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Very low Reynolds number propulsion is a topic of enduring interest due to its
importance in biological systems such as sperm migration in the female reproductive
tract. Motivated by the fibrous nature of cervical mucus, several recent studies have
considered the effect of anisotropic rheology; these studies have generally employed
the classical swimming sheet model of G. I. Taylor. The models of Cupples et al. (J.
Fluid Mech. vol. 812, 2017, pp. 501–524) and Shi & Powers (Phys. Rev. Fluids vol. 2,
2017, 123102) consider related problems which in a common limit (passive, slightly
anisotropic) make different predictions regarding how swimming speed depends on
alignment angle. In the present paper we find that this discrepancy is due to missing
terms in the analysis of Cupples et al., and that when these terms are correctly
included, the models agree in their common limit. We further explore the predictions
of the corrected model for both passive and active cases; it is found that for certain
combinations of alignment angle and activity parameter, propulsion is halted; in other
cases the small amplitude asymptotic expansion is no longer valid, motivating future
numerical study.

Key words: micro-organism dynamics, propulsion, swimming/flying

1. Introduction

Small organisms swimming at very low Reynolds numbers, for example spermatozoa
in cervical mucus, cannot propel themselves by utilising the inertia of the surrounding
fluid; time-reversible kinematics result in zero net displacement for the small body.
G. I. Taylor’s pioneering study presented the first model of zero-Reynolds-number
swimming where time-reversal symmetry is broken by the wave direction (Taylor
1951). This model was formulated as the far-field Stokes flow produced by a
swimming motion given by a small amplitude sinusoidal wave, and the mean rate
of working was calculated as a measure of the energetic cost of swimming. Our
recent study (Cupples, Dyson & Smith 2017) adapted Taylor’s model to account
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On viscous propulsion in active transversely isotropic media 409

for fibre-reinforced media, similar in nature to the glycofilament structure of cervical
mucus, through the transversely isotropic constitutive equations of Ericksen (1960); we
now detail a correction and further analysis, which in particular shows the importance
of fibre orientation for both passive and active fluid cases.

Our previous paper (Cupples et al. 2017) consisted of calculating the mean
swimming velocity and energy dissipation of an infinite waving sheet in a transversely
isotropic fluid in two dimensions, extending the classical Taylor’s swimming sheet
model to include anisotropic effects and active rheology. A surprising conclusion was
that fibre orientation only affected swimming velocity in the active case. However a
recent study by Shi & Powers (2017) investigated microscopic propulsion in nematic
liquid crystals and found that in a common limit (passive, zero elasticity, zero shear
viscosity and small extensional viscosity) the models disagreed, with their study
finding an angle dependence in swimming speed. Here we find that this discrepancy
is due to missed terms in the solution of the governing equation in Cupples et al.
(2017). These terms are relevant to both the passive and active cases, and qualitatively
change the conclusions.

The analysis involves a perturbation expansion in the small parameter ε = k∗b∗,
where b∗ is the amplitude and k∗ the wavenumber. The leading-order solution at O(ε)
is unchanged from Cupples et al. (2017), and we here discuss a correction to the
O(ε2) solution which determines the swimming velocity. First the passive transversely
isotropic fluid case is discussed (µ1= 0) in § 2, which is shown to be consistent with
Shi & Powers (2017) in a common limit; the mean swimming velocity is recalculated
and presented for a wide range of anisotropic extensional and shear viscosities in § 2.2.
After this, a solution to the active case is considered in § 3, where a spatially averaged
swimming velocity is calculated and discussed.

