
Appendix C

Residue forms and classical Morse theory

In our first two appendices, we developed the mathematics needed to prove
that the Cauchy integral representation

ar =

(
1

2πi

)s ∫
C

F(z) z−r−1dz

for the coefficients of a convergent Laurent series F(z) =
P(z)
Q(z) =

∑
r arzr

depends only on the singular homology class of the chain C and the de Rham
cohomology class of the form F(z) z−r−1dz in the domain of holomorphicity

M =

z ∈ Cd : Q(z)
d∏

j=1

z j , 0


of the integrand.

In this appendix, we begin to discuss how such a representation allows us
to manipulate Cauchy integrals into a form where we can derive asymptotic
information. First, we discuss intersection classes and residue forms, which
illustrate how to convert the Cauchy integral into an integral lying “on” the
singular set V ⊂ Cd of F. After introducing these concepts, we discuss how
to use Morse theory to manipulate integrals over chains in V into representa-
tions that will ultimately allow us to use saddle point approximations. Morse
theory is a large subject, and our treatment is restricted to the core topics we
need: height functions, attachments, homology groups, and homotopy type. In
this appendix we focus on the case where V∗ := V ∩ Cd

∗ is a complex mani-
fold. Appendix D, our final appendix, describes extensions of this material to
general algebraic sets (and their complements) using stratified Morse theory.
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C.1 Intersection classes 481

C.1 Intersection classes

Before describing how to generalize residues from the classical univariate set-
ting to several variables, we first need to describe the domains of integration
over which we can take multidimensional residues of differential forms with
singularities onV. These domains of integration will be intersection classes.

The intuition behind intersection classes is captured in Figure C.1. A torus T
on one side ofV expands to a torus T ′ on the other side ofV. Mathematically,
this expansion could be obtained by expanding each coordinate at a constant
rate, or by a more complicated deformation, or perhaps not by a deformation
at all but through a cobordism, meaning some (d + 1)-chain whose boundary
is T ′ − T . In getting from T to T ′ this expansion crosses V; if the crossing is
transverse, as it will be generically, it sweeps out a (d − 1)-chain γ ⊆ V. For
the intersection class to be well defined for our purposes, the homology class
of γ in Hd−1(V∗) should depend only on the homology classes of T and T ′ in
M.

Figure C.1 The intersection class of a cobordism from α to β.

The concepts involved in defining an intersection class are analytic in nature,
so we work with analytic functions instead of restricting ourselves to polyno-
mials. Let V = VQ be the complex manifold in Cd defined by the vanishing
of an analytic function Q(z) on Cd whose gradient does not vanish onV. Our
first step in constructing the intersection class is to derive a diffeomorphism be-
tween a neighborhood ofV in Cd and a product A× B, where A is a connected
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482 Residue forms and classical Morse theory

open set inV and B is a neighborhood of the origin in C. This is accomplished
by considering the embedded complex manifold V in its ambient space Cd.
The tangent bundle of V may be identified with a sub-bundle of the tangent
space to Cd by sending v to e∗(v), where e : V → Cd is the embedding of V
into Cd.

Recall from Appendix A that for anyw ∈ Cd there is a natural identification
φ of the tangent space TwCd with Cd using the standard basis ∂/∂z1, . . . , ∂/∂zd

for the holomorphic tangent space. Intuitively, we decompose Cd near w by
taking the tangent plane to V at w and its orthogonal complement. Formally,
the embedded tangent space and the embedded normal space ofV atw are the
subsets Sw := {w+φ(e∗(X)) : X ∈ TwV} and S ′w := {w+v : v ∈ NwV} ofCd,
respectively, where NwV ⊆ Cd is the orthogonal complement to φ(e∗(TwV)).

Under our assumptions, NwV is the one-dimensional complex vector space
(or two-dimensional real vector space) described in local coordinates as the
span of the vector (∇Q)(w). The total space of the normal bundle toV is the
set {(w,v) ∈ V × Cd : v ∈ NwV} pairing elements ofV and normal vectors.

Lemma C.1 (Collar Lemma). Under our running assumption that the gra-
dient of Q is nonvanishing on V, there is an open neighborhood of V in Cd

that is diffeomorphic to the total space of the normal bundle to V under a
diffeomorphism that maps w ∈ V to the vector (w, 0).

Proof Because ∇Q is nonvanishing on V, the gradient ∇Q is non-zero in
a neighborhood of V and thus defines a complex line bundle whose integral
surfaces have real dimension two. If U is any sufficiently small neighborhood
of V, we let a : U → V be the map sending z ∈ U to the unique point of V
on whose integral curve it lies; see Figure C.2. The map ψ sending z ∈ U to
ψ(z) = (a(z), ρ(z)) is the desired diffeomorphism, where ρ(z) is the projection
of z−a(z) onto the affine set S ′a(z), because ρ(z) ∈ Na(z)V by construction and
the kernels of da and dρ are transverse onV (they are orthogonal subspaces),
hence also transverse in a sufficiently small neighborhood ofV. �

Lemma C.1 implies that for any k-chain γ inV we can define a (k+1)-chain
oγ, which we call a tube around γ, by taking the union of small circles in the
fibers of the normal bundle with centers in γ. The radii of these disks should
be positive and small enough to fit into the domain of the collar map, but can
(continuously) vary with the point on the base. Different choices of the radii of
these circles lead to homologous tubes. Similarly, we let •γ denote the union of
solid disks in the fibers of the normal bundle with centers in γ. The elementary
rules for boundaries of products imply

∂(oγ) = o(∂γ) and ∂(•γ) = oγ ∪ •(∂γ) .
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Figure C.2 Integral curves (dotted) making up the normal bundle, and a decom-
position of z into (a(z), ρ(z)).

Because o commutes with ∂, cycles map to cycles, boundaries map to bound-
aries, and the map o on the singular chain complex of V induces a map from
Hk−1(V∗) to Hk(M), whereM = Cd

∗ \V. To simplify notation, we also denote
this map on homology by o.

We are now ready to define intersection classes after recalling a few con-
structions from differential geometry. Two submanifolds A, B ⊂ Cd are said to
intersect transversely if for all w ∈ A ∩ B the tangent spaces of A and B at
w jointly span Cd. Two classic results of differential geometry state that if A
and B intersect transversely then A∩ B is a manifold, and that if B is fixed and
A is any manifold then A can be slightly perturbed into a manifold A′ that in-
tersects B transversely (i.e., transversality is a generic property) – see [Hir76,
Chapter 3], for instance.

Theorem C.2 (intersection classes). Define o : Hd−1(V)→ Hd(M) as above.
Under our running assumption thatV is a manifold,

(i) ◦ is injective and its image is the kernel of the map ι∗ induced by the
inclusionM

ι
−→Cd

∗ .
(ii) Given α ∈ ker(ι∗) one may compute the inverse I(α) = o−1(α) by inter-

secting V∗ with any (d + 1)-chain in Cd+1
∗ whose boundary is α and for

which the intersection withV∗ is transverse.

When α = C − C′ in Theorem C.2, where C and C′ are two d-cycles inM
homologous in Cd

∗ , we call INT[C,C′;V] = I(C − C′) the intersection class
of C and C′. We usually use the intersection class when C = T and C′ = T ′ are
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484 Residue forms and classical Morse theory

tori and T ′ can be deformed to points where the Cauchy integral representing
a multivariate sequence is asymptotically negligible.

Proof of Theorem C.2 The Thom–Gysin long exact sequence implies exact-
ness of a sequence

0→ Hd−1(V∗)
o
→ Hd(M)→ Hd(Cd

∗). (C.1.1)

This may be found in [Gor75, page 127] (where, in the notation of that source,
W = Cd

∗) though in the particular situation at hand it goes back to Leray [Ler59].
Injectivity of o follows from exactness at Hd−1(V∗) while the rest of part (i)
follows from exactness at Hd(M).

For part (ii), we begin by showing that the map I which takes a subset S of
Cd
∗ transverse toV∗ and returns I(S ) = S∩V∗ induces a well-defined map from

ker(ι∗) to Hd−1(V∗). Because transversality is generic, given any α ∈ ker(ι∗)
there exist (d + 1)-chains intersectingV∗ transversely whose boundary is α. If
D is such a chain and C = I(D) then C is a cycle, since

∂C = ∂(D∩V∗) = (∂D) ∩V∗ = α ∩V∗ = ∅ .

