<e-c./'<, i = l ,3, (3.24)

and

\dMi(<&{,ti))\<ec*Nk, J = 2 ,4 . (3.25)

Here | • | can be (and is) chosen as the Euclidean norm in 2'. Indeed, these estimates
yield at once

-2c./k+2cJ-Jk < 1
for k small enough, showing that <J>(f) is exponentially stable.
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Proof of (3.24). Estimate (3.24) for i = l (i = 3 is analogous) follows from the fact
that for t1 < << t2 we have, roughly speaking, a direct product of contractions, one
in the 3>2-plane, the other in the <J>,-direction, as is clear from figure 3.10.

The rate of these contractions is O(k°) during the time interval [tl, t2] of length
O(k~l), leading to (3.24). We omit further details.

fWt3))

FIGURE 3.10. Derivative of the Poincare maps in terms of solutions f(r) of the linearized equation.

Proof of (3.25) for i = 2 (i = 4 is analogous) rests on the observation that the linear
map dM2: T^^I2-* T^yE.3 is related to the linearization of (2.2) around <&(f) as
follows:

) (3.26)

(see figure 3.10), where f = £(/) is the solution of the linearization of (2.2) around
0>(t), with $(t2)= 7j0, n is a unit vector normal to I.3, f(x) is the vector field (2.2),
and (,) denotes the Euclidean inner product.

Now, since t3 —t2< c/\fk, we have

W)\=£ W)\ exp [(r3-12) sup |d/(*(0)|] =s |TJO| exp (c/Vk), (3.27)
i

which together with (3.26) gives

thus proving (3.25). Here we have made a crucial use of the fact that the flow / is
'sufficiently transversal' to 23, i.e. that the denominator in (3.26) is bounded from
below.
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