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Irregular cusps of orthogonal modular
varieties∗

Shouhei Ma

Abstract. Irregular cusps of an orthogonal modular variety are cusps where the lattice for Fourier

expansion is strictly smaller than the lattice of translation. Presence of such a cusp affects the study

of pluricanonical forms on the modular variety using modular forms. We study toroidal compactifi-

cation over an irregular cusp, and clarify there the cusp form criterion for the calculation of Kodaira

dimension. At the same time, we show that irregular cusps do not arise frequently: besides the cases

when the group is neat or contains −1, we prove that the stable orthogonal groups of most (but not

all) even lattices have no irregular cusp.

1 Introduction

Irregular cusps of a modular curve are cusps where the width of translation is strictly

smaller than the width for Fourier expansion. It does not arise frequently, but does exist.

At such a cusp, the vanishing order of cusp forms has to be considered carefully, espe-

cially when comparedwith that of pluricanonical forms (cf. [3] §3.2 – §3.3). In this article

we study and classify irregular cusps for orthogonal groups of signature (2, 𝑏), and clar-
ify the effect of such cusps on the study of Kodaira dimension of orthogonal modular

varieties.

Let 𝐿 be a lattice of signature (2, 𝑏). Let D = D𝐿 be the Hermitian symmetric

domain attached to 𝐿, which is defined as either of the two connected components of

the space

{C𝜔 ∈ P𝐿C | (𝜔, 𝜔) = 0, (𝜔, �̄�) > 0}.
We write O+ (𝐿) for the subgroup of the orthogonal group O(𝐿) that preserves the
componentD.

The domainD has 0-dimensional and 1-dimensional cusps. For simplicity of expo-

sition, we speak only of 0-dimensional cusps for the moment: in fact, the case of

1-dimensional cusps can be reduced to that of adjacent 0-dimensional cusps (Propo-

sition 6.3). A 0-dimensional cusp of D corresponds to a rank 1 primitive isotropic

sublattice 𝐼 of 𝐿. Let 𝑈 (𝐼)Q be the unipotent radical of the stabilizer of 𝐼 in O+ (𝐿Q).
Then 𝑈 (𝐼)Q is already abelian: it is a Q-vector space of dimension 𝑏 (with a hyper-

bolic quadratic form). Let Γ be a finite-index subgroup of O+ (𝐿). The cusp 𝐼 is called
an irregular cusp for Γ if𝑈 (𝐼)Q ∩ Γ ≠ 𝑈 (𝐼)Q ∩ ⟨Γ,−id⟩. As we will explain,𝑈 (𝐼)Z =
𝑈 (𝐼)Q ∩ Γ is the lattice for Fourier expansion of Γ-modular forms around 𝐼 , while
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2 S. Ma

𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q ∩ ⟨Γ,−id⟩ is the lattice of translation around 𝐼 in the Γ-action. We

give several characterizations of irregularity (Proposition 3.1), including one suitable

for explicit calculation.

Irregular cusps are rather rare: they do not exist when −id ∈ Γ or when Γ is neat or

when Γ ⊂ SO+ (𝐿) with 𝑏 odd. But they do exist, in infinitely many examples in every

dimension (§4.5).Our particular interest is in the so-called stable orthogonal groups Õ+ (𝐿)
of even lattices 𝐿, defined as the kernel of the reduction mapO+ (𝐿) → O(𝐿∨/𝐿). This
is the group that most frequently appear in the moduli problem related to orthogonal

modular varieties. Our calculation concerning Õ+ (𝐿) can be summarized as follows.

Proposition 1.1 (§4.1, §4.5) The stable orthogonal group Õ+ (𝐿) of an even lattice 𝐿 has no
irregular cusp unless 𝐿∨/𝐿 ≃ Z/8 ⊕ (Z/2)⊕𝑎 or 𝐿∨/𝐿 ≃ (Z/4)⊕2 ⊕ (Z/2)⊕𝑎 as abelian
groups. Conversely, if 𝐿 = 𝑈⊕⟨−8⟩⊕𝑀 or 𝐿 = 𝑈⊕⟨−4⟩⊕2⊕𝑀 with𝑀∨/𝑀 2-elementary,
then Õ+ (𝐿) has an irregular 0-dimensional cusp.

Consequently, we obtain classification for the following examples from moduli

spaces (§4):

• The modular group for 𝐾3 surfaces of degree 2𝑑 has an irregular cusp exactly when
𝑑 = 4.

• The modular group for irreducible symplectic manifolds of 𝐾3[𝑡+1]-type with
polarization of split type and degree 2𝑑 ([9]) has an irregular cusp exactly when
(𝑡, 𝑑) = (1, 4), (2, 2), (4, 1).

• The modular group for O’Grady10 manifolds with polarization of split type and

degree 2𝑑 ([10]), which is larger than Õ+ (𝐿), has an irregular cusp exactly when
𝑑 = 4.

• Similarly, the modular group for deformation generalized Kummer varieties with

polarization of split type and degree 2𝑑 ([2]) has an irregular cusp exactly when
(𝑡, 𝑑) = (4, 1).

• We will also cover the groups considered in [18], [16], [4].

A subtle issue concerning irregular cusps, which is the main object of this article,

is comparison of the vanishing order between cusp forms and pluricanonical forms.

We take a toroidal compactification F (Γ)Σ of the modular variety F (Γ) = Γ\D.

This is defined by choosing a finite collection Σ = (Σ𝐼 ) of suitable fans, one for each
Γ-equivalence class of rank 1 primitive isotropic sublattices 𝐼 of 𝐿. A ray 𝜎 in Σ𝐼
corresponds to a boundary divisor 𝐷 (𝜎) of the torus embedding D/𝑈 (𝐼)Z, and thus

determines a boundary divisor Δ(𝜎) of F (Γ)Σ as the image of 𝐷 (𝜎). The projection
D/𝑈 (𝐼)Z → F (Γ)Σ is ramified along 𝐷 (𝜎) (with index 2) exactly when 𝐼 is irregular
and the ray 𝜎 is irregular in the sense of Definition 3.2.