Let D1 and D2 be two such chains, and define C j = D j ∩ V∗. Observe that
D1−D2 is null homologous because there is no (d +1)-homology in Cd

∗ . Thus,
D1 −D2 = ∂H for some (d + 1)-chain H in Cd

∗ . Choosing H transverse toV∗,

C1 − C2 = I(D1 −D2) = ∂(H∩V∗)

is a boundary inV∗. Thus, the class [I(D)] in Hd−1(V∗) is the same for anyD
with ∂D = α. If α = o(γ) then taking D = •(γ) gives I(D) = γ, showing that
I does in fact invert o and thus computes I. �

Remark C.3. BecauseC∗ is topologically a circle, the homology group Hd(Cd
∗)

is cyclic and generated by a product of small circles about the coordinate axes,
and Hk(Cd

∗) vanishes for k > d. The kernel of ι∗ consists of the classes that
don’t link the origin in Cd

∗ , i.e., the classes σ for which the integer invariant
`(σ) = (2πi)−d

∫
σ

dz1/z1 ∧ · · · ∧ dzd/zd vanishes. This holds, for example, if
σ = T − T ′, where T and T ′ are standard oriented tori around the origin, since
`(T ) = `(T ′) = 1.

There is a version of the intersection class in relative homology as well.
This will be useful to us when we integrate over a difference of tori, one being
the starting domain of integration in the Cauchy integral and the other being
a “large” torus, because it helps us ignore whether we have chosen a large
enough torus to avoidV∗ at points that are asymptotically negligible. We omit
the proof of this construction, which is similar to the proof of Theorem C.2.
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Corollary C.4. Let Y be a closed subspace of Cd
∗ and let α and β be relative

cycles in the pair (M,M∩ Y) that are homologous in (Cd
∗ ,Y). There is a well-

defined intersection class INT[α, β;V]Y ∈ Hd−1(V∗,Y) such that if H is any
(d + 1)-chain in Cd

∗ with ∂H = α′ − β′ + γ, where [α′] = [α] and [β′] = [β] in
Hd(M,M∩ Y) and γ ∈ Y, and if H intersectsV transversely, then H ∩V is
a relative cycle in the class INT[α, β;V]Y . �

By the excision property of homology, the pair (M,M ∩ Y) is homotopy
equivalent to the pair (M \ Y◦, ∂Y). This allows us to extend Corollary C.4 to
the case where α and β can intersectV, but only in the interior of Y .

Corollary C.5. Let Y be a closed subspace of Cd
∗ and let α and β be relative

cycles homologous in (Cd,Y) intersectingV only in the interior of Y. There is a
well-defined intersection class INT[α, β;V]Y ∈ Hd−1(V∗,V∗ ∩ Y), depending
only on the class of α − β in Hd(M,M∩ Y), such that if H is a (d + 1)-chain
in Cd

∗ with ∂H = α − β + γ, where γ is supported on the interior of Y, and if
the intersection of H with V is transverse away from the interior of Y, then
H ∩V is a relative cycle representing the class INT[α, β;V]Y . �

In the special case of Corollary C.5, where β = 0 and Y is the set of points
at height c or less, we denote the relative intersection class by INT[α;V]≤c .

C.2 Residue forms and the residue integral theorem

Integrating a differential form over a difference of chains can often be reduced
to integrating a residue form over an intersection cycle. Because residues de-
pend on local behavior, we work with subsets of Cd that are locally defined
by analytic functions. An analytic hypersurface (or simply hypersurface) is
a set V ⊂ Cd such that for any w ∈ V and any sufficiently small neigh-
borhood D of w in Cd there is an analytic function QD on V ∩ D such that
V ∩ D = {z ∈ D : QD(z) = 0}. If the function QD can be chosen to have
nonvanishing gradient on V ∩ D then we say V is a smooth analytic hyper-
surface at w, and we callV a smooth analytic hypersurface if it is a smooth
analytic hypersurface at every point.

Although the theory of multivariate residues is much more involved than its
univariate counterpart, we require it only for differential forms whose singu-
larities lie on unions of smooth analytic hypersurfaces. We build our results in
four degrees of generality, starting with forms having smooth simple poles,
then forms with smooth higher order poles, followed by forms with trans-
versely intersecting smooth sheets of simple poles, and concluding with forms
having transversely intersecting smooth sheets with higher order poles.
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486 Residue forms and classical Morse theory

C.2.1 Residue forms for smooth simple poles

Fix a smooth analytic hypersurfaceV defined locally by analytic functions QD
as above, and recall our notationM = Cd

∗ \V and dz = dz1∧ · · ·∧dzd. We say
that a d-form ω ∈ Ed(M) has smooth poles of order k onV if for any a ∈ V
there is a sufficiently small neighborhood D of a in Cd

∗ such that QD(z)kω

extends to a holomorphic form on D but QD(z) jω does not extend to such a
holomorphic form for any 0 ≤ j < k. A form with smooth poles of order one
is said to have simple poles.

Proposition C.6. Let ω be a holomorphic d-form with smooth simple poles
on V, represented as a quotient ω = P(z)/Q(z) dz of analytic functions on
M∩D for some domainD ⊂ Cd on which the gradient of Q does not vanish.
IfW = V ∩D and ι :W ↪→ D is the inclusion ofW into Cd then there is a
(d − 1)-form θ on D solving dQ ∧ θ = P dz and any such solution restricts to
a unique (d − 1)-form Res(ω) = ι∗θ onW called the residue of ω onW.

Remark C.7. Our definition of the residue is both natural, meaning it does
not depend on the particular polynomials P and Q used to represent ω =

P(z)/Q(z) dz onD, and functorial, meaning Res( f ∗ω) = f ∗ Res(ω) for smooth
functions f . Because the residue is natural, we can define Res(ω) on all of V
by defining it locally over the elements of a cover of V by sufficiently small
domains using Proposition C.6.

Proof We must show both that dQ ∧ θ = P dz always has a holomorphic so-
lution, and that the restriction of any such solution toV is unique. Uniqueness
follows from Exercise A.18 at the end of Appendix A: if θ1 and θ2 are two
solutions then dQ∧ (θ1− θ2) = 0, hence Exercise A.18 implies ι∗θ1 = ι∗θ2. The
existence of a solution follows from the following proposition, which expresses
the residue explicitly in local coordinates in sufficiently small neighborhoods,
by combining residues in local neighborhoods as discussed in Remark C.7. �

Proposition C.8. Under the hypotheses of Proposition C.6, if the partial deriva-
tive ∂Q/∂zk is nonvanishing onD for some fixed k ≤ d and r ∈ Zd then

Res
(
z−rω

)
= (−1)k−1 z

−rP(z)
Qzk (z)

dzk̂ , (C.2.1)

where dzk̂ = dz1 ∧ · · · ∧ dzk−1 ∧ dzk+1 ∧ · · · ∧ dzd.

Proof If k = 1 and θ is the right-hand side of (C.2.1), then

dQ ∧ θ =

 d∑
j=1

Qz j (z)dz j

 ∧ (
z−rP
Qz1 (z)

dz2 ∧ · · · ∧ dzd

)
= z−rP dz ,
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C.2 Residue forms and the residue integral theorem 487

as desired. In the general case, the sign (−1)k−1 comes from the position of dzk

in the wedge product. �

Exercise C.1. Let ω = 1/Q(x, y) dxdy, where Q(x, y) = 1 − x − xy + y2. Find
a formula for Res(ω) onV = VQ in terms of dx only, and another in terms of
dy only. Prove that the restrictions of these forms toV are equal.

Theorem C.9 (residue integral theorem). Suppose V = VQ = {z ∈ Cd :
Q(z) = 0} is defined globally by a function Q that is analytic on a neighbor-
hood of V and has nonvanishing gradient on V, and let ω be a holomorphic
d-form on M with smooth simple poles on V. If α and β are d-cycles in M
whose projections to Hd(Cd

∗) are equal then∫
α

ω −

∫
β

ω = 2πi
∫

INT[α,β;V]
Res(ω) .

Proof Vanishing of [α − β] in Hd(Cd
∗) by definition implies the existence of a

(d + 1)-chain H on Cd
∗ with boundary α − β. Perturbing slightly if necessary,

we can assume without loss of generality that H intersects V transversely.
Letting N denote the intersection of H with a small neighborhood of V and
Θ = H −N, the vanishing of holomorphic integrals of d-forms over boundaries
(Theorem A.27) implies that the integral of the holomorphic d-form ω over ∂Θ

vanishes. In other words, ∫
α

ω −

∫
β

ω =

∫
∂N
ω .

The Collar Lemma (Lemma C.1) implies that N is homotopic to a product
σ× Bε, where σ = H ∩V. Thus ∂N is homotopic to ∂(σ× Bε), which is equal
to σ × ∂Bε because σ is a cycle, giving∫

σ×∂Bε
ω =

∫
σ

(∫
∂Bε

ω

)
.

Using functoriality of the residue, we may change coordinates so thatV is the
complex hyperplane defined by z1 = 0. Thus we need only prove our claim
in the case where Q(z) = z1. Writing ω = (P/z1)dz1 ∧ (dz2 ∧ · · · ∧ dzd), the
iterated integral is ∫

σ

[∫
∂Bε

P(z)
z1

dz1

]
dz2 ∧ · · · ∧ dzd .