1.1. Equation formulation
The full system of equations is derived from the dimensionless Navier–Stokes
equations, at zero Reynolds number, along with Ericksen’s (1960) constitutive
equation for a transversely isotropic fluid (equations (2.1)–(2.3) in Cupples et al.
2017). A streamfunction ψ , satisfying incompressibility, and an equation governing
the perturbation to the fibre orientation θ around a uniform initial fibre angle φ
(equation (2.5) in Cupples et al. 2017), complete the model. At O(ε2) the system of
partial differential equations is(

1+
µ2

4
sin2 2φ +µ3

)
∇

4ψ1 −µ1

(
2 sin 2φ

∂2θ1

∂x∂y
+ cos 2φ

(
∂2θ1

∂x2
−
∂2θ1

∂y2

))
+µ2

(
cos 4φ

∂4ψ1

∂x2∂y2
+

sin 4φ
2

(
∂4ψ1

∂x∂y3
−
∂4ψ1

∂x3∂y

))
= F(ψ0, θ0), (1.1)

∂θ1

∂t
+ sin2 φ

∂2ψ1

∂y2
+ sin 2φ

∂2ψ1

∂x∂y
+ cos2 φ

∂2ψ1

∂x2
=G(ψ0, θ0), (1.2)

where F and G are known functions of the O(ε) solutions and are given in
appendix A. This is stated in full in Cupples et al. (2017, equation (C 1) of
appendix C). These functions involve terms proportional to cos2(x − t), sin2(x − t)
and sin(x− t) cos(x− t) with coefficients in terms of the anisotropic parameters.

In § 2 we take µ1 = 0, which we refer to as the ‘passive fluid’ case, and solve
the resulting system to determine the mean swimming velocity. The steps in this
calculation are elucidated in more detail in order to highlight how to correct the
solution. In § 3 we reconsider the active case for non-zero µ1.
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410 G. Cupples, R. J. Dyson and D. J. Smith

2. Mean swimming velocity in a passive fluid

For a passive fluid, i.e. whenµ1=0, the system of equations at O(ε2), equations (1.1)
and (1.2), become(

1+
µ2

4
sin2 2φ +µ3

)
∇

4ψ1 +µ2

(
cos 4φ

∂4ψ1

∂x2∂y2
+

sin 4φ
2

(
∂4ψ1

∂x∂y3
−
∂4ψ1

∂x3∂y

))
= F(ψ0, θ0), (2.1)
∂θ1

∂t
+ sin2 φ

∂2ψ1

∂y2
+ sin 2φ

∂2ψ1

∂x∂y
+ cos2 φ

∂2ψ1

∂x2
=G(ψ0, θ0), (2.2)

along with boundary conditions (given as (3.31)–(3.32) in Cupples et al. 2017)

∂ψ1

∂y

∣∣∣∣
y=0

=
1
2
((α1α2 − β1β2)(1− cos 2(x− t))− (α1β2 − α2β1) sin 2(x− t)) , (2.3)

∂ψ1

∂x

∣∣∣∣
y=0

= 0. (2.4)

Upon substitution of ψ0 and θ0 into (A 1) and (A 2), the inhomogeneous terms (when
µ1 = 0) take the form

F=m1 cos2(x− t)+m2 cos(x− t) sin(x− t)+m3 sin2(x− t),

=
m1 +m3

2
+

m1 −m3

2
cos 2(x− t)+

m2

2
sin 2(x− t), (2.5)

G=
n1 + n3

2
+

n1 − n3

2
cos 2(x− t)+

n2

2
sin 2(x− t), (2.6)

where mj =
∑10

k=1 M(k)
j exp(γky) and nj =

∑10
k=1 N(k)

j exp(γky) for j= 1, 2, 3. There are
ten possibilities for γk, resulting from combinations of ψ0 and θ0, which are

γ1 = 2λ1, γ2 = 2λ2, γ3 = 2λ3, γ4 = 2λ4, γ5 = λ1 + λ2, γ6 = λ1 + λ3,

γ7 = λ1 + λ4, γ8 = λ2 + λ3, γ9 = λ2 + λ4, γ10 = λ3 + λ4,

}
(2.7)

where λj are determined as part of the leading-order solution. Since all λj have
negative real part, to satisfy the far-field condition at leading order, the real part of
these exponentials will always be negative. By setting µ1= 0 the governing equations
(2.1) and (2.2) decouple; since we are interested in the mean swimming velocity we
focus on the solution to (2.1) only.