The vanishing order 𝜈𝜎 (𝐹) of a Γ-modular form 𝐹 at 𝐷 (𝜎) ⊂ D/𝑈 (𝐼)Z can be

measured by Fourier expansion (§8.2): this is done with𝑈 (𝐼)Z. On the other hand, the

vanishing order of a pluricanonical form 𝜔 on F (Γ) should be measured at the level

of Δ(𝜎) ⊂ F (Γ)Σ: this is essentially done with 𝑈 (𝐼) ′Z. When 𝜔 is 𝑚-canonical and
corresponds to 𝐹 (of weight 𝑘 = 𝑚𝑏 and character 𝜒 = det𝑚), we have the relation
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Irregular Cusps 3

(Proposition 8.7)

𝜈Δ(𝜎) (𝜔) = 𝑎𝜎 · 𝜈𝜎 (𝐹) − 𝑚,

where 𝑎𝜎 = 1 if 𝜎 is regular but 𝑎𝜎 = 1/2 if 𝜎 is irregular due to the boundary ramifi-

cation. If we are involved onlywithmodular forms of specific parity of weight 𝑘 , namely

𝑘 even for 𝜒 = 1 (e.g., [7], [13]) or 𝑘 ≡ 𝑏 mod 2 for 𝜒 = det, we do not need to worry

about irregular cusps because we can enlarge Γ to ⟨Γ,−id⟩ without any loss. However,
if we use a modular form of weight in the remaining parity, we cannot add−id to Γ, and
have to be careful about the coefficient 𝑎𝜎 = 1/2 at irregular rays 𝜎.

Gritsenko-Hulek-Sankaran [6] gave a criterion, called the lowweight cusp form trick,

for F (Γ) to be of general type in terms of existence of a certain cusp form. It appears

that irregular cusps are not covered in [6], essentially by assuming −id ∈ Γ, explicitly
for 1-dimensional cusps ([6] p.539) and implicitly for 0-dimensional cusps (see a remark

below). In view of the coefficient 𝑎𝜎 = 1/2 at irregular 𝜎, it seems that this criterion

needs to be modified at such boundary divisors. The result is summarized as follows

(compare with [6] Theorem 1.1).

Theorem 1.2 (Theorem 8.9) Let 𝐿 be a lattice of signature (2, 𝑏) with 𝑏 ≥ 9 and Γ be a
subgroup ofO+ (𝐿) of finite index. We take a Γ-admissible collection Σ = (Σ𝐼 ) of fans so that
Σ𝐼 is basic with respect to𝑈 (𝐼)Q∩ ⟨Γ,−id⟩ at every 0-dimensional cusp 𝐼 . Assume that there
exists a Γ-cusp form 𝐹 of weight 𝑘 < 𝑏 and some character satisfying the following:

(1) 𝐹 vanishes at the ramification divisor ofD → F (Γ).
(2) 𝜈𝜎 (𝐹) ≥ 2 at every irregular ray 𝜎 at every irregular 𝐼 .

Then F (Γ) is of general type.

The condition on Σ is imposed in order to ensure that F (Γ)Σ has canonical singu-

larities ([6], [13]), and this can always be satisfied. When Γ has no irregular cusp, the

condition (2) is vacuous, and this is the criterion in [6]; the choice of Σ does not matter

with 𝐹 and can be dropped (or hidden) from the criterion. Even when Γ has an irregular

cusp, if the weight 𝑘 is even for 𝜒 = 1 or 𝑘 ≡ 𝑏 mod 2 for 𝜒 = det, the condition (2)

is still automatically satisfied by the cuspidality of 𝐹 (Proposition 8.3). However, when

Γ has an irregular cusp and 𝑘 belongs to the remaining parity, the condition (2) arises,

and the choice of Σ𝐼 is then involved with 𝐹 . Practically it would not be very easy to

check (or achieve) 𝜈𝜎 (𝐹) ≥ 2 for specific 𝐹 and Σ𝐼 . Probably the most plausible sce-

nario would be to expect and check that the group Γ in question has no irregular cusp.

We could say that this is a small cost for using cusp forms of arbitrary weight.

By the examples discussed after Proposition 1.1, the general-type results in [6], [9],

[10], [2], [18], [16], [4] are not affected. This is our essential purpose.

As a related remark, it should be remembered that in [1], subgroups ofO+ (𝐿R)/±id
are considered, rather than of O+ (𝐿R). This means that the given group Γ < O+ (𝐿)
is replaced by ⟨Γ,−id⟩/±id. In this situation, it is not 𝑈 (𝐼)Z = 𝑈 (𝐼)Q ∩ Γ but rather

𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q∩⟨Γ,−id⟩ that is written as𝑈 (𝐹)Z in the notation of [1]. This is a subtle
difference that may arise when working with [1] and that could cause overlooking of

irregular cusps.
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4 S. Ma

To conclude, irregular cusps are cusps where the lattice for Fourier expansion is

smaller than the lattice of translation. It is the central element −id in the Lie group

O+ (𝐿R) that is eventually responsible for the presence of such cusps. We need to be

careful about such cusps when we use a cusp form of odd weight with 𝜒 = 1 or weight

𝑘 . 𝑏 mod 2 with 𝜒 = det for constructing a pluricanonical form on F (Γ)Σ.
This article is organized as follows. In §2 we recall the structure of the stabilizer of

a 0-dimensional cusp. In §3 we define and study irregular 0-dimensional cusps. In §4

we give examples of groups Γwith/without irregular cusp. In §5 we recall the structure

of the stabilizer of a 1-dimensional cusp. In §6 we study irregular 1-dimensional cusps.

In §7 we study some basic properties of a toroidal compactification of F (Γ). In §8 we

prove Theorem 1.2. The main contents of this article are contained in §3, §4, §6 and §8.

§2 and §5 are expository, but we tried to be rather self-contained because of the subtle

nature of irregular cusps and for calculation of explicit examples in §4.