By standard univariate complex analysis, the inner integral at a point (z2, . . . , zd)
is the residue with respect to t of the meromorphic function P(t, z2, . . . , zd)/t at
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488 Residue forms and classical Morse theory

the pole (0, z2, . . . , zd). This is equal to

(2πi)
∫
σ

P(0, z2, . . . , zd) ,

which in this special case is precisely
∫
σ

Res(ω). �

There is also a relative version of this result.

Theorem C.10 (relative residue integral theorem). LetV and ω be as in The-
orem C.9. If Y is any closed subspace of Cd

∗ such that Hd(Cd
∗ ,Y) vanishes, and

if α is a d-cycle inM, then∫
α

ω = 2πi
∫

INT[α,0;V]
Res(ω) +

∫
C′
ω (C.2.2)

for some chain C′ supported on the interior of Y. In particular, if ω = z−rη

for some holomorphic form η onM and if Y is the set where the real part of
hr̂ = −r̂ · log z is at most c then, as λ→ ∞,∫

α

ω = 2πi
∫

INT[α,0;V]
Res(ω) + O

(
eλc′

)
(C.2.3)

for any c′ > c.

Proof By the vanishing of Hd(Cd
∗ ,Y) there is a (d + 1)-chain H with ∂H =

α + γ and γ supported on the interior of Y . Let N denote the intersection of H
with a neighborhood ofV. As before,∫

α

ω =

∫
γ

ω +

∫
∂N
ω .

Letting σ = H ∩ V, we recall that ∂N is homotopic to σ × Bε plus a piece
γ′ in the interior of Y . Taking C′ = γ + γ′, the rest of the proof of (C.2.3)
is the same as that of Theorem C.9. The asymptotic estimate follows because∣∣∣∣∫C′ ω∣∣∣∣ ≤ eλc

∫
C′
|η|, as in the proof of Proposition B.10. �

C.2.2 Residue forms on smooth higher order poles

Let ω and ω′ be holomorphic d-forms onM with simple poles on the smooth
variety V = VQ. If ω and ω′ are cohomologous in Hd(M) then [Res(ω)] =

[Res(ω′)] in Hd−1(V∗), and the study of residue classes of forms with smooth
higher order poles can be reduced to those with smooth simple poles using this
property.
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Lemma C.11 (Gelfand–Shilov reduction). If ω is a holomorphic d-form on
M with smooth poles of order k ≥ 2 on V and the representation ω =

P(z)/Q(z)k dz holds on a domainD then

ω =
dQ
Qk ∧ ψ +

θ

Qk−1

= d
(

−ψ

(k − 1)Qk−1

)
+

θ1

Qk−1

for some holomorphic forms ψ and θ, where θ1 = θ + dψ/(k − 1). Thus, any
d-form onM with smooth poles of order k is cohomologous to a d-form onM
with smooth poles of order k − 1.

Proof See [AY83, Lemma 17.1]. �

If ω is any d-form on M with smooth poles then Lemma C.11 implies ω
is cohomologous to a d-form ω′ on M with smooth simple poles, and we
define the residue class [Res(ω)] of ω to be the class [Res(ω′)] ∈ Hd−1(V∗).
To simplify notation we usually write Res(ω) for the class [Res(ω)]. As our
integrals of residues depend only on their cohomology classes, there is no harm
in this abuse of notation. This inductive definition gives the following corollary
of Theorem C.9.

Corollary C.12. Suppose the assumptions of Theorem C.9 hold, except that ω
can have smooth poles of any order onV. If α and β are d-cycles inM whose
projections to Hd(Cd

∗) are equal then the identity∫
α

ω −

∫
β

ω = 2πi
∫

INT[α,β;V]
Res(ω)

still holds.

Just as for smooth poles, there is an explicit formula for the residue of a
form with higher order poles. We state the following theorem for the types of
integrands that arise in our asymptotic analyses.

Lemma C.13. Let dzk̂ denote the (d− 1)-form dz1 ∧ · · · ∧ dzk−1 ∧ dzk+1 ∧ · · · ∧

dzd. Wherever the functions P(z)z−r and Q(z) are analytic and the partial
derivative Qzk (z) does not vanish,

Res
(
z−r

P(z)
Q(z)`

dz
)

= z−rΦrk (z) (C.2.4)

for a polynomial

Φrk (z) =

[
(−1)k−1

(
−rk

` − 1

)
z−(`−1)

k
P(z)

Qzk (z)`
+ O

(
r`−2

k

)]
dzk̂
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490 Residue forms and classical Morse theory

in rk of degree ` − 1 whose coefficients are analytic functions of z explicitly
given in terms of derivatives of P and Q.

Proof We induct on `, with the case ` = 1 handled by Proposition C.8. As-
sume for an induction that the lemma holds for ` − 1. Because the residue of
an exact form is zero, we let

η = (−1)k−1z−r
P(z)

(` − 1)Q(z)`−1Qzk (z)
dzk̂

and examine

0 = Res(dη)

= Res
z−r Pzk (z)

(` − 1)Q(z)`−1Qzk (z)
dz + z−r

−rkP(z)z−1
k

(` − 1)Q(z)`−1Qzk (z)
dz

−z−r
P(z)
Q(z)`

dz − z−r
P(z)Qzk ,zk (z)

(` − 1)Q(z)`−1Qzk (z)
dz

]
.

Isolating the third term on the right yields

Res
(
z−r

P(z)
Q(z)`

dz
)

= Res
z−r −rkP(z)z−1

k

(` − 1)Q(z)`−1Qzk (z)
dz


+ Res

(
z−r

A(z)
Q(z)`−1 dz

)
,

(C.2.5)

for an analytic function A independent of rk. Applying the induction hypothesis
to the first residue on the right-hand side of (C.2.5) shows that it equals

(−1)k−1
 −rk

` − 1

(
−rk − 1
` − 2

)
z−rz−(`−2)

k

P(z)z−1
k /Qzk (z)

Qzk (z)`−1 + O
(
r`−3

k

) dzk̂ ,

while applying the induction hypothesis to the second residue on the right-
hand side of (C.2.5) proves that it is O

(
r`−2

k

)
. Combining powers of Qzk (z) and

powers of zk, and simplifying
−rk

` − 1

(
−rk − 1
` − 2

)
=

(
−rk

` − 1

)
, then gives the stated

result. �

C.2.3 Iterated residue forms for simple poles on transverse sheets

In this section we summarize a generalization of residue forms to the case
whereV is the union of a finite number of smooth analytic hypersurfaces that
intersect transversely. A full treatment of residues for forms with transverse
poles can be found in [AY83, Section 16.5].
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Definition C.14. If V ⊂ Cd is an analytic hypersurface then we call w ∈ V
a transverse multiple point of V if there exists a neighborhood D of w in Cd

such thatD∩V = D∩ (VQ1 ∪ · · · ∪ VQk ) for smooth analytic hypersurfaces
{VQ j : 1 ≤ j ≤ k} defined by analytic functions Q j(z) whose gradients at
z = w are linearly independent. When this collection of analytic functions is
understood andm ∈ Nk then we writeQ(z)m = Q1(z)m1 · · ·Qk(z)mk . If every
point ofV is a transverse multiple point then we callV a transverse analytic
hypersurface.

Example C.15. Every smooth analytic hypersurface is a transverse analytic
hypersurface. /

Fix a transverse analytic hypersurface V and let ω be a d-form on M =

Cd \ V. We say that ω has a transverse pole (or transverse multiple point) of
orderm ∈ Nk at w ∈ V if

• there exists a neighborhoodD ofw in Cd and analytic functions Q1, . . . ,Qk

onD such thatD∩V = D∩ (VQ1 ∪ · · · ∪VQk ) and the gradients of the Qi

are linearly independent at w (in particular, they are all non-zero),
• there exists an analytic function P on D such that ω = P(z)/Q(z)mdz

when z ∈ D ∩M, and
• there is no possible choice of Q and P such that these properties hold with

any coordinate ofm decreased.

A transverse multiple point of order 1 is called a transverse simple pole (or
transverse simple point). The final item in this definition implies that the nu-
merator P and denominator factors Qk in the local representation of ω are co-
prime in the ring of germs of analytic functions, ensuring thatm is the correct
notion of order (no unwanted cancellation can occur).

Let p be a transverse simple pole of the d-form ω, with the local represen-
tation

ω =
P(z)

Q1(z) · · ·Qk(z)
dz

in some neighborhood of p. To simplify notation we write Vi = VQi and let
S =

⋂k
i=1Vi be the stratum of V containing p. Because the gradients of the

Qi are linearly independent at p, there exist coordinates π = {π1, . . . , πd−k}

that locally analytically parametrize S near p. In particular, writing zπ =

(zπ1 , . . . , zπd−k ) there exists a neighborhood D of p in Cd and analytic func-
tions ζi(zπ) onD for i < π such that z ∈ D lies in S if and only if zi = ζi(zπ)
for all i < π.