2.1. Corrected solution
The first step we take is to note that x and t only appear together as x− t and so we
make the substitution z= x− t; in what follows we will be precise regarding which
variable we are averaging over as the active case is not t-periodic in general.

Equation (2.1) becomes(
1+

µ2

4
sin2 2φ +µ3

)
∇

4Ψ1 +µ2

(
2 cos 4φ

∂4Ψ1

∂z2∂y2
+

sin 4φ
2

(
∂4Ψ1

∂z∂y3
−
∂4Ψ1

∂z3∂y

))
= Fz(ψ0, θ0), (2.8)
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On viscous propulsion in active transversely isotropic media 411

where Ψ1(z, y)=ψ1(x− t, y) and Fz is

Fz =
m1 +m3

2
+

m1 −m3

2
cos 2z+

m2

2
sin 2z, (2.9)

and the boundary conditions, equations (2.3) and (2.4), are

∂Ψ1

∂y

∣∣∣∣
y=0

=
1
2
((α1α2 − β1β2)(1− cos 2z)− (α1β2 − α2β1) sin 2z) , (2.10)

∂Ψ1

∂z

∣∣∣∣
y=0

= 0. (2.11)

The periodic nature of the swimming sheet means Ψ1 is also periodic in z and so,
upon taking the z-average of the system (2.8)–(2.11), the z derivatives disappear and
the system becomes

(
1+

µ2

4
sin2 2φ +µ3

) ∂4Ψ
z
1

∂y4
=

10∑
k=1

(M(k)
1 +M(k)

3 )

2
eγky, (2.12)

∂Ψ
z
1

∂y

∣∣∣∣∣
y=0

=
1
2
(α1α2 − β1β2), (2.13)

∂Ψ
z
1

∂z

∣∣∣∣∣
y=0

= 0, (2.14)

where · z
≡ (1/2π)

∫ π

−π
· dz.

At this stage in Cupples et al. (2017) an incorrect ansatz was assumed which
neglected inhomogeneous terms. Hence we alter this ansatz to correctly determine
the first-order streamfunction Ψ1 and thus the swimming velocity. Consider a
complementary solution to the homogeneous problem and a particular integral
satisfying the inhomogeneous portion; i.e.

Ψ
z
1(y)=Ψ

z
C(y)+Ψ

z
P(y). (2.15)

For the homogeneous problem we have(
1+

µ2

4
sin2 2φ +µ3

)
(Ψ

z
C)
′′′′
= 0, (2.16)

with general solution Ψ
z
C(y)= A3y3

+ A2y2
+ A1y+ A0, where ′ ≡ d/dy.

The inhomogeneous problem is

(
1+

µ2

4
sin2 2φ +µ3

)
(Ψ

z
P)
′′′′
=

10∑
k=1

(M(k)
1 +M(k)

3 )

2
eγky, (2.17)

hence assume Ψ
z
P(y) takes the form

Ψ
z
P =

10∑
k=1

P(k)eγky, (2.18)
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412 G. Cupples, R. J. Dyson and D. J. Smith

where P(k) are constants to be determined. Substituting this form into (2.17) and
rearranging for constants P(k), we find

P(k) =
M(k)(

1+
µ2

4
sin2 2φ +µ3

)
γ 4

k

, (2.19)

for each k and where M(k)
= (M(k)

1 +M(k)
3 )/2. Combining these two solutions,

Ψ
z
1 = A3y3

+ A2y2
+ A1y+ A0 +

1(
1+

µ2

4
sin2 2φ +µ3

) 10∑
k=1

M(k)

γ 4
k

eγky. (2.20)