Throughout the article, a latticeusuallymeans a freeZ-module of finite rank endowed

with a nondegenerate integral symmetric bilinear form (·, ·) : 𝐿×𝐿 → Z. In a few occa-

sions, we use the word "lattice" just for a free Z-module of finite rank, but no confusion

will likely to occur. The dual latticeHom(𝐿,Z) of 𝐿 will be denoted by 𝐿∨. A sublattice

𝐼 ⊂ 𝐿 is called primitive when 𝐿/𝐼 is free, and isotropic when (𝐼, 𝐼) ≡ 0. A lattice 𝐿 is

called even if (𝑙, 𝑙) ∈ 2Z for every 𝑙 ∈ 𝐿, but this is not assumed except in §4. We write

𝑈 for the even unimodular lattice of signature (1, 1) given by the Gram matrix

(
0 1

1 0

)
.

I would like to thank Valery Gritsenko, Klaus Hulek, Shigeyuki Kondo and Gregory

Sankaran for their valuable comments.

2 0-dimensional cusps

Let 𝐿 be a lattice of signature (2, 𝑏). We write𝑄 = 𝑄𝐿 for the isotropic quadric in P𝐿C
defined by (𝜔, 𝜔) = 0. The Hermitian symmetric domain attached to 𝐿 is the open set

of𝑄

D = D𝐿 = {C𝜔 ∈ 𝑄 | (𝜔, �̄�) > 0}+,
where +means the choice of a connected component. The domain D has two types of

rational boundary components (cusps): 0-dimensional and 1-dimensional cusps. They

correspond to primitive isotropic sublattices of 𝐿 of rank 1 and 2 respectively. In

this section we recall the structure of the stabilizer of a 0-dimensional cusp and par-

tial toroidal compactification over it. Although the contents of this section are quite

standard (cf. [17], [11], [6], [12]), we tried to be rather self-contained and explicit for

two reasons: because of the subtle nature of irregular cusps (§3), and for the sake of

calculation of explicit examples (§4).

2.1 Tube domain model

Throughout this section we fix a rank 1 primitive isotropic sublattice 𝐼 of 𝐿. The 0-
dimensional cusp corresponding to 𝐼 is the point P𝐼C of𝑄. We abbreviate 𝐼⊥ = 𝐼⊥ ∩ 𝐿
and write

𝐿 (𝐼) = (𝐼⊥/𝐼) ⊗ 𝐼 .
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Twisting by 𝐼 , not choosing its generator, will be rather essential. The quadratic form
on 𝐼⊥/𝐼 and an isomorphism 𝐼 ≃ Z define a hyperbolic quadratic form on 𝐿 (𝐼). This is
independent of the choice of 𝐼 ≃ Z. We denote by C𝐼 the positive cone in 𝐿 (𝐼)R, namely

a chosen connected component of {𝑤 ∈ 𝐿 (𝐼)R | (𝑤, 𝑤) > 0}.
We write D(𝐼) = 𝑄 − 𝑄 ∩ P𝐼⊥

C
. Then D is contained in D(𝐼). Indeed, if [𝜔] ∈

D ∩ P𝐼⊥
C
, the positive-definite plane ⟨Re(𝜔), Im(𝜔)⟩ would be contained in 𝐼⊥R /𝐼R,

which contradicts the hyperbolicity of 𝐼⊥R /𝐼R. The linear projection P𝐿C d P(𝐿/𝐼)C
from the point P𝐼C ∈ 𝑄 defines an isomorphism

D(𝐼) ≃→ P(𝐿/𝐼)C − P(𝐼⊥/𝐼)C.

If we choose a rank 1 sublattice 𝐼 ′ of 𝐿 with (𝐼, 𝐼 ′) . 0, this defines the base point

P(⟨𝐼, 𝐼 ′⟩C/𝐼C) of the affine space P(𝐿/𝐼)C − P(𝐼⊥/𝐼)C, and hence an isomorphism

P(𝐿/𝐼)C − P(𝐼⊥/𝐼)C ≃ (𝐼⊥/𝐼)C ⊗ (𝐼 ′)∨C ≃ 𝐿 (𝐼)C.

The image of D ⊂ D(𝐼) by this series of isomorphisms is the tube domain in 𝐿 (𝐼)C
defined by

D𝐼 = { 𝑍 ∈ 𝐿 (𝐼)C | Im(𝑍) ∈ C𝐼 }.
In this way, we obtain the tube domain realization

D ≃→ D𝐼 ⊂ 𝐿 (𝐼)C (2.1)

depending on the choice of 𝐼 ′.
If we change 𝐼 ′, the base point is changed, and the tube domain realization (2.1) is

shifted by the corresponding translation of 𝐿 (𝐼)C. For a given 𝐼 ′, we can always find

a (unique) isotropic line ≠ 𝐼Q from the hyperbolic plane ⟨𝐼, 𝐼 ′⟩Q. (Explicitly, if we take
vectors 𝑙 ∈ 𝐼Q, 𝑙 ′ ∈ 𝐼 ′Qwith (𝑙, 𝑙

′) = 1, the vector 𝑙 ′−2−1 (𝑙 ′, 𝑙 ′)𝑙 generates this isotropic
line.) This means that we can replace the given 𝐼 ′ to be isotropic without changing the
base point. When 𝐼 ′ is isotropic, the inverse of (2.1) is given by

D𝐼 → D, 𝑧 ⊗ 𝑙 ↦→ C(𝑙 ′ + 𝑧 − 2−1 (𝑧, 𝑧)𝑙), (2.2)

where 𝑧 ∈ (𝐼⊥/𝐼)C, 𝑙 ∈ 𝐼 , and 𝑙 ′ ∈ 𝐼 ′
Q
with (𝑙, 𝑙 ′) = 1, and we identify (𝐼⊥/𝐼)C ≃

⟨𝐼, 𝐼 ′⟩⊥
C
⊂ 𝐿C in the right side.