As detailed later in these appendices, ifD is sufficiently small thenM∩D
has a local product structure Ñ × S. Because p is a transverse multiple point
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with k sheets, the factor Ñ is homotopy equivalent to a k-torus and we can
represent the homology of Ñ using a product of k circles around p. To make
this explicit, we note that the map Ψ : D → Cd defined by

Ψ(z) =
(
Q1(z), . . . ,Qk(z), zπ1 − pπ1 , . . . , zπd−k − pπd−k

)
(C.2.6)

is a bi-analytic change of coordinates taking D ∩ S to a neighborhood of the
origin in {0} × Cd−k. Let Tε ⊆ Ck × {0} denote the product of circles of radius
ε in each of the first k coordinates. If ε is sufficiently small then Tε ⊂ Ψ(D)
and the cycle T = Ψ−1(Tε) will be a generator for Hk(Ñ). We give D the local
product structure that Ψ−1 induces from the product structure on Cd.

Definition C.16. If f is a differentiable function then the logarithmic gradient
of f at z is

(∇log f )(z) :=
(
z1 fz1 (z), . . . , zd fzd (z)

)
.

For each z ∈ S, the augmented lognormal matrix is the d × d matrix

ΓΨ(z) =



(∇log Q1)(z)
...

(∇log Qk)(z)
zπ1eπ1

...

zπd−keπd−k


,

where e j denotes the jth elementary basis vector. Equivalently, ΓΨ = JΨD
where D is the diagonal matrix with entries z1, . . . , zd and JΨ is the Jacobian
matrix of the map Ψ.

Remark. The definition of ΓΨ depends on the choice of factorization, each
factor being determined only up to a complex multiple. Suitable normalizations
are assumed later in the definition of the torus T following (10.3) and the
determination of the orientation in the proof of Theorem 10.25.

Theorem C.17 (iterated residues). Under the setup discussed above, let ω be
the holomorphic d-form ω =

P(z)∏k
j=1 Q j(z)

dz onM∩D and write SD = S∩D =

V1 ∩ · · · ∩ Vk ∩D.

(i) Iterated residue is well defined. The restriction to SD of any d-form θ

onD satisfying

dQ1 ∧ · · · ∧ dQk ∧ θ = P dz (C.2.7)

is independent of the particular solution θ.
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(ii) Formula for the iterated residue. Denoting the iterated residue defined
by this restriction by Res(ω;SD), there is a formula

Res

 P(z)∏k
j=1 Q j(z)

dz ; SD

 =
P(z)

det JΨ(z)

∣∣∣∣∣ zi=ζi(zπ)
for all i<π

dzπ1 ∧ · · · ∧ dzπd−k .

(C.2.8)
(iii) Residue integral identity. Let σ be any (d − k)-chain in SD and T =

Ψ−1(Tε) be as above. Then

1
(2πi)k

∫
T×σ

P(z) dz∏k
j=1 Q j(z)

=

∫
σ

Res

 P(z)∏k
j=1 Q j(z)

; SD

 . (C.2.9)

(iv) Formula for Cauchy integral. In particular,

1
(2πi)k

∫
T×σ

z−r−1P(z)∏k
j=1 Q j(z)

dz =

∫
σ

z−rP(z)
det ΓΨ(z)

∣∣∣∣∣ zi=ζi(zπ)
for all i<π

dzπ1∧· · ·∧dzπd−k .

(C.2.10)

Proof We first prove all four parts under the assumption that Q j(z) = z j for
all 1 ≤ j ≤ k. Setting πi = k + i for all 1 ≤ i ≤ d − k, the form θ = P(z) dzk+1 ∧

· · ·∧dzd satisfies (C.2.7). As in the proof of Proposition C.6 above, the result of
Exercise A.17 implies that ι∗θ is well defined, yielding (i). The formula (C.2.8)
is also evident in this case: JΨ is the identity matrix, hence (C.2.8) agrees with
our choice of θ after setting zi = 0 for 1 ≤ i ≤ k, proving (ii). For (iii), we write
the left-hand side as an iterated integral

1
(2πi)k

∫
σ

∫
γ1

· · ·

∫
γk

P(z) dz∏k
j=1 Q j(z)

,

where γ j is the circle of radius ε about the origin in the jth coordinate. Apply-
ing the univariate residue theorem to each of the inner k integrals leaves∫

σ

P(z) dzk+1 ∧ · · · ∧ dzd ,

proving (iii). Finally, (iv) follows from (iii) by replacing P(z) with z−r−1P(z)
in (C.2.8) and absorbing one factor of each z j in the denominator when going
from det JΨ to det ΓΨ.

For the general case, map by Ψ and use functoriality. The fact that Res is
well defined and functorial follows from the same argument as in the proof
of Proposition C.6. Applying the case already proved to the image space and
pulling back by Ψ−1, it remains only to observe that dzk+1∧· · ·∧dzd pulls back
to 1

det JΨ(z)

∣∣∣∣
zi=ζi(zπ) : i<π

dzπ1∧· · ·∧dzπd−k , and P(0) pulls back to P(z)|zi=ζi(zπ) : i<π .
�
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Remark. The residue depends on Q j only via its gradient. The sign of the
residue form depends on the order of the factors in the denominator, and we
account for this when using residue forms to determine asymptotics.

When the stratum S is a single point (meaning k = d) the residue at p is just
a number, simplifying the conclusions of Theorem C.17 as follows.

Corollary C.18. Suppose the hypotheses of Theorem C.17 hold in the special
case where k = d, so that the residue of ω at p is a number θ0. Then

(i) P(p) dz = θ0 (dQ1 ∧ · · · ∧ dQd) (p),

(ii) Res

 P(z)∏d
j=1 Q j(z)

dz ; p

 =
P(p)

det JΨ(p)
,

(iii)
1

(2πi)d

∫
Ψ−1(Tε)

P(z) dz∏d
j=1 Q j(z)

= Res

 P(z)∏d
j=1 Q j(z)

; p

 ,

(iv)
1

(2πi)d

∫
Ψ−1(Tε)

z−r−1P(z)∏s
j=1 Q j(z)

dz =
p−r−1P(p)
det JΨ(p)

=
p−rP(p)
det ΓΨ(p)

.

Example C.19 (two lines in C2). Let

Q(x, y) =

(
1 −

1
3

x −
2
3

y
) (

1 −
2
3

x −
1
3

y
)

so that VQ has a transverse multiple point at (x, y) = (1, 1). The gradients of
the factors of Q are (1/3, 2/3) and (2/3, 1/3), which are also their logarithmic
gradients when x = y = 1. The determinant of ΓΨ is therefore one of ±1/3, the
sign choice depending on the order in which we choose the factors. Up to sign,
the iterated residue of Q(x, y)−1dx ∧ dy at (1, 1) is thus the number 3. /

Example C.20 (dimension three with two factors). Consider the generating
function

F(x, y, z) =
16

(4 − 2x − y − z)(4 − x − 2y − z)
,

whose singular set consists of two planes meeting at the complex line S =

{(1, 1, 1) + λ(−1,−1, 3) : λ ∈ C}. In this case we can parametrize S globally
by any of its three coordinates (i.e., we can take D = C3). Choosing the third

https://doi.org/10.1017/9781108874144.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.021


C.2 Residue forms and the residue integral theorem 495

coordinate, making π1 = 3, we obtain

JΨ(x, y, z) =


−2 −1 −1
−1 −2 −1
0 0 1

 ,
whence det ΓΨ = 3 and

Res(F(x, y, z) dx ∧ dy ∧ dz;S) =
16
3

dz .

Choosing one of the first two coordinates leads to an equivalent answer: the
first two rows of JΨ are unchanged while the third row becomes either (1, 0, 0)
or (0, 1, 0), ultimately giving the representations −16dx and 16dy. These are
all equal, up to sign, as 1-forms on S. /

C.2.4 Iterated residue forms for higher order poles on transverse
divisors

In Section C.2.2 above we used Gelfand–Shilov reduction (Lemma C.11) to
define a residue for higher order smooth poles in terms of the residue for
smooth simple poles. A version of Gelfand–Shilov reduction also works for
iterated residues leading, through a computation analogous to the ones used to
establish Theorem C.17, except messier, to the following result.

Proposition C.21. Let S be a smooth codimension k variety in Cd
∗ defined

by the vanishing of k analytic functions Q1, . . . ,Qk, let U denote the module
over holomorphic functions of all meromorphic forms that can be written as
ψ/

∏k
j=1 Qn j

j , where ψ is holomorphic in a neighborhood of S in Cd, and let
R = U/E, where E is generated by the forms {Res(dη) : η ∈ R}. Then every
class in R has a representative in which each power n j is equal to 1. �

The rest of this section is devoted to the statement and proof of Theo-
rem C.24, an explicit formula for the residue in the specific case we use in
this text. We begin with a lemma indicating what form the answer will take.

