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Abstract

We consider a one-parameter family of dynamical systems W : [0, 1]→ [0, 1] constructed from a pair of
monotone increasing diffeomorphisms Wi such that W−1

i : [0, 1]→ [0, 1] (i = 0, 1). We characterise the
set of symbolic itineraries of W using an attractor Ω of an iterated closed relation, in the terminology of
McGehee, and prove that there is a member of the family for which Ω is symmetrical.
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1. Introduction

Let W0 : [0, a]→ [0, 1] and W1 : [1 − b, 1]→ [0, 1] be continuous and differentiable
and such that a + b > 1, W0(0) = W1(1 − b) = 0 and W0(a) = W1(1) = 1. Let the
derivatives W ′i (x) (i = 0, 1) be uniformly bounded below by d > 1.

As illustrated in Figure 1, for ρ ∈ [1 − b, a] we define W : [0, 1]→ [0, 1] by

[0, 1] 3 x 7→
{

W0(x) if x ∈ [0, ρ],
W1(x) otherwise.

Similarly, we define W+ : [0, 1]→ [0, 1] by replacing [0, ρ] by [0, ρ).
Let I = {0, 1}. Let I∞ = {0, 1} × {0, 1} × · · · have the product topology induced from

the discrete topology on I. For σ ∈ I∞, write σ = σ0σ1σ2 . . . , where σk ∈ I for all
k ∈ N. The product topology on I∞ is the same as the topology induced by the metric
d(ω,σ) = 2−k, where k is the least index such thatωk , σk. It is well known that (I∞,d)
is a compact metric space. We define a total order relation � on I∞, and on In for any
n ∈ N, by σ ≺ ω if σ , ω and σk < ωk, where k is the least index such that σk , ωk. For
σ ∈ I∞ and n ∈ N, we write σ|n = σ0σ1σ2 . . . σn. The space I∞ is the appropriate one
in which to embed and study the itineraries of the family of discontinuous dynamical
systems W : [0, 1]→ [0, 1].

For k ∈ N and W(+) ∈ {W,W+}, let Wk
(+) denote W(+) composed with itself k times and

let W−k
(+) = (Wk

(+))
−1. We define a map τ : [0, 1]→ I∞, using all of the orbits of W, by

τ(x) = σ0σ1σ2 . . . ,
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Figure 1. The piecewise-continuous dynamical system W : [0, 1]→ [0, 1] is defined in terms of two
monotone strictly increasing differentiable functions W0(x) and W1(x) and a real parameter ρ.

where σk equals 0 or 1, according as Wk(x) ∈ [0, ρ] or (ρ, 1], respectively. We call τ(x)
the itinerary of x under W, or an address of x, and we call Ω = τ([0, 1]) an address
space for [0, 1]. Similarly, we define τ+ : [0, 1]→ I∞ so that τ+(x)k equals 0 or 1,
according as Wk

+(x) ∈ [0, ρ) or [ρ, 1], respectively, and we define Ω+ = τ+([0, 1]). Note
that W, W+, Ω, Ω+, τ and τ+ all depend on ρ.

The main goals of this paper are to characterise Ω and to show that there exists a
value of ρ such that Ω is symmetric.

Theorem 1.1. Define an iterated closed relation r ⊂ I∞ × I∞ by

r := {(σ, 0σ) ∈ I∞ × I∞ : σ � α} ∪ {(σ, 1σ) ∈ I∞ × I∞ : σ � β},

where α = τ(W0(ρ)) and β = τ+(W1(ρ)). The only attractors of r are {0}, {1}, {0, 1} and
Ω. The corresponding dual repellers are the sets {σ ∈ I∞ : β � σ}, {σ ∈ I∞ : σ � α},
{σ ∈ I∞ : β � σ} ∪ {σ ∈ I∞ : σ � α} and the empty set, respectively. The chain
recurrent set for r is {0, 1} ∪ {σ ∈ Ω : β � σ � α}.

We write E to denote the closure of a set E, but we write 0 = 000 . . . and 1 =

111 . . . ∈ I∞. For σ = σ0σ1σ2 . . . ∈ I∞, we write 0σ to mean 0σ0σ1σ2 . . . ∈ I∞ and
1σ = 1σ0σ1σ2 . . . ∈ I∞.

Define a symmetry function ∗ : I∞ → I∞ by σ∗ = ω, where ωk = 1 − σk for all k.