2.2 Stabilizer over Q

Let Γ(𝐼)Q be the stabilizer of 𝐼 in O+ (𝐿Q). Note that we are not considering the stabi-
lizer of 𝐼Q, but of 𝐼 . This is not restrictive when restricting to subgroups of O

+ (𝐿). We

put

𝑈 (𝐼)Q = Ker(Γ(𝐼)Q → O(𝐼⊥Q/𝐼Q) × GL(𝐼)).
This is the unipotent radical of Γ(𝐼)Q and can be explicitly described as follows. For a

vector 𝑚 ⊗ 𝑙 of 𝐿 (𝐼)Q, the Eichler transvection 𝐸𝑚⊗𝑙 ∈ Γ(𝐼)Q is defined by (cf. [17], [8])

𝐸𝑚⊗𝑙 (𝑣) = 𝑣 − (�̃�, 𝑣)𝑙 + (𝑙, 𝑣)�̃� − 1

2
(𝑚, 𝑚)(𝑙, 𝑣)𝑙, 𝑣 ∈ 𝐿Q,
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6 S. Ma

where �̃� ∈ 𝐼⊥
Q
= 𝐼⊥
Q
∩ 𝐿Q is an arbitrary lift of 𝑚 ∈ (𝐼⊥/𝐼)Q. This does not depend on

the choice of �̃�. In particular, 𝐸𝑚⊗𝑙 (𝑣) = 𝑣− (𝑚, 𝑣)𝑙 when 𝑣 ∈ 𝐼⊥
Q
. We have 𝐸𝑤 ◦𝐸𝑤′ =

𝐸𝑤+𝑤′ for 𝑤, 𝑤′ ∈ 𝐿 (𝐼)Q. Then we have the canonical isomorphism

𝐿 (𝐼)Q → 𝑈 (𝐼)Q, 𝑚 ⊗ 𝑙 ↦→ 𝐸𝑚⊗𝑙 .

We identify 𝑈 (𝐼)Q with 𝐿 (𝐼)Q in this way. We also identify O(𝐼⊥
Q
/𝐼Q) × GL(𝐼) with

O(𝐿 (𝐼)Q) × GL(𝐼) by the canonical twisted isomorphism

O(𝐼⊥Q/𝐼Q) × GL(𝐼) → O(𝐿 (𝐼)Q) × GL(𝐼), (𝛾1, 𝛾2) ↦→ (𝛾1 ⊗ 𝛾2, 𝛾2).

We thus have the canonical exact sequence

0 → 𝐿 (𝐼)Q → Γ(𝐼)Q
𝜋→ O+ (𝐿 (𝐼)Q) × GL(𝐼) → 1. (2.3)

If we choose a lift (𝐼⊥/𝐼)Q ↩→ 𝐼⊥
Q
of (𝐼⊥/𝐼)Q, or equivalently, a rank 1 sublattice 𝐼 ′

of 𝐿 with (𝐼, 𝐼 ′) . 0, the exact sequence (2.3) splits:

Γ(𝐼)Q ≃ (O+ (𝐿 (𝐼)Q) × GL(𝐼)) ⋉ 𝐿 (𝐼)Q. (2.4)

Here the lifted group O+ (𝐿 (𝐼)Q) acts on the lifted component (𝐼⊥/𝐼)Q ⊂ 𝐿Q through
the natural isomorphismO(𝐿 (𝐼)Q) ≃ O((𝐼⊥/𝐼)Q), andGL(𝐼) corresponds to {±id𝐿}.
Since 𝛾 ◦ 𝐸𝑤 ◦ 𝛾−1 = 𝐸𝛾𝑤 for 𝛾 ∈ Γ(𝐼)Q, the adjoint action of Γ(𝐼)Q on 𝑈 (𝐼)Q
coincides with the natural action of Γ(𝐼)Q on 𝐿 (𝐼)Q. Therefore, in the induced action

of O+ (𝐿 (𝐼)Q) × GL(𝐼) on𝑈 (𝐼)Q, GL(𝐼) = {±1} acts trivially, and O+ (𝐿 (𝐼)Q) acts by
its natural action on 𝐿 (𝐼)Q.

We take the tube domain realizationD → D𝐼 associated to (the same) 𝐼 ′. Then the
action of Γ(𝐼)Q onD is translated to the action of the right side of (2.4) onD𝐼 . This is

described as follows.

Lemma 2.1 In the action of the right side of (2.4) onD𝐼 ,
(1) 𝐸𝑤 ∈ 𝑈 (𝐼)Q acts onD𝐼 as the translation by 𝑤 ∈ 𝐿 (𝐼)Q on 𝐿 (𝐼)C;
(2) O+ (𝐿 (𝐼)Q) acts onD𝐼 by its linear action on 𝐿 (𝐼)C;
(3) GL(𝐼) = {±1} acts onD𝐼 trivially.

Proof This can be seen from direct calculation using (2.2). ■

2.3 Stabilizer over Z

Now let Γ be a subgroup ofO+ (𝐿) of finite index. We write

Γ(𝐼)Z = Γ(𝐼)Q ∩ Γ, 𝑈 (𝐼)Z = 𝑈 (𝐼)Q ∩ Γ, Γ(𝐼)Z = Γ(𝐼)Z/𝑈 (𝐼)Z.

Then𝑈 (𝐼)Z is a lattice on𝑈 (𝐼)Q. By definition we have the exact sequence

0 → 𝑈 (𝐼)Z → Γ(𝐼)Z → Γ(𝐼)Z → 1. (2.5)

Although (2.3) splits, this does not mean that (2.5) splits. We write 𝑈 (𝐼)Q/Z =
𝑈 (𝐼)Q/𝑈 (𝐼)Z. This is the group of torsion points of the algebraic torus 𝑇 (𝐼) =
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𝑈 (𝐼)C/𝑈 (𝐼)Z. We also put

Γ(𝐼)Q = 𝜋−1 (O+ (𝑈 (𝐼)Z) × GL(𝐼))/𝑈 (𝐼)Z,

whichmakes sense because𝑈 (𝐼)Z is normal in 𝜋−1 (O+ (𝑈 (𝐼)Z) ×GL(𝐼)) by definition.
This group has the canonical exact sequence