Lemma C.22. Let f , f1, . . . , fd be smooth functions of u ∈ Ck. Then(
∂

∂u

)n
f (u) f1(u)r1 · · · fd(u)rd = f (u) f1(u)r1 · · · fd(u)rd Φ(r,u),

where Φ is a polynomial in r of degree |n| = n1 + · · ·+ nk. The leading term of
Φ is K(r,u)n =

∏k
j=1K j(r,u)n j , where

K j(r,u) =

d∑
i=1

ri
∂ log fi
∂u j

.
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Proof We show by induction that(
∂

∂u

)n
f (u) f1(u)r1 · · · fd(u)rd = f (u) f1(u)r1 · · · fd(u)rd

[
K(r,u)n + Q(r,u)

]
(C.2.11)

for all n, where Q is a polynomial in r of degree less than |n|. When n = 0
this holds with Q = 0. Assuming this holds for n, taking the logarithm and
differentiating with respect to u j gives, after some algebraic simplification, that(
∂
∂u

)n+δ j
f (u) f1(u)r1 · · · fd(u)rd equals the right-hand side of (C.2.11) when

K(r,u)n + Q(r,u) is replaced by

∂ log f
∂u j

+K j · (Kn + Q) +
∂

∂u j
(Kn + Q) .

The terms in this expression other than K j · K
n = Kn+δ j are polynomials in r

of degree at most |n|, completing the induction. �

We now specialize to our context.

Corollary C.23. Let Ψ be the parametrization defined in (C.2.6) with Jacobian
matrix JΨ(z). If we parametrize z = z(u) for variables u ∈ Ck and m is a
vector of positive integers then(

∂

∂u

)m−1
 z(u)−rP

(
Ψ−1(u)

)
∏d

j=1 z j(u) det JΨ

(
Ψ−1(u)

)  =
z(u)−rP

(
Ψ−1(u)

)
P(r,u)∏d

j=1 z j(u) det JΨ

(
Ψ−1(u)

) ,

(C.2.12)
where

P(r,u) =

 k∏
j=1

 d∑
i=1

ri
∂ log zi(u)

∂u j


m j−1

+ R(r,u)

 (C.2.13)

for some polynomial R in r of degree less than |m| − k.

Theorem C.24. Under our running assumptions, the iterated residue has a
computable expression

Res

z−r−1 P(z)∏k
j=1 Q j(z)m j

dz ; SD

 = z−r
P(r, z)∏

j∈π z j

∣∣∣∣∣∣
zi=ζi(zπ) : i<π

dzπ ,

(C.2.14)
where P(r, z) is a polynomial in r of degree |m| − k. The leading term of
P(r, z) is

P(r, z) ∼
(−1)|m−1|

(m − 1)!
P(z)

det ΓΨ(z)
(rΓ−1

Ψ )m−1 , (C.2.15)

where ΓΨ is the matrix from Definition C.16, the notation (rΓ−1
Ψ

)m−1 stands
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for
∏k

i=1(rΓ−1
Ψ

)mi−1
i , and (m − 1)! =

∏k
i=1(mi − 1)!. When k = d, the for-

mula (C.2.14) simplifies slightly to

Res

z−r−1 P(z)∏d
j=1 Q j(z)m j

dz ; p

 = p−rP(r,p) . (C.2.16)

Remark. Recall that the factors {Qi : 1 ≤ i ≤ k} are defined only up
to transformations multiplying each Qi by a complex number λi, satisfying∏k

i=1 λ
m1
i = 1. This multiplies det ΓΨ by

∏k
i=1 λi and divides (rΓ−1

Ψ
)m−1 by∏k

i−1 λ
mi−1
i , thus leaving the ratio (rΓ−1

Ψ
)m−1/ det ΓΨ which appears in (C.2.15)

invariant. Later, when we need to compute orientations, it will be convenient
to normalize each Qi to have constant term 1, simultaneously normalizing P to
have constant term a0.

Example C.25. Let a and b be positive integers and consider the function

F(x, y, z) =
16

(4 − 2x − y − z)a (4 − x − 2y − z)b ,

generalizing the function in Example C.20. Choosing to parametrize the line
S defined by the common zero sets of the denominator factors of F by the
coordinate z, we have the matrix

ΓΨ(x, y, z) =


−2x −y −z
−x −2y −z
0 0 1

 ,
whence det ΓΨ = 3xy and, writing r = (r, s, t),

rΓ−1
Ψ =

(
sx − 2ry

3xy
,

ry − 2sx
3xy

,
3txy − ryz − sxz

3xy

)
.

Since we can parametrize x = y = g(z) on S where g(z) = (4 − z)/3, we have

det ΓΨ|x=y=g(z) =
(4 − z)2

3

and

(rΓ−1
Ψ )m−1

∣∣∣
x=y=g(z) =

(
2r − s
z − 4

)a−1 (
2s − r
z − 4

)b−1

,

wherem = (a, b). Thus

Res
[
z−r−1F(z) dz;S

]
= x−ry−sz−t−1

[
P0(z) + O

(
(r + s)a+b−3

)]
dz , (C.2.17)

where, taking into account (−1)|m−1| = (−1)(a−1)+(b−1) to change factors of z−4
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into 4 − z, we see

P0(z) =
48

(4 − z)2 (a − 1)! (b − 1)!

(
2r − s
4 − z

)a−1 (
2s − r
4 − z

)b−1

.

/

Proof of Theorem C.24. Fix any index t with 1 ≤ t ≤ k and let η be the
(k − 1)-form defined by

η =
P̃(u)
um−δt

dut̂ ,

where dut̂ denotes the form du1 ∧ · · · ∧ dut−1 ∧ dut+1 ∧ · · · ∧ duk and P̃ is an
analytic function to be chosen later. Direct computation shows

dη =
(∂/∂ut)P̃(u)
um−δ jt

du −
(mt − 1)P̃(u)

um
du ,

and the fact that Res[dη] = 0 implies

Res
[

P̃(u)
um

du
]

=
1

mt − 1
Res

[
(∂/∂ut)P̃(u)
um−δ jt

du
]

(all residues with respect to forms in u are taken around the origin, which
we suppress for readability). Applying this maneuver mt − 1 times for each
1 ≤ t ≤ k then yields

Res
[

P̃(u)
um

du
]

=
1

(m − 1)!
Res

[
(∂/∂u)m−1P̃(u)

u1 · · · uk
du

]
, (C.2.18)

and using Theorem C.17 on the right-hand side of (C.2.18) implies

Res
[

P̃(u)
um

du
]

=
1

(m − 1)!

(
∂

∂u

)m−1

P̃(u) . (C.2.19)

By the definition of the map Ψ we can parametrize z on SD by z(u) =

Ψ−1(0,u) for u in a neighborhood of the origin in Cd−k. To simplify notation
we write Ψ−1(0,u) as Ψ−1(u), understanding the first k coordinates are implic-
itly zero. We now select

P̃(u) =
z(u)−r−1P(Ψ−1(u))

JΨ(Ψ−1(u))
,

which is chosen so that

Ψ∗
(

P̃(u)
um

du
)

= z−r−1 P(z)
Q(z)m

dz .
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Functoriality of the residue, combined with (C.2.19), now implies

Res
[
z−r−1 P(z)

Q(z)m
dz;SD

]
=

1
(m − 1)!

(
∂

∂u

)m−1 (
z(u)−r−1P(Ψ−1(u))

JΨ(Ψ−1(u))

)∣∣∣∣∣∣
(0,u)=Ψ(z)

dzπ . (C.2.20)

Applying Corollary C.23 to the right-hand side of (C.2.20) and noting that

ΓΨ =

(
∂ui

∂ log z j(u)

)
implies

∂ log zi(u)
∂u j

=
(
Γ−1

Ψ

)
i j

we obtain an expression(
∂

∂u

)m−1  z(u)−rP(Ψ−1(u))∏d
j=1 z j(u)JΨ(Ψ−1(u)


∣∣∣∣∣∣∣
(0,u)=Ψ(z)

= z−r
P(z)

det ΓΨ(z)
P̃(r, z)∏

j∈π z j

whose leading term is as stated. �

Remarks. The leading term (C.2.15) depends on the divisors Q j only through
their gradients. When the stratum S is a single point (k = d), the residue at p
is a 0-form – i.e., a polynomial P(r) in r.

C.3 Classical Morse theory

After using residues to replace our starting Cauchy integral with a residue in-
tegral over an intersection class σ inV, we need to understand how to deform
σ inV. The possible deformations we can make, and which deformations will
allow us to compute asymptotic behavior, depend on the topological properties
ofV. Morse theory attempts to describe the topology of a space X by means of
the geometry of X near critical points of a smooth, proper function h : X → R.

Our destination in this appendix is Theorems C.38 and C.39, which state that
we may find a basis for each homology group Hk(X) consisting of quasi-local
cycles at the critical points of h: for each critical point p there will be a cycle
with height bounded by h(p)−ε except in an arbitrarily small neighborhood of
p. We establish this result by studying the sublevel sets X≤a := {x ∈ X : h(x) ≤
a} as a increases and showing that the homotopy type of X does not change
(the Morse Lemma C.27) except at critical points, where a cell is attached
(Theorem C.28). Along the way, a description of X as a cell complex is given in
Theorem C.32. A description of the attachments in terms of relative homology
is also given in the last section.