Theorem 1.2. There exists a unique ρ ∈ [1 − b, a] such that Ω
∗

= Ω.

Theorem 1.1 tells us that Ω is fixed by itineraries of two inverse images of the
critical point ρ and provides the basis for a stable algorithm to determine Ω. It relates
the address spaces of dynamical systems of the form of W to the beautiful theory of
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iterated closed relations on compact Hausdorff spaces [4] and hence to the work of
Charles Conley.

Theorem 1.2 is interesting in its own right and also because it has applications in
digital imaging, as explained and demonstrated, in the special case of affine maps
in [1], and in the case of nonlinear maps in [2]. It enables the construction of
parameterised families of nondifferentiable homeomorphisms on [0, 1], using pairs of
overlapping iterated function systems (see Proposition 4.6). Theorem 1.2 generalises
results in [1] to nonlinear Wi’s. The proof uses symbolic dynamics in place of
the geometrical construction outlined in [1]. The approach and results open up the
mathematics underlying [1] and [3].

To tie the present work to [1], note that τ is a section, as defined in [1], for the
hyperbolic iterated function system

F := ([0, 1]; W−1
0 ,W−1

1 ).

Our observations interrelate to, but are more specialised than, the work of Parry [5].
Our point of view is topological rather than measure-theoretic and our main results
appear to be new.

2. Basic properties of τ

The following list of properties is relatively easy to check. Below the list we
elaborate on points (1), (2) and (3).

(1) Wn is piecewise differentiable and its derivative is uniformly bounded below by
dn; each branch of Wn, except for the leftmost branch, is defined on an interval
of the form (r, s]; Wn

+ is piecewise differentiable and its derivative is uniformly
bounded below by dn; each branch of Wn

+, except for the rightmost branch, is
defined on an interval of the form [r, s).

(2) If (r, s) is the interior of the definition domain of a branch of Wn (and of Wn
+),

then τ(x)|n is constant on (r, s], τ+(x)|n is constant on [r, s) and τ(x)|n = τ+(x)|n
for all x ∈ (r, s).

(3) The boundary of the definition domain of a branch of Wn is contained in
{0, 1} ∪

⋃n−1
k=0 W−k(ρ); by (1), the length of such a domain is at most d−n.

(4) The set
⋃

k∈NW−k(ρ) is dense in [0, 1]. This follows from (3).
(5) τ(x) = τ+(x) unless x ∈

⋃
k∈NW−k(ρ), in which case τ(x) ≺ τ+(x).

(6) τ(x) and τ+(x) are strictly increasing functions of x ∈ [0, 1] and τ(x) � τ+(x).
This follows from (4) and (5).

(7) For all x ∈ [0, 1], τ(x) is continuous from the left and τ+(x) is continuous from
the right. Moreover, for all x ∈ (0, 1),

τ(x) = lim
ε→0+

τ+(x − ε) and τ+(x) = lim
ε→0+

τ(x + ε).

These assertions follow from (2), (3) and (4).

https://doi.org/10.1017/S0004972719000261 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000261


100 M. F. Barnsley and N. Mihalache [4]

(8) Each x ∈ W−n(ρ), such that τ(x)|n is constant, moves continuously with respect
to ρ with positive velocity bounded above by d−n. This follows from (1).

(9) For x ∈ (0, 1)\
⋃n

k=0 W−k(ρ), τ(x)|n = τ+(x)|n is locally constant with respect to ρ;
moreover, this holds if x depends continuously on ρ. This follows from (2), (3)
and (6).

(10) The symmetry function ∗ : I∞ → I∞ is strictly decreasing and continuous.
(11) For any σ|n ∈ In, n ∈ N, the set

I(σ|n) := {x ∈ [0, 1] : τ(x)|n = σ|n or τ+(x)|n = σ|n}

is either empty or a nondegenerate compact interval of length at most d−n. This
follows from (2), (3) and (6).

(12) The projection π̂ : I∞ → [0, 1] is well defined by

π̂(σ) = sup{x ∈ [0, 1] : τ+(x) � σ} = inf{x ∈ [0, 1] : τ(x) � σ}.

This follows from (6).
(13) The projection π̂ : I∞ → [0, 1] is increasing, by (6); continuous, by (11); and, by

(7),

π̂(τ(x)) = π̂(τ+(x)) = x for all x ∈ [0, 1],
τ(π̂(σ)) � σ � τ+(π̂(σ)) for all σ ∈ I∞.