0 → 𝑈 (𝐼)Q/Z → Γ(𝐼)Q → O+ (𝑈 (𝐼)Z) × GL(𝐼) → 1. (2.6)

Then Γ(𝐼)Z is a subgroup of Γ(𝐼)Q naturally. We have

Γ(𝐼)Z ∩𝑈 (𝐼)Q/Z = {0} (2.7)

by the definition𝑈 (𝐼)Z = Γ(𝐼)Z ∩𝑈 (𝐼)Q of𝑈 (𝐼)Z.
We choose a rank 1 sublattice 𝐼 ′ ⊂ 𝐿 with (𝐼, 𝐼 ′) . 0 and accordingly take a tube

domain realization ofD and a splitting ofΓ(𝐼)Q. Dividing by𝑈 (𝐼)Z andwritingX(𝐼) =
D/𝑈 (𝐼)Z, we obtain isomorphisms

X(𝐼) ≃ D𝐼 /𝑈 (𝐼)Z ⊂ D(𝐼)/𝑈 (𝐼)Z ≃ 𝑇 (𝐼),

Γ(𝐼)Q ≃ (O+ (𝑈 (𝐼)Z) × GL(𝐼)) ⋉𝑈 (𝐼)Q/Z, (2.8)

both depending on the choice of 𝐼 ′. By Lemma 2.1, the natural action of Γ(𝐼)Q onX(𝐼)
is translated to the standard action of (O+ (𝑈 (𝐼)Z) × GL(𝐼)) ⋉𝑈 (𝐼)Q/Z on 𝑇 (𝐼). Here
O+ (𝑈 (𝐼)Z) acts by torus automorphisms fixing the identity, GL(𝐼) acts trivially, and
𝑈 (𝐼)Q/Z acts by translation.

By (2.7), the projection Γ(𝐼)Z → O+ (𝑈 (𝐼)Z) × GL(𝐼) is injective. But this does not
mean thatΓ(𝐼)Z as a subgroup ofΓ(𝐼)Q is contained in the lifted subgroupO+ (𝑈 (𝐼)Z)×
GL(𝐼) in (2.8). Thus the action of Γ(𝐼)Z onX(𝐼) may have translation component.

Remark 2.2 Let 𝐼 = Z𝑙 and Γ(𝑙)Z < Γ(𝐼)Z be the kernel of Γ(𝐼)Z → GL(𝐼). In
the case −id ∈ Γ, we have Γ(𝐼)Z = Γ(𝑙)Z × {±id}, so we may replace Γ(𝐼)Z by Γ(𝑙)Z
when considering action onD , as was done in [13] Appendix. (The last sentence of [13]

Remark A.8 for Γ = Õ+ (𝐿) should be understood under the condition Γ(𝑙)Z = Γ(𝐼)Z
(e.g. div(𝐼) > 2) or 𝐴𝐿 2-elementary, or div(𝐼) = 1.)

2.4 Partial toroidal compactification

We recall partial toroidal compactification of X(𝐼) = D/𝑈 (𝐼)Z following [1]. We put

a Q-structure on𝑈 (𝐼)R by𝑈 (𝐼)Q ≃ 𝐿 (𝐼)Q. We write C+
𝐼 = C𝐼 ∪

⋃
𝑤 R≥0𝑤, where 𝑤

ranges over all isotropic vectors of 𝐿 (𝐼)Q in the closure ofC𝐼 . A rational polyhedral cone

decomposition (fan)Σ = (𝜎𝛼)𝛼 in𝑈 (𝐼)R is calledΓ(𝐼)Z-admissible ([1]) if the support of
Σ is C+

𝐼 , Σ is preserved under the adjoint (= natural) action of Γ(𝐼)Z on𝑈 (𝐼)R = 𝐿 (𝐼)R,
and there are only finitely many cones up to the action of Γ(𝐼)Z. Isotropic rays in Σ
correspond to rational isotropic lines in 𝐿 (𝐼)Q (hence independent of Σ), which in turn
correspond to rank 2 primitive isotropic sublattices 𝐽 of 𝐿 containing 𝐼 .

The fan Σ defines a torus embedding 𝑇 (𝐼) ↩→ 𝑇 (𝐼)Σ of the torus 𝑇 (𝐼) =
𝑈 (𝐼)C/𝑈 (𝐼)Z. Each ray𝜎 ofΣ defines a sub torus embedding𝑇 (𝐼) ↩→ 𝑇 (𝐼)𝜎 ⊂ 𝑇 (𝐼)Σ,
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isomorphic to (C×)𝑏 ↩→ C × (C×)𝑏−1, whose unique boundary divisor is the quo-

tient torus defined by the quotient lattice𝑈 (𝐼)Z/(R𝜎∩𝑈 (𝐼)Z). The character group of
this boundary torus is 𝜎⊥ ∩𝑈 (𝐼)∨Z . Here we regard𝑈 (𝐼)∨Z as a lattice on𝑈 (𝐼)Q by the
quadratic form on𝑈 (𝐼)Q = 𝐿 (𝐼)Q, which gives the pairing between𝑈 (𝐼)Z and𝑈 (𝐼)∨Z .

We take a tube domain realization of D by choosing 𝐼 ′ ⊂ 𝐿 with (𝐼, 𝐼 ′) . 0. Then

letX(𝐼)Σ be the interior of the closure ofX(𝐼) ≃ D𝐼 /𝑈 (𝐼)Z in𝑇 (𝐼)Σ. This embedding

X(𝐼) ↩→ X(𝐼)Σ is the partial toroidal compactification over 𝐼 defined by the fan Σ. It
is Γ(𝐼)Z-equivariant, and does not depend on the choice of 𝐼 ′. We can think of X(𝐼)Σ
as giving a local chart for the boundary points of a full toroidal compactification lying

over the 𝐼-cusp (see §7), likeD gives a local chart for the interior points in Γ\D .