Our material here covers classical (smooth) Morse theory, which assumes
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500 Residue forms and classical Morse theory

that the space X under consideration is a manifold. More general spaces are
handled in Appendix D.

Homotopy equivalence except at critical points

Let X be a smooth manifold and let h : X → R be a smooth function; we think
of h as giving the points on X a height (see Figure C.4 below). The critical
points of the height function h are the points p ∈ X for which the differential
dh|p is zero on the tangent space Tp(X). The values h(p) of h at its critical
points p are called the critical values of the height function h. A critical point
p is a nondegenerate critical point for h if the quadratic form given by the
quadratic terms in the Taylor approximation for h at p has no zero eigenvalues.

In coordinates, this means that the determinant of the Hessian matrix
[

∂2h
∂xi∂x j

(p)
]

is non-zero when X is locally coordinatized by x1, . . . , xd near p. While the
Hessian matrix itself depends on the coordinates, its (non)singularity does not;
see [Mil63, Section 2.1]. While it is traditional to require Morse functions to
be proper and have distinct critical values, we will not require this.

Definition C.26 (Morse function). A smooth function h : X → R is called a
Morse function if the critical points of h are nondegenerate. If h is a proper
map (meaning the inverse image of any closed and bounded interval is com-
pact) then we call h a proper Morse function. If the critical values of h are
distinct, then h is a Morse function with distinct critical values.

Exercise C.2. In which of the following cases is h a proper Morse function on
X?

(1) X is the surface of a doughnut lying on a table and h is height.
(2) X is the infinite cylinder {(x, y, z) : x2 + y2 = 1} and h is the z coordinate.
(3) X is the unit sphere and h is the distance to the point (−2, 0, 0).

Let X be a smooth manifold with proper Morse function h. If a is a real
number, we let X≤a denote the topological subspace {x ∈ X : h(x) ≤ a}. The
fundamental Morse Lemma states that the topology of X≤a changes only when
a is a critical value of h.

Lemma C.27 (Morse Lemma). Let a < b be real numbers, suppose that the
interval [a, b] contains no critical values of h, and assume that h−1([a, b]) is
compact. Then the inclusion X≤a ↪→ X≤b is a homotopy equivalence.

Proof The Morse Lemma is proven in [Mil63, Theorem 3.1] by constructing
a homotopy on X≤b that follows the orthogonal trajectories of the level-sets
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h = c for constants c ∈ [a, b]. This is accomplished using a downward gradient
flow constructed locally using the gradient of h(x) (which never vanishes when
h(x) ∈ [a, b] due to the absence of critical points). �

Exercise C.3. Let X be the torus embedded in R3 and let f be the distance
from points on X to a fixed point not on X. Use the Morse Lemma to prove that
f has a critical point on X that is either degenerate or is neither a maximum
nor a minimum.

Attachment at critical points

Suppose now that there is precisely one critical point p with h(p) ∈ [a, b]. The
Hessian of h at p is a real symmetric matrix and therefore has real eigenvalues.
We define the Morse index of h at p to be the number of negative eigenvalues
of the Hessian. The Morse index can range from 0 at a local minimum to
the dimension d of X at a local maximum. We now describe the topology of
X≤b as an attachment of a space Y to X≤a, where Y and the attaching map
depend on the Morse index of h at p. Following standard terminology in Morse
theory, a k-cell (more properly a topological k-cell) is a ball of dimension k (in
Appendix A we used this term for k-simplices, but topologically a k-ball and
k-simplex are equivalent).

Theorem C.28. Suppose that h−1([a, b]) is compact and contains precisely
one critical point p, with critical value h(p) strictly between a and b. Then
the space X≤b has the homotopy type of X≤a with a λ-cell attached along its
boundary, where λ is the Morse index of the critical point p (a 0-cell is a point
with empty boundary).

Proof See [Mil63, Theorem 3.2]. �

Example C.29. Suppose X is the unit sphere in R3 and consider the height
function h(x, y, z) = z (when working in R3, we often set h(x, y, z) = z so
that the “height” function measures actual height). There are only two critical
points of h, namely its minimum (0, 0,−1) at height −1 and maximum (0, 0, 1)
at height 1.

Let us follow X≤a as a increases from −∞ to +∞. For a < −1, the set X≤a

is empty. As a passes −1, Theorem C.28 states that a 0-cell is added with no
identification, making X≤a, homotopically, a point. Geometrically, X≤a with
a ∈ (−1, 1) is a small dish, which is contractible to a point. The only other
attachment occurs at the top of the sphere. For a < 1 ≤ b, the set X≤b \ X≤a is
a polar cap. Thus, geometrically as well as homotopically, a 2-cell is attached
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Figure C.3 Sublevel sets of a sphere, which form a contractible subset of the
sphere until reaching its maximum, when a cap is attached to complete the sphere.

along its bounding circle. All spaces resulting from attaching a k-cell to a con-
tractible space are homotopy equivalent to attaching a k-cell to a point. In the
present case k = 2 and the resulting space is homotopy equivalent to a 2-sphere,
recovering the homotopy class of X; see Figure C.3. We remark that analyz-
ing the attachments recovers only the homotopy type, not the homeomorphism
class. /

Example C.30. Let X be the torus in R3 obtained by rotating the circle (x −
5)2 + (y − 5)2 = 1 about the y-axis and let h(x, y, z) = z. The function h has
four critical points, all on the z-axis: a maximum (Morse index 2) at (0, 0, 6),
a minimum (Morse index 0) at (0, 0,−6), and saddle points (Morse index 1) at
(0, 0, 4) and (0, 0,−4); see Figure C.4.

p

c
c

c
c 1

2
2

3

4

p
1

4

3
p

p

Figure C.4 The critical points on a torus for the standard height function.

For −6 ≤ a < −4 we see that, as in Example C.29, X≤a is homotopic to a
point (geometrically, it is a dish). As a passes −4, the theorem tells us to add
a 1-cell along its boundary. The only way of attaching a 1-cell to a point is to
map both endpoints to the point, leaving a circle. Geometrically, if −4 < a < 4
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then the set X≤a is a patch in the shape of a 2-cell with two disjoint segments
of its boundary attached to two disjoint segments of the geometric boundary of
X≤a; see Figure C.5.

Figure C.5 Crossing the critical value c2.

The critical point at height 4 adds another 1-cell modulo its boundary, mak-
ing the homotopy type of X≤a for 4 ≤ a < 6 the union of two circles touching
at a point. Finally, crossing the top of the sphere a 2-cell B is added modulo
its boundary. There is more than one choice for the homotopy type of the at-
tachment, and keeping track only of the homotopy type throughout the process
of attaching cannot resolve this choice – one must look at the geometry of the
attachment. In this case, because the attachment is to a topological circle (the
6−ε level set) and results in a nonintersecting surface in R3, there are only two
possibilities for the attaching map in homology: ∂B is mapped to the circle in
one of two orientations. Either choice results in a torus.

We remark that knowing the mapping of the last attachment in homology
is not sufficient to compute the homotopy type of the space. For example, at-
taching a 2-cell to two circles joined at a point by mapping the boundary of the
2-cell to the common point produces a sphere with two circular handles, which
is not homotopy equivalent to a torus. /

Although Theorem C.28 specifies the attachment pair when the topology of
X changes, Example C.30 shows that the computation of the attaching map is
not automatic. It will help to have some results that narrow down this compu-
tation to certain constructions local to the critical point: the homotopy in the
Morse Lemma may be improved so that outside of a neighborhood of p, every
point is pushed down at least to a level c − ε.

Let p be a critical point with height c = h(p) and suppose a < c < b are
such that p is the only critical point with height in [a, b]. Given ε > 0, let
Bε(p) denote the ε-neighborhood of p. We will see a formal version of the
local Morse Lemma, in a more general context, in Appendix D. For now, we
note that the local Morse Lemma implies that the homotopy type of X≤b is the
same as the homotopy type of X≤c−ε ∪ Bε(p) for sufficiently small ε.

Definition C.31. Let Xc+ := X≤c−ε ∪ Bε(p) for any sufficiently small ε > 0,
and let Xp,loc denote the pair (Xc+ , X≤c−ε) depicted in Figure C.6.
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c − 

p c p c

ε

Figure C.6 The space Xc+ with points of height c represented by a dotted line.