(14) Let S : I∞ → I∞ denote the left-shift map σ0σ1σ2 . . . 7→ σ1σ2σ3 . . . . For all
σ ∈ I∞ such that σ � τ(ρ) or σ ≥ τ+(ρ),

π̂(S (σ)) = W(π̂(σ)).

Also, π̂(τ+(ρ)) = ρ and π̂(S (τ+(ρ))) = W1(ρ). These statements follow from (7).

Here we elaborate on points (1)–(3). Consider the piecewise-continuous function
Wk(x) for k ∈ {1, 2, . . .}. Its discontinuities are at ρ and, for k > 1, other points in
(0, 1), each of which can be written in the form W−1

σ0
◦W−1

σ2
◦ · · ·W−1

σl−1
(ρ) for some

σ0σ1 . . . σl−1 ∈ {0, 1}l and some l ∈ {1, 2, . . . , k − 1}. We denote these discontinuities,
together with the points 0 and 1, by

Dk,0 := 0 < Dk,1 < Dk,2 < · · · < Dk,D(k)−1 < 1 =: Dk,D(k),

where D(1) = 3,D(2) = 5 < D(3) < D(4) < · · · . For each k ≥ 1, one of the Dk, j’s is
equal to ρ. For k ≥ 1, we have Wk(x) = Wk

0(x) for x ∈ [Dk,0,Dk,1] and Wk
+(x) = Wk

0(x)
for x ∈ [Dk,0,Dk,1). Similarly, Wk(x) = Wk

1(x) for all x ∈ (Dk,D(k)−1,Dk,D(k)] and Wk
+(x) =

Wk
1(x) for x ∈ [DD(k)−1,DD(k)].
Observe that, for all x ∈ (Dk,l,Dk,l+1) (l = 0, 1, . . . ,D(k) − 1),

Wk(x) = Wk
+(x) = Wθk ◦Wθk−1 ◦ · · ·Wθ1 (x)

for some fixed θ1θ2 . . . θk ∈ {0, 1}k. We refer to θ1θ2 . . . θk as the address of the interval
(Dk,l,Dk,l+1), we say that (Dk,l,Dk,l+1) ‘has address θ1θ2 . . . θk’ and we write, by slight
abuse of notation, τ((Dk,l,Dk,l+1)) = θ1θ2 . . . θk.
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Let k > 1. Consider two adjacent intervals, (Dk,m−1,Dk,m] and (Dk,m,Dk,m+1], for
m ∈ {1, 2, . . . ,D(k) − 1} and k > 1. Let the one on the right have address θ0θ1 . . . θk−1
and the one on the left have address η0η1 . . . ηk−1. Then η0η1 . . . ηk−1 ≺ θ0θ1 . . . θk−1 and

τ(x)|k−1 = η0η1...ηk−1 for all x ∈ (Dk,m−1,Dk,m],
τ+(x)|k−1 = η0η1...ηk−1 for all x ∈ [Dk,m−1,Dk,m),
τ(x)|k−1 = θ0θ1...θk−1 for all x ∈ (Dk,m,Dk,m+1],
τ+(x)|k−1 = θ0θ1...θk−1 for all x ∈ [Dk,m,Dk,m+1).

In particular, τ(x)|k−1 and τ+(x)|k−1 are constant and equal on each of the open intervals
(Dk,m−1,Dk,m) and have distinct values at the discontinuity points {Dk,m}

D(k)−1
m=1 .

3. The structures of Ω, Ω+ and Ω

In this section we characterise Ω and Ω+ as certain inverse limits and we
characterise Ω as an attractor of an iterated closed relation on I∞. These inverse
limits are natural and they clarify the structures of Ω and Ω+. They are implied by
the shift invariance of Ω and Ω+. Recall that S : I∞ → I∞ denotes the left-shift map
σ0σ1σ2 . . . 7→ σ1σ2σ3 . . . .

Proposition 3.1.

(i) τ(W(x)) = S (τ(x)) and τ+(W+(x)) = S (τ+(x)) for all x ∈ [0, 1].
(ii) S (Ω) = Ω and S (Ω+) = Ω+.