3 Irregular 0-dimensional cusps

Wenow study irregular 0-dimensional cusps. LetΓ be a finite-index subgroup ofO+ (𝐿)
and 𝐼 be a rank 1 primitive isotropic sublattice of 𝐿. We keep the notation from §2. We

will define irregularity in two stages: irregularity of a cusp (§3.1), and irregularity of a

toroidal boundary divisor over (or adjacent to) an irregular cusp (§3.2). The first stage is

concerned only with Γ, but the second stage is also involved with an Γ(𝐼)Z-admissible

fan.

3.1 Irregularity

We give several equivalent definitions of irregularity of a 0-dimensional cusp in the

following form.

Proposition 3.1 The following conditions are equivalent.

(1) 𝑈 (𝐼)Z ≠ 𝑈 (𝐼) ′Z where𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q ∩ ⟨Γ,−id⟩.
(2) −id ∉ Γ and −𝐸𝑤 ∈ Γ(𝐼)Z for some 𝑤 ∈ 𝐿 (𝐼)Q.
(3) −id ∉ Γ and Γ(𝐼)Z → O+ (𝑈 (𝐼)Z) is not injective.
(4) Γ(𝐼)Z contains an element which acts by a nonzero translation on X(𝐼) = D/𝑈 (𝐼)Z.

When these hold, we have𝑈 (𝐼) ′Z/𝑈 (𝐼)Z = ⟨𝐸𝑤 ⟩ ≃ Z/2 and

Ker(Γ(𝐼)Z → O+ (𝑈 (𝐼)Z)) = ⟨−𝐸𝑤 ⟩ ≃ Z/2,

and the translation in (4) is given by [𝑤] ∈ 𝑈 (𝐼)Q/Z and is unique.

Definition 3.1 We say that the 0-dimensional cusp 𝐼 is irregular for Γ when these

properties hold, and regular otherwise.

Proof (1) ⇒ (2): Since Γ ≠ ⟨Γ,−id⟩, we have −id ∉ Γ. Let 𝐸𝑤 ∈ 𝑈 (𝐼) ′Z but 𝐸𝑤 ∉
𝑈 (𝐼)Z. Since ⟨Γ,−id⟩ = Γ ⊔ −Γ, we have 𝐸𝑤 ∈ −Γ, and so −𝐸𝑤 ∈ Γ. Note that
𝑈 (𝐼) ′Z/𝑈 (𝐼)Z ≃ ⟨Γ,−id⟩/Γ is of order 2 and so𝑈 (𝐼) ′Z/𝑈 (𝐼)Z = ⟨𝐸𝑤 ⟩.

(2) ⇒ (1): If −𝐸𝑤 ∈ Γ(𝐼)Z and −id ∉ Γ, then 𝐸𝑤 ∉ 𝑈 (𝐼)Z but 𝐸𝑤 ∈ 𝑈 (𝐼) ′Z.
(2) ⇒ (3): Since −𝐸𝑤 acts on 𝐿 (𝐼)Q = 𝑈 (𝐼)Q trivially, its image in Γ(𝐼)Z is

contained in the kernel of Γ(𝐼)Z → O+ (𝑈 (𝐼)Z).
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(3) ⇒ (2): Recall from (2.6) that the kernel of Γ(𝐼)Q → O+ (𝑈 (𝐼)Z) is

GL(𝐼) ×𝑈 (𝐼)Q/Z = 𝑈 (𝐼)Q/Z ⊔ (−id) ·𝑈 (𝐼)Q/Z.

Since Γ(𝐼)Z ∩ 𝑈 (𝐼)Q/Z = {0} by (2.7), a nontrivial element of the kernel of Γ(𝐼)Z →
O+ (𝑈 (𝐼)Z) must be contained in (−id) ·𝑈 (𝐼)Q/Z, hence is the image of −𝐸𝑤 for some

𝑤 ∈ 𝐿 (𝐼)Q. This also shows that the kernel is Z/2 generated by −𝐸𝑤 .
(2) ⇒ (4): The element −𝐸𝑤 of Γ(𝐼)Z acts on X(𝐼) by the translation by [𝑤] ∈

𝑈 (𝐼)Q/Z. Since −id ∉ Γ, we have 𝐸𝑤 ∉ 𝑈 (𝐼)Z. This means that [𝑤] ≠ 0 ∈ 𝑈 (𝐼)Q/Z.
(4) ⇒ (2), (3): We choose a splitting of Γ(𝐼)Q as in (2.8) and express an element

of Γ(𝐼)Z ⊂ Γ(𝐼)Q as 𝛾 = (𝛾1, 𝛾2, [𝑤]) accordingly, where 𝛾1 ∈ O+ (𝑈 (𝐼)Z), 𝛾2 ∈
GL(𝐼) and [𝑤] ∈ 𝑈 (𝐼)Q/Z. If 𝛾 acts on X(𝐼) by a nonzero translation, we must have

𝛾1 = id𝐿 (𝐼 ) and the translation is given by [𝑤] ∈ 𝑈 (𝐼)Q/Z. Therefore 𝛾 is contained in
the kernel of the projection to O+ (𝑈 (𝐼)Z). Since Γ(𝐼)Z ∩ 𝑈 (𝐼)Q/Z = {0} by (2.7) and
[𝑤] ≠ 0, we have 𝛾2 = −id𝐼 . Thus 𝛾 = −𝐸𝑤 . Finally, we have −id ∉ Γ, for otherwise
𝐸𝑤 = −𝛾 would be contained in𝑈 (𝐼)Z and then [𝑤] = 0 ∈ 𝑈 (𝐼)Q/Z. ■

Remark 3.2 Let Γ(𝑙)Z < Γ(𝐼)Z be as in Remark 2.2. By the condition (3), 𝐼 is irregular
if and only if −id ∉ Γ, Γ(𝑙)Z ≠ Γ(𝐼)Z, and Γ(𝑙)Z and Γ(𝐼)Z have the same image in

O+ (𝑈 (𝐼)Z). We do not use this characterization.

The condition (2) is useful for explicit calculation (§4). We give some immediate

consequences.

Corollary 3.3 The group Γ has no irregular cusp when −id ∈ Γ or when Γ is neat or when
Γ < SO+ (𝐿) with 𝑏 odd.