The boundary conditions are used to determine the constants in (2.20); for the
velocity to be bounded we require A3 = A2 = 0 and for the z-averaged problem the
boundary condition (2.3) becomes

∂Ψ
z
1

∂y

∣∣∣∣∣
y=0

=
1
2
(α1α2 − β1β2), (2.21)

which yields

A1 =
1
2
(α1α2 − β1β2)+

µ2(cos 4φ + cos 2φ)

8
(

1+
µ2

4
sin2 2φ +µ3

) , (2.22)

and A0 can be set to zero without loss of generality. Hence the full solution is

Ψ
z
1 = y

1
2
(α1α2 − β1β2)+

µ2(cos 4φ + cos 2φ)

8
(

1+
µ2

4
sin2 2φ +µ3

)


+
1(

1+
µ2

4
sin2 2φ +µ3

) 10∑
k=1

M(k)

γ 4
k

eγky. (2.23)

Due to the periodicity of the problem, the time and z-averages are identical, i.e. Uz
=

Ut. In the far field the mean swimming velocity is thus

Ut
=

1
2
(α1α2 − β1β2)+

µ2(cos 4φ + cos 2φ)

8
(

1+
µ2

4
sin2 2φ +µ3

) , (2.24)

where · t
≡ (1/2π)

∫ 2π

0 · dt.
The second term in this solution was not included in our previous analysis. In

comparison, the solution presented by Shi & Powers is

U =
1
2
+
µ2

4
(cos 4φ + cos 2φ). (2.25)

Equations (2.24) and (2.25) agree in the limit µ2→ 0 and µ3= 0, modulo a factor of
two introduced in the analysis by Shi & Powers (which can be absorbed into µ2).
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0.50
U-t

0.49
0 π/4

π/4

π/2

ƒ
3π/4 π

0.495

0.494

0.493

FIGURE 1. Mean swimming velocity comparison for passive transversely isotropic media
where µ2= 0.05 and µ3= 0. Three different results are compared: the incorrect calculation
from Cupples et al. (2017) (dashed line), the corrected calculation (solid line) and the
solution provided by Shi & Powers (2017) (dotted line). A magnified view of the first
minimum in this figure has been included.

2.2. Results
We present the new results for a range of parameter values and compare them with
those produced by Shi & Powers.

Firstly we make a direct comparison with the work by Shi & Powers in figure 1;
our original calculation, Ut

= (α1α2−β1β2)/2 (equation (3.36) in Cupples et al. 2017)
is plotted as the dashed line, the corrected solution is the solid line and the Shi &
Powers result is shown by the dotted line. In addition to µ1 = 0, the anisotropic
shear viscosity µ3 is set to zero and µ2 = 0.05. It is immediately seen that the
inclusion of the extra term has altered the mean swimming velocity and introduced a
dependence on the initial orientation angle φ. Aside from the minimum values of the
mean swimming velocity, the corrected solution agrees well with the work from Shi
& Powers; this small difference is due to the 1/(1+ µ2 sin2 2φ/4+ µ3) multiplying
the second term in (2.24), as can be seen in the magnified view in figure 1.

Next we consider a larger range of µ2 and µ3 and compare the mean swimming
velocity. First consider small µ2 and µ3 (figure 2). Increasing µ2 dominates the impact
of the initial orientation angle on the mean swimming velocity, and the anisotropic
shear viscosity works to collapse the results back towards the Newtonian value; when
both parameters are zero we return to the Newtonian solution as expected. For very
small µ2 (dashed lines which are not seen) the variation from the Newtonian solution
is very small.