Proof. Part (i) follows at once from the definitions of τ and τ+. Part (ii) follows from
(i) together with W([0, 1]) = W+([0, 1]) = [0, 1]. �

We say that Λ ⊂ I∞ is closed from the left if lim xn ∈ Λ whenever {xn}
∞
n=0 is a

nondecreasing sequence of points in Λ. We say that Λ ⊂ I∞ is closed from the right
if lim xn ∈ Λ whenever {xn}

∞
n=0 is a nonincreasing sequence in Λ. For S ⊂ X, where

X = I∞ or [0, 1], we write

L(S ) = {σ ∈ X : there is a nondecreasing sequence {zn}
∞
n=0 ⊂ S with σ = lim zn}

to denote the closure of S from the left. Analogously, we define R(S ) for the closure
of S from the right.

Proposition 3.2.

(i) Ω is closed from the left and Ω+ is closed from the right;
(ii) Ω = Ω+ = Ω ∪Ω+ = Ω ∩Ω+.

Proof. Proof of (i). By (6), τ : [0, 1]→ I∞ is monotone strictly increasing. By (7), τ
is continuous from the left. Let {zn}

∞
n=0 be a nondecreasing sequence of points in Ω,

yn = τ−1(zn) and y = lim yn ∈ [0, 1]. Since τ is continuous from the left, Ω 3 τ(y) =

τ(lim yn) = lim τ(yn) = lim zn. It follows that Ω is closed from the left. Similarly, Ω+ is
closed from the right.
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Proof of (ii). Let Q = {x ∈ [0, 1] : τ(x) = τ+(x)}. By (4), Q = [0, 1] and, by (5),

Ω ∩Ω+ = τ([0, 1]) ∩ τ+([0, 1]) = τ(Q) = τ+(Q).

Hence,
Ω ∩Ω+ = τ(Q) = τ+(Q) = Ω = Ω+.

Finally, Ω ∪Ω+ = L(τ(Q)) ∪ R(τ+(Q)) = L(τ(Q)) ∪ R(τ(Q)) = τ(Q) = Ω. �

We define si : I∞ → I∞ by si(σ) = iσ (i = 0, 1). Note that both s0 and s1 are
contractions with contractivity 1/2. We write 2I∞ to denote the set of all subsets of
I∞. For σ,ω ∈ I∞, we define

[σ,ω] := {ζ ∈ I∞ : σ � ζ � ω},
(σ,ω) := {ζ ∈ I∞ : σ ≺ ζ ≺ ω},
(σ,ω] := {ζ ∈ I∞ : σ ≺ ζ � ω},
[σ,ω) := {ζ ∈ I∞ : σ � ζ ≺ ω}.

Proposition 3.3. Let α = S (τ(ρ)) and β = S (τ+(ρ)).

(i) Ω =
⋂

k∈NΨk([0, 1]), where Ψ : 2I∞ → 2I∞ is defined by

2I∞ 3 Λ 7→ s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ (β, 1]).

(ii) Ω+ =
⋂

k∈NΨk
+([0, 1]), where Ψ+ : 2I∞ → 2I∞ is defined by

2I∞ 3 Λ 7→ s0(Λ ∩ [0, α)) ∪ s1(Λ ∩ [β, 1]).

(iii) Ω = Ω+ =
⋂

k∈NΨ
k
([0, 1]), where Ψ : 2I∞ → 2I∞ is defined by

2I∞ 3 Λ 7→ s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ [β, 1]).

Proof. Proof of (i). Let S |Ω : Ω→ Ω denote the domain and range restricted shift map.
It is readily found that the branches of S |−1

Ω
: Ω→ Ω are s0|Ω : [0, α] ∩Ω→ Ω, where

s0|Ω(σ) = s0(σ) = 0σ for all σ ∈ [0, α] ∩Ω,

and s1|Ω : (β, 1] ∩Ω→ Ω, where

s1|Ω(σ) = s1(σ) = 1σ for all σ ∈ (β, 1] ∩Ω.

(Note that α0 = 1, β0 = 0 and β ≺ α.) It follows that

S |−1
Ω (Λ) = s0(Λ ∩ [0, α]) ∪ s1(Λ ∩ (β, 1]) = Ψ(Λ)

for all Λ ⊂ Ω. Since Ω ⊂ [0, 1],

Ω = S |−1
Ω (Ω) = Ψ(Ω) ⊂ Ψ([0, 1]).