Proof The case −id ∈ Γ is obvious. When Γ is neat, the subquotient Γ(𝐼)Z is torsion-
free, so it does not contain an element of finite order like−𝐸𝑤 . When 𝑏 is odd,−𝐸𝑤 has

determinant (−1)𝑏+2 = −1, so a subgroup of SO+ (𝐿) never contains such an element.

■

Corollary 3.4 When 𝑏 is even, Γ has an irregular cusp if and only if Γ ∩ SO+ (𝐿) has an
irregular cusp.

Proof When 𝑏 is even, both −id and −𝐸𝑤 are contained in SO+ (𝐿). ■

Corollary 3.5 If Γ has an irregular cusp, any Γ′ < O+ (𝐿) with Γ′ ⊃ Γ and −id ∉ Γ′ has
an irregular cusp. Equivalently, if −id ∉ Γ and Γ has no irregular cusp, any subgroup of Γ of
finite index has no irregular cusp.

The lattice𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q ∩ ⟨Γ,−id⟩ is the projection image of

𝑈 (𝐼)★Z = ({±id} ·𝑈 (𝐼)Q) ∩ Γ = Ker(Γ(𝐼)Z → O+ (𝑈 (𝐼)Z))
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in𝑈 (𝐼)Q. Thus𝑈 (𝐼) ′Z is the lattice of translation in theΓ(𝐼)Z-action on the tube domain

model. We have

𝑈 (𝐼)★Z/𝑈 (𝐼)Z =

⟨−id⟩ ≃ Z/2 −id ∈ Γ

{1} −id ∉ Γ, 𝐼 regular

⟨−𝐸𝑤 ⟩ ≃ Z/2 𝐼 irregular

(3.1)

This gives yet another characterization of irregularity: −id ∉ Γ and𝑈 (𝐼)Z ≠ 𝑈 (𝐼)★Z .
As we will explain in §8.1, 𝑈 (𝐼)Z is the lattice for Fourier expansion of Γ-modular

forms around 𝐼 . Thus irregular 0-dimensional cusps are those cusps whose lattice of

translation is larger than the lattice for Fourier expansion.

Remark 3.6 In the case 𝑏 = 1, we have an accidental isomorphism SO+ (2, 1) ≃
PSL(2,R) which induces an isomorphism between the type IV domain here and the

upper half plane. However, O+ (2, 1) = SO+ (2, 1) × {±id} and SL(2,R) are differ-
ent double covers of SO+ (2, 1) ≃ PSL(2,R). Therefore, although we have the perfect

analogy

𝑈 (𝐼)Z ↔
{(
1 ∗
0 1

)
∈ Γ

}
,

𝑈 (𝐼) ′Z ↔
{(
1 ∗
0 1

)
∈ ⟨Γ,−1⟩

}
,

subgroups of O+ (2, 1) which have irregular cusps never correspond to subgroups of

SL(2,R) which have irregular cusps (in the classical sense [3]): they live in different cov-
ers of SO+ (2, 1) ≃ PSL(2,R). Subgroups of SO+ (2, 1) ≃ PSL(2,R) have no irregular
cusp anyway.

3.2 Irregular boundary divisors

Let Σ = (𝜎𝛼) be a Γ(𝐼)Z-admissible fan in𝑈 (𝐼)R, and X(𝐼) ↩→ X(𝐼)Σ be the partial

compactification defined in §2.4. For a ray𝜎 inΣwe denote by𝐷 (𝜎) ⊂ X(𝐼)Σ the cor-
responding boundary divisor. When 𝐼 is irregular, these boundary divisors are divided
into two types as follows.

Proposition 3.7 Let 𝐼 be an irregular 0-dimensional cusp for Γ. Let −𝐸𝑤 ∈ Γ(𝐼)Z. The
following conditions for a ray 𝜎 in Σ are equivalent:

(1) 𝜎 ∩𝑈 (𝐼)Z ≠ 𝜎 ∩𝑈 (𝐼) ′Z.
(2) −𝐸𝑤 acts trivially on the boundary divisor 𝐷 (𝜎).
(3) 𝐷 (𝜎) is fixed by some nontrivial element of Γ(𝐼)Z.
When these hold, the element in (3) is given by −𝐸𝑤 . In particular, it is unique, independent
of 𝜎, and of order 2.

Definition 3.2 When these properties hold, we call 𝜎 an irregular ray and 𝐷 (𝜎) an
irregular boundary divisor. Otherwise we call 𝜎 regular. For the sake of completeness, we

call any ray 𝜎 regular when 𝐼 is regular.
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Proof (1) ⇔ (2): Recall from Lemma 2.1 that −𝐸𝑤 acts on X(𝐼) ⊂ 𝑇 (𝐼) as the
translation by [𝑤] ∈ 𝑈 (𝐼)Q/Z. A Zariski open set of 𝐷 (𝜎) is the quotient torus (or its
analytic open set) associated to the quotient lattice𝑈 (𝐼)Z/Λ𝜎 whereΛ𝜎 = R𝜎∩𝑈 (𝐼)Z.
Hence −𝐸𝑤 acts on 𝐷 (𝜎) as the translation by the image of [𝑤] in 𝑈 (𝐼)Q/(𝑈 (𝐼)Z +
(Λ𝜎)Q). This is trivial if and only if 𝑤 ∈ 𝑈 (𝐼)Z + (Λ𝜎)Q, which in turn is equivalent to
Λ𝜎 ≠ R𝜎∩𝑈 (𝐼) ′Z. In this case−𝐸𝑤 acts by−1 on the normal torus (Λ𝜎)C/Λ𝜎 ≃ C×.