Finally we investigate the impact when both µ2 and µ3 may take on large values.
Here we have separated the results into two cases: when µ3= 0 (figure 3a) and when
µ3 = 900 (figure 3b). When µ3 = 0, the mean swimming velocity takes on large
values near φ = 0 and φ = π; these sharp peaks are consistent with the results in
Cupples et al. (2017) occurring when one parameter was much larger than the others.
Away from these regions, the mean swimming velocity takes on values similar to those
presented in figures 1 and 2. When both parameters are large (figure 3b), the mean
swimming velocity reduces in comparison to figure 3(a). The shape of the φ–Ut curve
is similar as the anisotropic parameters are varied, only the magnitude changes.
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U-t

0 π/4 π/2

ƒ
3π/4 π

1.8

1.2

0.6

FIGURE 2. Corrected mean swimming velocity for small µ2 and µ3. Four µ2 values are
chosen, µ2= 0 (solid lines), µ2= 0.01 (dashed lines), µ2= 1 (dot-dashed lines) and µ2= 5
(dotted lines). Two µ3 values are selected, µ3 = 0 and µ3 = 1 (circle markers).

ƒ

U-t

200

(a) (b) 0.75

0.55

0.35

100

-0.4

0.4

0

π/4

π/4

π/2

π/2

3π/4

3π/4

π0
ƒ

π/4 π/2 3π/4 π0

FIGURE 3. Corrected mean swimming velocity for large µ2. (a) µ3= 0 and (b) µ3= 900.
Four choices for µ2 are compared: µ2= 0 (solid lines), µ2= 100 (dashed lines), µ2= 500
(dot-dashed lines) and µ2= 900 (dotted lines). Panel (a) contains a magnified view of the
middle section of the results.

3. Mean swimming velocity in active media
Next consider active transversely isotropic media, where µ1 6= 0. The equations

governing the flow and orientation are given by (1.1) and (1.2) respectively. Due to
the time derivatives that force the evolution of orientation (equation (1.2)) we can no
longer seek a solution depending on z= x− t and instead look at an x-average of the
coupled system.

3.1. Corrected solution
Based on the geometry of the problem, ψ1 and θ1 will be periodic in x. Hence, an
x-average is taken,(

1+
µ2

4
sin2 2φ +µ3

) ∂4ψ
x
1

∂y4
+µ1 cos 2φ

∂2θ
x
1

∂y2
=

m1 +m3

2
, (3.1)
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∂θ
x
1

∂t
+ sin2 φ

∂2ψ
x
1

∂y2
=

n1 + n3

2
, (3.2)

where · x
≡ (1/2π)

∫ 2π

0 · dx. Equation (3.1) can be directly integrated twice with
respect to y,

(
1+

µ2

4
sin2 2φ +µ3

) ∂2ψ
x
1

∂y2
+µ1 cos 2φ θ

x
1 =

10∑
k=1

M(k)eγky

γ 2
k
+ B0(t)y+ B1(t), (3.3)

and substituted into (3.2) to give

∂θ
x
1

∂t
−

µ1 cos 2φ sin2 φ

1+
µ2

4
sin2 2φ +µ3

θ
x
1 =

10∑
k=1

N(k)eγky

−
sin2 φ

1+
µ2

4
sin2 2φ +µ3

(
10∑

k=1

M(k)eγky

γ 2
k
+ B0(t)y+ B1(t)

)
, (3.4)

where B0(t) and B1(t) are functions of time to be determined. To simplify the
following calculations, the functions are written in the form B0(t)= Ḟ0(t) exp(µ1Γ t)
and B1(t)= Ḟ1(t) exp(µ1Γ t), where the dot notation represents a time derivative, F0(t)
and F1(t) are functions of time to be determined and

Γ =
cos 2φ sin2 φ

1+
µ2

4
sin2 2φ +µ3

. (3.5)