Also, since Ψ([0, 1]) ⊂ [0, 1], it follows that {Ψk([0, 1])} is a decreasing (nested)
sequence of sets, each of which contains Ω; hence,

Ω ⊂
⋂
k∈N

Ψk([0, 1]).
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It remains to prove that Ω ⊃
⋂

k∈NΨk([0, 1]). We note that s0([0, α]) = [0, τ(ρ)] and
s1((β, 1]) = (τ+(ρ), 1], from which it follows that⋂

k∈N

Ψk([0, 1]) =
⋂
k∈N

{σ ∈ I∞ : S k(σ) ∈ [0, τ(ρ)] ∪ (τ+(ρ), 1]}. (3.1)

Let ω ∈
⋂

k∈NΨk([0, 1]) and suppose that ω < Ω. Let

ω− = sup{σ ∈ Ω : σ � ω} and ω+ = inf{σ ∈ Ω : ω � σ},

so that
ω− � ω � ω+.

But ω− ∈ Ω (since Ω is closed from the left), so

ω− ≺ ω � ω+.

Since inf{σ ∈ Ω : ω � σ} = inf{σ ∈ Ω+ : ω � σ} and Ω+ is closed from the right, we
have ω+ ∈ Ω+. Let K = min{k ∈ N : (ω−)k , (ω+)k}. Then S K(ω−) ≺ S K(ω) � S K(ω+)
and we must have S K(ω−) = τ(ρ) and S K(ω+) = τ+(ρ). So,

τ(ρ) ≺ S K(ω) � τ+(ρ);

therefore, ω < {σ ∈ I∞ : S K(σ) ∈ [0, τ(ρ)] ∪ (τ+(ρ), 1]}, which, because of (3.1),
contradicts our assumption that ω ∈

⋂
k∈NΨk([0, 1]). Hence, ω ∈ Ω and

Ω ⊃
⋂
k∈N

Ψk([0, 1]).

This completes the proof of (i).
Proof of (ii). This is similar to the proof of (i), with the role of [0, τ(ρ)] played by

[0, τ(ρ)) and the role of (τ+(ρ), 1] played by [τ+(ρ), 1].
Proof of (iii). This is similar to the proofs of (i) and (ii). �

It is helpful to note that the addresses α and β in Proposition 3.3 obey

α = τ(W0(ρ)), β = τ(W1(ρ)),
τ(ρ) = 0α = 01α1α2 . . . and τ+(ρ) = 0β = 10β1β2 . . . .

Let M > 0 be such that Dk,M+1 = ρ. It follows from the discussion at the end
of Section 2 that τ((Dk,M , ρ)) = τ+((Dk,M , ρ)) = 01α1α2 . . . αk−2 and τ((ρ,Dk,M+2)) =

τ+((ρ,Dk,M+2)) = 10β1β2 . . . βk−2.

Corollary 3.4. Let k ≥ 1, α = τ(W0(ρ)), β = τ(W1(ρ)) and let M > 0 be such that
Dk,M+1 = ρ. The set of addresses {τ((Dk,l,Dk,l+1))}D(k)−1

l=0 is uniquely determined by α|k−1
and β|k−1. For some n1, n2 such that 0 ≤ n1 < M < n2 ≤ D(k) − 1, τ((Dk,n1 ,Dk,n1+1)) =

β0β1 . . . βk−2βk−1 and τ((Dk,n2 , Dk,n2+1)) = α0α1 . . . αk−2αk−1. The set of addresses
{τ((Dk,l, Dk,l+1)) : l ∈ {0, 1, . . . , D(k) − 1}, l , n1, l , n} is uniquely determined by
α|k−2 and β|k−2; for example, τ((Dk,M , ρ)) = 0α0α1 . . . αk−2 and τ((ρ, Dk,M+2)) =

1β0β1 . . . βk−2.
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Proof. It follows from Proposition 3.3 that the set of addresses at level k, namely
{τ((Dk,l,Dk,l+1))}D(k)−1

l=0 , is invariant under the following operation: first, put a ‘0’ in
front of each address that is less than or equal to α and then truncate back to length k;
second, put a ‘1’ in front of each address that is greater than or equal to β and drop the
last digit; finally, take the union of the two resulting sets of addresses. �

4. Symmetry of Ω and a consequent homeomorphism of [0, 1]

Lemma 4.1. The attractor Ω = {σ ∈ I∞ : for all k ∈ N, σk = 0⇒ S k(σ) � τ(ρ) and
σ0 = 1⇒ τ+(ρ) � S k(σ)}.

Proof. This is an immediate consequence of Proposition 3.3. �

Corollary 4.2. Ω is symmetric if and only if α = β∗ (or equivalently τ(ρ) = (τ+(ρ))∗).

Lemma 4.3. The maps τ(ρ) and τ+(ρ) are strictly increasing as functions of ρ ∈ [a, b]
to I∞.