The discussion above implies that the attachment pair (X≤b, X≤a) is homo-
topy equivalent to Xp,loc. Suppose now that h is a Morse function whose critical
values need not be distinct. If [a, b] contains the unique critical value c ∈ (a, b)
then the homotopy pushes points down to X≤c−ε except in a neighborhood of
the set of critical points whose value is p. Since this set of critical points is
discrete under our assumptions,

(X≤b, X≤a) '
⊕̃
p:h(p)=c

Xp,loc (C.3.1)

for sufficiently small ε > 0, where the tilde sum denotes the wedge of spaces,
meaning a disjoint union with the second space in each pair identified. This
equivalence states that (X≤b, X≤a) is homotopy equivalent to the wedge of the
local pairs at all critical points p with value c. The reduced homology of a
wedge is the direct sum of the reduced homologies of the individual spaces.

Exercise C.4. Intuitively, why is (C.3.1) a (reduced) direct sum? That is, ex-
plain why cycles in different summands cannot cancel each other.

The last step for this section is to put all this information together to produce
a global topological picture of X. At the level of homotopy type, the result is
that X has the topology of a cell complex, about which certain information is
known.

Theorem C.32. Let X be a manifold and h : X → R be a differentiable
function with no degenerate critical points. Suppose each sublevel set X≤a is
compact. Then X has the homotopy type of a cell complex with one cell of
dimension λ for each critical point of Morse index λ in X≤a.

Proof A full proof of Theorem C.32 can be found in [Mil63, Theorem 3.5],
but we give a sketch here. The proof for the case of finitely many critical points
with distinct critical values involves showing inductively that for any critical
value c the homotopy equivalence between X≤c−ε and a cell complex may be
extended, via the attachment of a cell, to a homotopy equivalence between
X≤c+ε and a cell complex with one more cell. The restriction on distinct critical
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values is then removed by homotopically perturbing h so as to satisfy the con-
ditions, and a limiting argument removes the assumption of a finite number of
critical points. �

Example C.33. The 2-sphere from Example C.29 is a cell complex with one
2-cell and one 0-cell; as noted above, up to homotopy equivalence, there is
only one choice for the attachment map. The 2-torus from Example C.30 is
a cell complex with one 0-cell, two 1-cells, and one 2-cell. Up to homotopy
equivalence, the one skeleton must be the wedge of two circles. There are a
number of ways to attach a 2-cell to a wedge of two circles, and the right
attaching map can be worked out by knowing what the boundary (i.e., the level
set ε below the maximum height) looks like. /

Remark C.34. Let X be a complex d-manifold in Cn and, for p ∈ Cn, let
hp denote the function mapping z ∈ Cn to the complex distance ||z − p|| =

(
∑n

j=1 |z j − p j|
2)1/2. Andreotti and Frankel’s original proof of Proposition B.20

from Appendix B proved that p can be chosen to make hp a Morse function by
establishing that the set of p for which it is not a Morse function has positive
codimension, then showing that the Morse index of any critical point on X for
hp is at most d.

C.4 Description at the level of homology

For our purposes it is useful to consider the successive attachments from the
last section on the level of homology. Suppose that c is a critical value and
(B, A) is any pair with the same homotopy type of the attachment (X≤c+ε, X≤c−ε).
The long exact sequence has a portion

Hn+1(B, A)
∂n+1
−−−→ Hn(A)

ι∗
−→ Hn(B)

π∗
−→ Hn(B, A)

∂n
−→ Hn−1(A),

which implies

Hn(A)
Image(∂n+1)

=
Hn(A)
ker(ι∗)

� Image(ι∗) = ker(π∗).

In particular, there is a short exact sequence

0→
Hn(A)

Image(∂n+1)
→ Hn(B)→ ker(∂n)→ 0

and, by Remark B.7, Hn(B) decomposes as a direct sum of the kernel of ∂n and
the cokernel of ∂n+1.

This decomposition allows us to construct a basis for the homology groups
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Hn(B) from knowledge of the homology of A and the boundary map ∂∗: starting
with a basis for Hn(A) we identify basis elements differing by elements in the
image of ∂n+1 and then add new basis elements indexed by a basis for the kernel
of ∂n. These new basis elements have an explicit geometric description. The
group Hn(B, A) consists of equivalence classes of chains in B whose boundaries
lie in A. If C is a chain in the kernel of ∂n then the image ∂∗([C]) is the class
of ∂C ∈ Hn−1(A), which bounds some n-chain D in A. The inverse image of
the class [C] by π∗ is the class of the chain C − D, which is a cycle because
∂C = ∂D. Heuristically, we write

π−1
∗ ([C]) = C − ∂−1

A (∂C) (C.4.1)

and view π−1
∗ ([C]) as the relative cycle C in Zn(B, A), completed to an actual

cycle in a way that stays within A.

Remark C.35. The choice of D in this construction is not natural (see Re-
mark B.7). A particular composition of a space B as a subspace A attached to
C = B \ A comes with an explicit inclusion map from ∂C to A, and this induces
the ∂∗ operator. There may, however, be more than one way to reassemble A,C,
and ∂∗ into B, giving homotopy equivalent spaces with different homology
bases.

One further remark on notation: when attaching a space Y along Y0, the pair
(Y,Y0) is commonly referred to as the attachment data or, in the case of Morse
theory, the Morse data for the attachment. This data should really include the
homotopy type of the attachment map, or else the homotopy type of X and
the attachment data do not determine the homotopy type of the new space. On
the level of homology what we need to know is the relative homology of the
pair (Y,Y0), which is the homology of the new space relative to the old space,
together with the ∂∗ map.

Filtered spaces

A filtered space Xn is the end of a nested sequence X0 ⊆ X1 ⊆ · · · ⊆ Xn of
topological spaces. We use the terminology of filtered spaces to describe how
homology changes among sublevel sets X j = X≤a j , and our first result concerns
the homology of a chain that is successively pushed toward lower heights.

Lemma C.36 (Pushing Down Lemma). Let X0 ⊆ · · · ⊆ Xn be a filtered space
and let C be a non-zero homology class in Hk(Xn, X0) for some k. Then there is
a unique positive j ≤ n such that for some C∗ ∈ Hk(X j, X j−1),

ι(C∗) = π(C) , 0 in Hk(Xn, X j−1), (C.4.2)
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where ι is the map induced by the inclusion of pairs (X j, X j−1) → (Xn, X j−1)
and π is the map induced by the projection of pairs (Xn, X0) → (Xn, X j−1). If ι
is an injection then C∗ is unique.

Proof To prove uniqueness of j, suppose that (C.4.2) is satisfied for some
minimal j with a chain C∗, and let j < r ≤ n. The composition of the two maps

(X j, X j−1)→ (Xn, X j−1)→ (Xn, Xr−1)

induces the zero mapping on homology because any class in the image of
the first map has a cycle representative in X j. Letting π′ denote projection of
(Xn, X0) to (Xn, Xr−1), we have π′(C) = π′(π(C)) = π′(ι(C∗)) = 0 and there-
fore (C.4.2) cannot hold for r > j.

For existence we argue by induction on n. The case n = 1 is trivial because
then j = 1 and C∗ = C. Assume the result for n−1 and let C be a non-zero class
in Hk(Xn, X0). If the image of C under the projection of (Xn, X0) to (Xn, Xn−1) is
non-zero then we may take C∗ to be this image and j to be n. Assume therefore
that C projects to zero. The short exact sequence of chain complexes for the
pairs

0→ (Xn−1, X0)→ (Xn, X0)→ (Xn, Xn−1)→ 0

induces the exact sequence

Hk(Xn−1, X0)→ Hk(Xn, X0)→ Hk(Xn, Xn−1) .

By assumption C is in the kernel of the second map, hence is the image under
the first map of some non-zero class C′. Applying the inductive hypothesis to
C′ yields some j ≤ n − 1 and a cycle C∗ ∈ Hk(X j, X j−1) satisfying (C.4.2) with
C′ in place of C. The commuting diagram

C∗ ∈ (X j, X j−1) -
ι1 (Xn−1, X j−1) -

ι2 (Xn, X j−1)

C′ ∈ (Xn−1, X0) -
ι3

?
π1

C ∈ (Xn, X0)

?
π

allows us to conclude π(C) = π(ι3(C′)) = ι2(π1(C′)) = ι2(ι1(C∗)) = ι(C∗),
verifying (C.4.2). �
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Building up by successive attachments

If we understand the topology of each pair (Xk+1, Xk) of consecutive elements
in a filtration X0 ⊆ · · · ⊆ Xn and we understand the homology groups of X0

then, using the argument above and induction, we understand the homology
groups of all Xk. Furthermore, if X is a smooth manifold with a proper height
function h then the Morse Lemma implies that the topology of the continuum
of spaces {X≤t} is captured by a filtration of sets described by the critical values
c0 < c1 < · · · < cn−1 of h. The Morse filtration of X with respect to h is the
filtration defined by X j = X≤c j−ε for 0 ≤ j ≤ n − 1 and Xn = X≤cn−1+ε, where ε
is any sufficiently small positive number.