Then, equation (3.4) can be solved via an integrating factor to give

θ 1 =
f (y)
µ1Γ
−

Γ

cos 2φ
(F0(t)y+ F1(t))eµ1Γ t

+ c(y)eµ1Γ t, (3.6)

where

f (y)=−
10∑

k=1

N(k)eγky
+

Γ

cos 2φ

10∑
k=1

M(k)eγky

γ 2
k

, (3.7)

and c(y) is a function to be determined. The full solution is detailed in appendix B.
Since the fibres have initial orientation φ, the initial condition for the angle is
θ

x
1(x, y, 0)= 0 and so

c(y)=−
f (y)
µ1Γ
+

Γ

cos 2φ
(F0

0y+ F0
1), (3.8)

where F0
j = Fj(0). The solution is thus

θ
x
1 =

f (y)
µ1Γ

(1− eµ1Γ t)−
Γ

cos 2φ
(B2(t)y+ B3(t))eµ1Γ t, (3.9)

for B2(t)= F0(t)− F0
0 , B3(t)= F1(t)− F0

1 .
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The form for θ
x
1 can now be substituted back into (3.3),

(
1+

µ2

4
sin2 2φ +µ3

) ∂2ψ
x
1

∂y2
=

cos 2φ
Γ

(1− eµ1Γ t)

10∑
k=1

N(k)eγky

+ eµ1Γ t
10∑

k=1

M(k)eγky

γ 2
k
+µ1Γ (B2(t)y+ B3(t))eµ1Γ t

+ B0(t)y+ B1(t), (3.10)

which can then be directly integrated with respect to y to obtain

(
1+

µ2

4
sin2 2φ +µ3

)
ψ

x
1 =

cos 2φ
Γ

(1− eµ1Γ t)

10∑
k=1

N(k)eγky

γ 2
k

+ eµ1Γ t
10∑

k=1

M(k)eγky

γ 4
k
+
(
B0(t)+µ1Γ B2(t)eµ1Γ t

) y3

6

+
(
B1(t)+µ1Γ B3(t)eµ1Γ t

) y2

2
+ B4(t)y+ B5(t). (3.11)

To determine the functions of integration, reconsider the boundary condition

∂ψ
x
1

∂y

∣∣∣∣∣
y=0

=
1
2
(α1α2 − β1β2), (3.12)

and note that since the velocity must remain bounded in the far field we require
B0(t) + µ1Γ B2(t)eµ1Γ t

= 0 and B1(t) + µ1Γ B3(t)eµ1Γ t
= 0. It can be shown that this

is equivalent to B0(t) = B1(t) = B2(t) = B3(t) = 0 (see appendix C). Since B5 has no
impact on the velocity it can, without loss of generality, be set to zero. The final
function B4(t) is determined from (3.12) as

B4(t) =
1
2
(α1α2 − β1β2)+

1
sin2 φ

(eµ1Γ t
− 1)

10∑
k=1

N(k)

γ 2
k

−
eµ1Γ t

1+
µ2

4
sin2 2φ +µ3

10∑
k=1

M(k)

γ 4
k
. (3.13)

Hence, the solutions ψ
x
1 and θ

x
1 are given by

ψ
x
1 = y

1
2
(α1α2 − β1β2)

+
eµ1Γ t
− 1

sin2 φ

10∑
k=1

N(k)

γk
−

eµ1Γ t

1+
µ2

4
sin2 2φ +µ3

10∑
k=1

M(k)

γ 3
k


−

eµ1Γ t
− 1

sin2 φ

10∑
k=1

N(k)eγky

γ 2
k
+

eµ1Γ t

1+
µ2

4
sin2 2φ +µ3

10∑
k=1

M(k)eγky

γ 4
k

, (3.14)
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θ
x
1 =

1+
µ2

4
sin2 2φ +µ3

µ1 cos 2φ sin2 φ

10∑
k=1

N(k)eγky

−
1

µ1 cos 2φ

10∑
k=1

M(k)eγky

γ 2
k

 (eµ1Γ t
− 1), (3.15)

where the swimming velocity is given at far field as

Ux
= eµ1Γ t

 1
sin2 φ

10∑
k=1

N(k)

γk
−

1

1+
µ2

4
sin2 2φ +µ3

10∑
k=1

M(k)

γ 3
k

 . (3.16)

3.2. Comments
Equation (3.16) will be valid only when µ1Γ 6 0 or for very short time scales. The
sign of µ1Γ is determined by µ1 cos 2φ; for ‘puller’ type behaviour, where µ1 is
positive, the solution is valid only for π/4 6 φ 6 3π/4 and these exponential terms
decay with time. This however leads to a steady-state swimming velocity Ux

= 0 and
so the active properties of the fluid halt any propulsion. For ‘pusher’ type behaviour,
where µ1 is negative, this validity is for 0 6 φ 6 π/4 and the same result for the
swimming velocity is obtained.