Proof. Note that τ(ρ) depends both implicitly and explicitly on ρ. Let 1 − b ≤ ρ < ρ′

≤ a be such that τ(ρ) � τ(ρ′). Observe that τ(ρ)|0 = τ(ρ′)|0.
Assume first that there is a largest n > 0 such that τ(ρ)|n = τ(ρ′)|n := θ0θ1 . . . θn. Then

τ(ρ) = θ0θ1 . . . θn1 . . . and τ+(ρ) = θ0θ1 . . . θn0 . . . , which imply that

Wn+1
ρ (ρ) ≥ ρ and Wn+1

ρ′ (ρ′) ≤ ρ′. (4.1)

(We write W = Wρ when we want to note the dependence on ρ.) We may assume that
τ(ρ)|n is constant on [ρ, ρ′] for otherwise we can restrict to a smaller interval with a
strictly smaller value of n. As a consequence, at every iteration, we apply the same
branch W0 or W1 to Wξ to compute g(ξ) := Wn

ξ (ξ) for all ξ ∈ [ρ, ρ′]. Therefore, g is
continuous with derivative at least dn > 1, which contradicts (4.1).

The only remaining possibility is that τ(ρ) = τ(ρ′). We may assume that τ(ρ) is
constant on [ρ, ρ′], otherwise we can reduce the problem to the previous case. This
would mean that for arbitrarily large n, the image of the interval [ρ, ρ′] under g is at an
interval of size at least dn(ρ′ − ρ), which is a contradiction.

Essentially the same argument, with the role of τ played by τ+ and the role of W
played by W+, proves that τ+(ρ) is strictly increasing as a function of ρ ∈ [1 − b, a]
to I∞. �

Corollary 4.4. The map ρ 7→ τ(ρ) is left continuous and the map ρ 7→ τ+(ρ) is right
continuous.

Proof. Fix a parameter ρ0 and let ε > 0. Then by (7) there is x < ρ0 which is not a
preimage of ρ0 for any order and such that

d(τ+
ρ0

(x), τρ0 (ρ0)) <
ε

2
.
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By (9), for any n ∈ N there exists δ > 0 such that the prefix τ+
ρ (x)|n is constant when

ρ ∈ (ρ0 − δ, ρ0 + δ). Let n be such that 2−n < ε and let ρ > x and ρ ∈ (ρ0 − δ, ρ0). Then
τ+
ρ (x) ≺ τ+

ρ (ρ) and

d(τ+
ρ (x), τ+

ρ0
(x)) <

ε

2
.

Combining the two inequalities,

d(τ+
ρ (x), τρ0 (ρ0)) < ε

and, by Lemma 4.3,
τ+
ρ (x) ≺ τρ(ρ) ≺ τρ0 (ρ0).

The distance d has the property that if σ ≺ ζ ≺ σ′, then d(σ, ζ) ≤ d(σ, σ′) and
d(ζ, σ′) ≤ d(σ, σ′). This shows that ρ 7→ τ(ρ) is left continuous. The right continuity
of ρ 7→ τ+(ρ) admits an analogous proof. �

As a consequence of Corollary 4.2, Lemma 4.3 and (10), we obtain the unicity of ρ
for which Ω is symmetric.

Corollary 4.5. There is at most one ρ ∈ [1 − b, a] such that Ω = Ω
∗
.

Proof of Theorem 1.2. By Lemma 4.3 and (10), we may define

ρ0 := sup{ρ ∈ [1 − b, a] : τ(ρ) � τ+(ρ)∗} = inf{ρ ∈ [1 − b, a] : τ(ρ)∗ � τ+(ρ)}.

Assume that τ(ρ0) ≺ τ+(ρ0)∗. It is straightforward to check that 1 − b < ρ0 < a.
There is a largest n ≥ 2 such that τ(ρ0)|n = τ+(ρ0)∗|n =: η = 01 . . .. Observe that

τ(ρ0) = 0τ(W0(ρ0)) and τ+(ρ0) = 1τ+(W1(ρ0)). If neither W0(ρ0) nor W1(ρ0) belongs
to {0, 1} ∪

⋃n−1
k=0 W−k(ρ0), then by (9) both τ(ρ)|n+1 and τ+(ρ)|n+1 are constant on a

neighbourhood of ρ0, which contradicts the definition of ρ0.
Let us consider the projection π̂(τ+(W1(ρ0))∗). If π̂(τ+(W1(ρ0))∗) > W0(ρ0), then

by the continuity of W0, of π̂ (by (13)) and of ρ 7→ τ+
ρ (ρ) (by Corollary 4.4) there is

a ρ > ρ0 such that π̂ρ(τ+
ρ (W1(ρ0))∗) > W0(ρ). By (6) and (13), τρ(ρ) ≺ τ+

ρ (ρ)∗, which
again contradicts the definition of ρ0.