When h has distinct critical values the pairs (Xi+1, Xi) are homotopy equiv-
alent to Xpi,loc, where pi are the critical points listed in order of increasing

height. In general, the successive pairs are homotopy equivalent to
⊕̃

h(p)=c j

Xp,loc

as c j increases through all critical values. We could describe how to keep track
of generators and relations for the homologies of X j inductively on j in the gen-
eral case, however what we will need is both more specialized (our spaces are
complex algebraic or analytic varieties) and more general (our spaces may not
be manifolds). Accordingly, we restrict the discussion here to one illustration,
continuing our example of the torus to show what can happen.

Example C.37. In Example C.30 we examined a height function on the torus
X with four critical points: one of Morse index 0, two of Morse index 1, and one
of Morse index 2. All ∂∗ maps vanish so the homology groups H0(X),H1(X),
and H2(X) are cyclic groups of rank 1, 2, and 1, respectively. The filtration con-
sists of X0 = ∅ , X1 which is contractible to a point, X2 which is homeomorphic
to a cylinder, X3 which is homeomorphic to a punctured torus, and X4 which is
the whole torus.

As an illustration of the non-naturality of the homology basis in (C.4.1),
consider the second 1-cell to be added. Let α be the homology class in H1(X2)
of the first 1-cell. Then the second 1-cell, which is a well-defined relative ho-
mology class β in H1(X3, X2), may be completed to an absolute class in H1(X3)
in many different ways, resulting in cycles differing by multiples of α. Geomet-
rically, one may for example complete β to the circle defined by x2 + z2 = 1,
or instead wrap around the torus any integer number of times. /

Exercise C.5. Let γ be the cycle pictured in Figure C.7, going around the torus
between the critical points p4 and p3. Applying the Pushing Down Lemma with
respect to the Morse filtration for the pictured height function, what is j and
what cycle represents ι(C∗) = π(C)?
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Figure C.7 A cycle on a torus.

Assume now that X ⊆ Cd
∗ is a smooth algebraic hypersurface (a real mani-

fold of dimension 2d − 2) and that the specific height function h(z) = hr(z) =

−r1 log |z1| − · · · − rd log |zd | is a proper Morse function on X. The purpose
of introducing critical points at infinity in Chapter 7 is to remove the strong
assumption that h is proper, however, to see how everything works, we now
derive the results of Chapter 7 in this setting. The height function h is the real
part of (a branch of) a holomorphic function −r · log z, and is thus harmonic,
so all critical points for h on X have middle Morse index d − 1. Let p( j) for
1 ≤ j ≤ m enumerate the critical points, ordered so that the critical values
c j = h(p j) are nondecreasing.

By the Morse Lemma, any cycle supported on X<c1 can be deformed via
gradient flow to a cycle in X≤t for t arbitrarily small, therefore integrals of
z−rF(z)dz over such cycles decay faster than any exponential. For this reason,
it suffices to describe the homology of (X,−∞), where −∞ stands for X≤t for
any t < c1. The final set of results in this appendix describes this homology.

Theorem C.38. Suppose h = hr is a proper Morse function on a smooth
algebraic hypersurface X in Cd

∗ . Then Hk(X,−∞) vanishes in dimensions k ,
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d − 1. The (d − 1)-homology is given by Hd−1(X,−∞) � Cm, where m is the
number of critical points. A basis {γp} may be chosen, indexed by the critical
points p of h on X, with the property that h is maximized on γp at p. By the
isomorphism of smooth homology and singular homology, each γp may be
chosen to be smooth.

Proof First assume distinct critical values c1 < · · · < cm with corresponding
critical points p(1), . . . ,p(m), and let X j denote the space X≤c j+ε. Inducting on j,
we show that the conclusion of the theorem holds for X j in place of X. First,
we note that each pair (X j, X j−1) is homotopy equivalent to a (d − 1)-ball Bd−1

modulo its boundary, whose homology has rank 1 in dimension d − 1 and zero
in every other dimension. For the base step j = 1, where we take X0 = X≤t for
any t < c1, the conclusion is immediate.

Now assume the conclusion holds with X = X j for some j < m, and consider
the short exact sequence of chain complexes of pairs

0→ C∗(X j,−∞)→ C∗(X j+1,−∞)→ C∗(X j+1, X j)→ 0 .

None of these pairs has any homology in dimensions higher than d − 1, there-
fore the long exact sequence is as follows, with an arrow from the rightmost
element of each row other than the bottom row to the leftmost element of the
next row down.

0 → Hd−1(X j,−∞) → Hd−1(X j+1,−∞) → Hd−1(X j+1, X j)
Hd−2(X j,−∞) → Hd−2(X j+1,−∞) → Hd−2(X j+1, X j)
Hd−3(X j,−∞) → Hd−3(X j+1,−∞) → Hd−3(X j+1, X j)

...
...

...

H0(X j,−∞) → H0(X j+1,−∞) → H0(X j+1, X j)→ 0.

Identifying each Hk(X j+1, X j) as C if k = d − 1 and 0 otherwise, and using the
induction hypothesis, fills in most of this sequence:

0 → C j → Hd−1(X j+1,−∞) → C

0 → Hd−2(X j+1,−∞) → 0
0 → Hd−3(X j+1,−∞) → 0
...

...
...

0 → H0(X j+1,−∞) → 0 ,

from which we deduce that Hk(X j+1,−∞) has rank one more than that of
Hk(X j,−∞) when k = d − 1 and rank zero otherwise. The extra generator
comes from the attachment of Bd−1 modulo its boundary, for which the gen-
erator γ j+1 may be chosen to maximize h at p( j) (see Exercise C.10), thereby
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completing the induction. Finally, the assumption of distinct critical values
may be removed via (C.3.1). �

Exercise C.6. Let X be a smooth complex algebraic variety of complex di-
mension d in Cm

∗ for m > d and let h be a Morse function on X which is the
real part of a complex analytic function. Suppose X has five critical points.
Can you determine the homotopy type of the pair (X≤b, X≤a) when a → −∞
and b→ +∞?

We now have the tools to state a result analogous to what Theorem C.38 tells
us about X forM = Cd

∗ \ X. Recall the tube operator o : Hd−1(V∗) → Hd(M)
from Theorem C.2 – this is not only an injection, but (as we will see in the
next appendix) is an isomorphism on (X j+1, X j). An induction then gives the
following result.

Theorem C.39. Suppose the height function hr is a proper Morse function on
a smooth complex algebraic hypersurface X in Cd

∗ and letM = Cd
∗ \ X. Then

there is a basis for Hd(M,−∞) consisting of a single generator γp for each
critical point p of hr, which is tube around a cycle reaching maximum height
at p and is homotopy equivalent to S 1 × (Bd−1, ∂Bd−1). �

We cover Theorem C.39, and generalizations, in Appendix D.

Notes

Detailed treatments of multivariate residues are given in [Pha11; AY83], while
the classic text on Morse theory, which we have based our presentation around,
is [Mil63].

Additional exercises

Exercise C.7 (univariate residues via Stokes’s Theorem). Let f be a meromor-
phic function inside and on a closed contour γ such that f has no singularities
on γ. The familiar residue theorem in one variable states that

1
2πi

∫
γ

f =
∑

a

Res( f ; a),

where the sum is over the poles a of f inside γ. Derive this from Theorem C.9.
What are α, β, ω,V, and INT[α, β;V]?
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Exercise C.8. Let P be a polynomial in two complex variables such that P(0, y)
has only simple, non-zero roots. Let α be a small torus of polyradius (ε, ε) and
let β be a torus of polyradius (ε,M), where M is much larger than any root
of P(0, y). Compute the intersection class INT[α, β;V]. Hint: Use the obvious
homotopy and parametrizeV∗ as y = f j(x) near each root y j of P(0, y).

Exercise C.9 (lumpy sphere). Let X be a sphere with a lump, that is, a patch
on the northern hemisphere where the surface is raised to produce a local,
but not global, maximum of the height function. List the critical points of the
lumpy sphere and determine the homotopy types of the attachments. This gives
a description of the lumpy sphere as a cell complex different from the complex
with just two cells. Use this to compute the homology and verify it is the same
as for the non-lumpy sphere.

Exercise C.10. Let M be a manifold with Morse function h having distinct
critical values and let x be a critical point of Morse index k. Let P be any sub-
manifold ofM diffeomorphic to an open k-ball about x such that h is strictly
maximized on P at x. Prove that P is a homology generator for the local ho-
mology group Hk(Mh(x)+ε,Mh(x)−ε). Hint: This is true of any embedded k-disk
through x inMh(x) that intersects the ascending (n − k)-disk transversely.

Exercise C.11. Let ιd : CPd−1 ↪→ CPd denote the embedding ιd(z0 : · · · : zd) =

(z0 : · · · : zd : 0).

(i) Show that CPd \ Image(ι) is homeomorphic to a (2d)-ball.
(ii) Describe CPd as CPd−1 with a (2d)-cell attached. What is the attachment

map on homology?
(iii) Use induction on d to compute the homology of CPd.
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