Outside this region, the solution for θ
x
1 and further the swimming velocity Ux grow

exponentially and hence will not be valid in the perturbation expansion currently
considered. To fully understand microscopic propulsion in active transversely isotropic
media, it will be necessary to consider a numerical solution to the full swimming
problem.

4. Discussion

New results arising from correction of an error in Cupples et al. (2017) have been
described, prompted by Shi & Powers (2017) who investigated propulsion in nematic
liquid crystals and discovered a discrepancy between the two models in a common
limit. The corrected swimming velocity was calculated for a passive fluid, from which
it was found that the extra terms introduce a dependence of the mean swimming
velocity on the initial orientation angle. By setting µ2 to be small and µ3 = 0 our
corrected result agrees with Shi & Powers (2017) in the common limit.

The corrected swimming velocity was then compared for a range of µ2 and µ3.
The effects of the initial orientation angle on Ut were increased by increasing the
anisotropic extensional viscosity and larger anisotropic shear viscosities reduce the
effect of the initial orientation angle. Further, when one parameter is large and the
other small, rapid changes in the swimming velocity and a reversal in the swimming
direction (i.e. negative swimming velocity) were seen; a result seen consistent with
the mean rate of working found in Cupples et al. (2017).

Finally a solution for the swimming velocity in active media (µ1 6= 0) was sought.
Periodicity in x was imposed for the streamfunction and evolution of orientation angle
due to the problem geometry; this observation simplified the calculations required. The
coupled equations were solved to determine the first-order evolution of orientation
and the swimming velocity. The swimming velocity varied exponentially in time, with
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the sign of the exponent dependent on µ1 and the initial orientation angle. Thus the
expansion is valid only for very short time periods, or for specific µ1 and initial
orientation angles where the exponent is negative; in these cases the active properties
appear to halt propulsion. Setting µ1 = 0 returned the result for the passive case. A
topic of significant interest for future work is to investigate a fully numerical solution
to the swimming problem in active transversely isotropic media.
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Appendix A. Inhomogeneous terms in O(ε2) governing equations

The right-hand side of (1.1) and (1.2) are

F(ψ0, θ0) = µ1

[
2 sin 2φ

(
θ0

(
∂2θ0

∂y2
−
∂2θ0

∂x2

)
+

(
∂θ0

∂y

)2

−

(
∂θ0

∂x

)2
)

+ 4 cos 2φ
(
∂θ0

∂x
∂θ0

∂y
+ θ0

∂2θ0

∂x∂y

)]

+µ2

[
sin 4φ

(
2
∂2θ0

∂x∂y
∂2ψ0

∂x∂y
−
θ0

2

(
∂4ψ0

∂x4
− 6

∂4ψ0

∂x2∂y2
+
∂4ψ0

∂y4

)
+

1
2

(
∂2θ0

∂x2
−
∂2θ0

∂y2

)(
∂2ψ0

∂y2
−
∂2ψ0

∂x2

)
−
∂θ0

∂y

(
∂3ψ0

∂y3
− 3

∂3ψ0

∂x2∂y

)
+
∂θ0

∂x

(
3
∂3ψ0

∂x∂y2
−
∂3ψ0

∂x3

))
+ cos 4φ

(
2θ0

(
∂4ψ0

∂x3∂y
−
∂4ψ0

∂x∂y3

)
+

(
∂2θ0

∂x2
−
∂2θ0

∂y2

)
∂2ψ0

∂x∂y

−
∂θ0

∂x

(
∂3ψ0

∂y3
− 3

∂3ψ0

∂x2∂y

)
−
∂θ0

∂y

(
3
∂3ψ0

∂x∂y2
−
∂3ψ0

∂x3

)
−
∂2θ0

∂x∂y

(
∂2ψ0

∂y2
−
∂2ψ0

∂x2

))]
, (A 1)