As π̂ is increasing, (13) and τ(W0(ρ0)) ≺ τ+(W1(ρ0))∗ imply that π̂(τ+(W1(ρ0))∗) =

W0(ρ0). Let 0 < m < n be minimal such that Wm ◦W0( ρ0) = ρ0 or Wm ◦W1(ρ0) = ρ0.
By applying (14) m times,

Wm ◦W0(ρ0) = π̂(S m(τ+(W1(ρ0))∗)) = π̂(τ+(Wm ◦W1(ρ0))∗). (4.2)

As τ+(ρ0) = 1 . . . , if Wm ◦W1(ρ0) = ρ0, then

τ(ρ0) ≺ τ+(ρ0)∗ = τ+(Wm ◦W1(ρ0))∗ ≺ τ+(ρ0),

which by (6) and (4.2) implies that Wm ◦W0(ρ0) = ρ0. Therefore, τ(ρ0) = τ+(ρ0)∗ as
both are periodic of period m + 1 and have the same prefix of length n > m, which is a
contradiction.
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If Wm ◦W1(ρ0) , ρ0, then Wm ◦W0(ρ0) = ρ0 and, by (13), (10) and (4.2),

τ(ρ0) ≺ τ+(ρ0)∗ � τ+(Wm ◦W1(ρ0)) := σ′.

By (6), this means that ρ0 ≤ Wm ◦W1(ρ0), so in fact

ρ0 < Wm ◦W1(ρ0).

Since Wm+1(ρ0) = ρ0, τ(ρ0) = κκκ . . . := κ∞, where κ = τ(ρ0)|m+1 = τ+(ρ0)∗|m+1 as
m + 1 ≤ n. We can write τ+(ρ0) = κ∗σ′; therefore, κ∗σ′ ≺ σ′ by (6) and the previous
inequality. By induction, κ∗∞ ≺ σ′, so

τ+(ρ0)∗ = κ(σ′∗) ≺ κ∞ = τ(ρ0),

which is a contradiction.
The case τ(ρ0) � τ+(ρ0)∗ is analogous by the symmetric definition of ρ0; therefore,

Ωρ0 is symmetric. �

Proposition 4.6. If Ω = Ω
∗
, then the map h : [0, 1]→ [0, 1] defined by h(x) = π̂(τ(x)∗)

is a homeomorphism and h ◦ π̂ = π̂◦∗ on I∞.

Proof. First, by Corollary 4.2, τ(ρ) = τ+(ρ)∗ and points x for which τ(x) , τ+(x) are
exactly preimages of ρ. In this case, there is n ≥ 0 such that τ(x) and τ+(x) have the
same initial prefix κ := τ(x)|n = τ+(x)|n, and τ(x) = κτ(ρ), τ+(x) = κτ+(ρ). Therefore,
by (13), for all x ∈ [0, 1],

τ(h(x)) = τ+(x)∗ and τ+(h(x)) = τ(x)∗.

Thus, h ◦ h(x) = x. By (6), (10) and (13), h is also decreasing and so h : [0, 1]→ [0, 1]
is a homeomorphism.

Let σ ∈ I∞ and x = π̂(σ). By (13), τ(x) � σ � τ+(x). As Ω = Ω
∗
, by Proposition 3.2,

there exists y ∈ [0, 1] such that τ(x)∗ = τ+(y). Also, by Lemma 4.1 and Corollary 4.2,
τ+(x)∗ = τ(y). We may compute h ◦ π̂(σ) = h(x) = π̂(τ(x)∗) = π̂(τ(y)) = y, which is also
equal to π̂(σ∗) as τ(y) � σ∗ � τ+(y). �

5. Iterated closed relations and Conley decomposition for itineraries of W

Theorem 1.1 follows from Proposition 3.3, but some extra language is needed. In
explaining this language we describe the Conley–McGehee–Wiandt decomposition
theorem [4, Theorem 13.1].