G(ψ0, θ0) =
∂ψ0

∂x
∂θ0

∂y
−
∂ψ0

∂y
∂θ0

∂x

− θ0

(
2 cos 2φ

∂2ψ0

∂x∂y
+ sin 2φ

(
∂2ψ0

∂y2
−
∂2ψ

∂x2

))
. (A 2)

Appendix B. Evolution of orientation in an active suspension

To determine the swimming velocity and evolution of orientation from system
(3.1)–(3.2), firstly (3.1) is integrated twice (equation (3.3)) and substituted into (3.2)
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resulting in (3.4),

∂θ
x
1

∂t
−

µ1 cos 2φ sin2 φ

1+
µ2

4
sin2 2φ +µ3

θ
x
1 =

10∑
k=1

N(k)eγky

−
sin2 φ

1+
µ2

4
sin2 2φ +µ3

(
10∑

k=1

M(k)eγky

γ 2
k
+ B0(t)y+ B1(t)

)
. (B 1)

We set B0(t) = F′0(t) exp(µ1Γ t) and B1(t) = F′1(t) exp(µ1Γ t), where Γ is given by
(3.5), to simplify the following calculations.

Introduce an integrating factor such that

∂

∂t
(e−µ1Γ tθ

x
) = e−µ1Γ t

10∑
k=1

N(k)eγky

−
Γ

cos 2φ

(
e−µ1Γ t

10∑
k=1

M(k)eγky

γ 2
k
+ F′0y+ F′1

)
. (B 2)

Next integrate with respect to t and rearrange to give

θ
x
= −

1
µ1Γ

10∑
k=1

N(k)eγky
+

Γ

cos 2φ

(
1
µ1Γ

10∑
k=1

M(k)eγky

γ 2
k

)

−
Γ

cos 2φ
(F0y+ F1) eµ1Γ t

+ c(y)eµ1Γ t, (B 3)

which is simplified to

θ
x
1 =

f (y)
µ1Γ
−

Γ

cos 2φ
(F0y+ F1)eµ1Γ t

+ c(y)eµ1Γ t, (B 4)

for function c(y) determined via boundary condition (3.12) in § 3.1.

Appendix C. Finding constants of integration

From (3.12) we require B0(t)+ µ1Γ B2(t)eµ1Γ t
= 0, and B1(t)+ µ1Γ B3(t)eµ1Γ t

= 0.
We here show that this is equivalent to B0(t)= B1(t)= B2(t)= B3(t)= 0.

Recall the forms B0(t) = Ḟ0(t)eµ1Γ t and B2(t) = F0(t) − F0
0 , and similarly for B1

and B3 respectively. Substituting this form into the expressions satisfying the far-field
condition we have

Ḟ0(t)eµ1Γ t
+µ1Γ eµ1Γ t(F0(t)− F0

0)= 0, (C 1)
Ḟ1(t)eµ1Γ t

+µ1Γ eµ1Γ t(F1(t)− F0
1)= 0. (C 2)

Since both equations have the same form, we illustrate the solution for (C 1) only;
rearrange and integrate with respect to t to obtain

F0(t)= F0
0 +De−µ1Γ t, (C 3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.647


420 G. Cupples, R. J. Dyson and D. J. Smith

for some constant D. As F0(0)=F0
0 , we find D= 0 and hence F0 is constant in time;

this then enforces B0(t)= B2(t)= 0.
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