For X a compact Hausdorff space, let 2X be the subsets of X. A relation r on X is
simply a subset of X × X. A relation r on X is called a closed relation if r is a closed
subset of X × X. For example, the set r ⊂ I∞ × I∞ defined in Theorem 1.1,

r = {(0σ,σ) ∈ I∞ × I∞ : σ � α} ∪ {(1σ,σ) ∈ I∞ × I∞ : β � σ},

is a closed relation. Following [4], a relation r ∈ 2X provides a mapping r : 2X → 2X

defined by
r(C) = {y ∈ X : (x, y) ∈ r for some x ∈ C}.
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Notice that the image of a nonempty set may be empty. Iterated relations are defined
by r0 = X × X and, for all k ∈ N,

rk+1 = r ◦ rk = {(x, z) : (x, y) ∈ r, (y, z) ∈ rk for some y ∈ X}.

The omega limit set of C ⊂ X under a closed relation r ⊂ X × X is

ω(C) = ∩K(C),

where

K(C) = {D is a closed subset of X : r(D) ∪ rn(C) ⊂ D for some n ∈ N}.

By definition, an attractor of a closed relation r is a closed set A such that the following
two conditions hold:

(i) r(A) = A;
(ii) there is a closed neighbourhoodN(A) of A such that ω(C) ⊂ A for all C ⊂ N(A).

The basin B(A) of an attractor A for a closed relation r on a compact Hausdorff
space X is the union of all open sets O ⊂ X such that ω(C) ⊂ A for all C ⊂ O.

Given an attractor A for a closed relation r on a compact Hausdorff space X, there
exists a corresponding attractor block, namely a closed set E ⊂ X such that E contains
both A and r(E) in its interior and A = ω(E). Also, there exists a unique dual repeller
A∗ = X\B(A) which is an attractor for the transpose relation r∗ = {(y, x) : (x, y) ∈ r}.
The set of connecting orbits associated with the attractor/repeller pair A, A∗ is given
by C(A) = X\(A ∪ A∗).

If r is a closed relation on a compact Hausdorff space X, then x ∈ X is called chain
recurrent for r if for every closed neighbourhood f of r, x is periodic for f (that is,
there exists a finite sequence of points {xn}

p−1
n=0 ⊂ X such that x0 = x, (xp−1, x0) ∈ f and

(xn−1, xn) ∈ f for n = 1, 2, . . . , p − 1). The chain recurrent set R for r is the union of all
the points that are chain recurrent for r. A transitive component of R is a member of
the equivalence class on R defined by x ∼ y when for every closed neighbourhood f of
r there is an orbit from x to y under f (that is, there exists a finite sequence of points
{xn}

p−1
n=0 ⊂ R such that x0 = x, xp−1 = y and (xn, xn+1) ∈ f for all n ∈ {0, 1, . . . , p − 1}).

Theorem 5.1 (Conley–McGehee–Wiandt). If r is a closed relation on a compact
Hausdorff space X, then

R =
⋃
A∈U

C(A),

where R is the chain recurrent set andU is the set of attractors.

Proof of Theorem 1.1. This follows at once from Proposition 3.3 together with
Theorem 5.1, but see [4]. �
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We note that Ω can be embedded in [0, 1] ⊂ R using the (continuous and surjective)
coding map π : I∞ → [0, 1] which is associated with the iterated function system
([0, 1]; x 7→ x/2, x 7→ (1 + x)/2). This coding map π is defined, for all σ, by

π(σ) =
∑
k∈N

σk

2k+1

and provides a homeomorphism between Ω and π(Ω). The point σ ∈ Ω is uniquely
and unambiguously represented by the binary real number 0.σ. In the representation
provided by π, the map Ψ : 2I∞ → 2I∞ becomes the action of the iterated closed relation
r̃ ⊂ [0, 1] × [0, 1] ⊂ R2 defined by

r̃ := {(x, x/2) : x ∈ [0, π(α)]} ∪ {(x, (x + 1)/2) : x ∈ [π(β), 1]}

on subsets of [0, 1]. It follows from Proposition 3.3(iii) that π(Ω) is the maximal
attractor, as defined in [4], of r̃. The corresponding dual repeller is the empty set. It
is also easy to see that {0} and {1} are the only other attractors, with corresponding
dual repellers [π(α), 1] and [0, π(β)], respectively. It follows from Theorem 5.1 that
the chain recurrent set of r̃ is {0, 1} ∪ (π(Ω) ∩ (π(β), π(α))).
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