(2) ⇒ (3) is obvious.
(3) ⇒ (2): Suppose that 𝛾 ∈ Γ(𝐼)Z acts trivially on 𝐷 (𝜎). Let 𝛾1 be the image of 𝛾

inO+ (𝑈 (𝐼)Z). Then 𝛾1 must preserve𝜎∩𝑈 (𝐼)Z and act trivially on𝑈 (𝐼)Z/Λ𝜎 . Hence
𝛾1 acts trivially on Λ𝜎 and Λ⊥

𝜎 , and so 𝛾1 = id. This implies that 𝛾 is contained in the

kernel of Γ(𝐼)Z → O+ (𝑈 (𝐼)Z), whence 𝛾 = −𝐸𝑤 by Proposition 3.1. Therefore −𝐸𝑤
acts trivially on 𝐷 (𝜎). ■

Corollary 3.8 When 𝐼 is irregular, the quotient map X(𝐼)Σ → X(𝐼)Σ/Γ(𝐼)Z is ramified
along the irregular boundary divisors with ramification index 2, caused by the common sub-
group ⟨−𝐸𝑤 ⟩ ≃ Z/2 of Γ(𝐼)Z, and not ramified along other boundary divisors. When 𝐼 is
regular, X(𝐼)Σ → X(𝐼)Σ/Γ(𝐼)Z is not ramified along any boundary divisor.

Proof It remains to supplement the argument in the case 𝐼 is regular. If 𝛾 ∈ Γ(𝐼)Z
fixes a boundary divisor, we see that 𝛾 acts trivially on𝑈 (𝐼)Z by the same argument as

(3) ⇒ (2) above. When −id ∉ Γ, Γ(𝐼)Z → O+ (𝑈 (𝐼)Z) is injective by the condition
(3) of Proposition 3.1, so we find that 𝛾 = id. When −id ∈ Γ, the kernel of Γ(𝐼)Z →
O+ (𝑈 (𝐼)Z) is {±id}, so 𝛾 = ±id, which acts trivially onX(𝐼). ■

4 Examples

In this sectionwe study some examples of groupswith/without irregular cusp. Logically

this section should be read after §6 where we complete the discussion of irregular 1-

dimensional cusps. But we encourage the reader to read this section just after §3 for the

following two reasons. First, most of §5 and §6 is designed for §7 and §8, while the only

result from §5 and §6 we need in this section is Corollary 6.4, which just says that Γ has

no irregular 1-dimensional cusp if it has no irregular 0-dimensional cusp. Second, it is

Proposition 3.1 (2) that is frequently used in this section, so we do not want to put this

section too far from it.

We assume that the lattice 𝐿 is even in this section.The quotient 𝐴𝐿 = 𝐿∨/𝐿 is called the
discriminant group of 𝐿, equipped with a canonical quadratic form 𝐴𝐿 → Q/2Z called
the discriminant form. If 𝐼 is a rank 1 primitive isotropic sublattice of 𝐿, we write div(𝐼)
for the positive generator of the ideal (𝐼, 𝐿) ⊂ Z. Then 𝐼∗ = div(𝐼)−1𝐼 is primitive in

𝐿∨, and we have a canonical isometry 𝐼⊥ ∩ 𝐿∨/𝐼∗ ≃ (𝐼⊥/𝐼)∨.

4.1 Stable orthogonal groups

Let 𝐿 be an even lattice of signature (2, 𝑏). Let Õ+ (𝐿) < O+ (𝐿) be the kernel of the
reduction map O+ (𝐿) → O(𝐴𝐿), called the stable orthogonal group or the discriminant
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kernel. The following was asserted in [13] p.901. We supplement the proof for the sake

of completeness.

Lemma 4.1 Let 𝐼 be a rank 1 primitive isotropic sublattice of 𝐿. For Γ = Õ+ (𝐿) we have
𝑈 (𝐼)Z = 𝐿 (𝐼).

Proof We take a generator 𝑙 of 𝐼 . The inclusion 𝐿 (𝐼) ⊂ 𝑈 (𝐼)Z can be checked by

testing the definition of𝐸𝑚⊗𝑙 (𝑣) for 𝑣 ∈ 𝐿∨ and𝑚 ∈ 𝐼⊥/𝐼 , taking a lift of𝑚 from 𝐼⊥∩𝐿.
Conversely, if 𝐸𝑚⊗𝑙 ∈ Õ+ (𝐿) for a vector𝑚 ∈ 𝐼⊥

Q
/𝐼Q, then 𝐸𝑚⊗𝑙 (𝑣) = 𝑣−(𝑚, 𝑣)𝑙must

be contained in 𝑣+𝐿 for 𝑣 ∈ 𝐼⊥∩𝐿∨. This implies that (𝑚, 𝑣) ∈ Z for every 𝑣 ∈ 𝐼⊥∩𝐿∨,
and so 𝑚 ∈ (𝐼⊥/𝐼)∨∨ = 𝐼⊥/𝐼 . ■

We obtain a first example of regular cusps.

Lemma 4.2 If Γ ⊃ Õ+ (𝐿) and div(𝐼) = 1, then 𝐼 is a regular cusp for Γ.

Proof We take a generator 𝑙 of 𝐼 . Since div(𝐼) = 1, we can take an isotropic vector

𝑙 ′ ∈ 𝐿 with (𝑙, 𝑙 ′) = 1. We can and do identify 𝐼⊥/𝐼 with ⟨𝑙, 𝑙 ′⟩⊥ ∩ 𝐿. We have the

splitting 𝐿 = ⟨𝑙, 𝑙 ′⟩ ⊕ (⟨𝑙, 𝑙 ′⟩⊥∩𝐿). Suppose−𝐸𝑚⊗𝑙 ∈ Γ for a vector𝑚 ∈ ⟨𝑙, 𝑙 ′⟩⊥∩𝐿Q.
Then 𝐸𝑚⊗𝑙 preserves 𝐿, so we find that the vector 𝐸𝑚⊗𝑙 (𝑙 ′) = 𝑙 ′ + 𝑚 − 1

2
(𝑚, 𝑚)𝑙 is

contained in 𝐿. This implies that 𝑚 ∈ ⟨𝑙, 𝑙 ′⟩⊥ ∩ 𝐿 = 𝐼⊥/𝐼 . Since Γ ⊃ Õ+ (𝐿), we have
𝑈 (𝐼)Z ⊃ 𝐿 (𝐼) by Lemma 4.1, and so 𝑚 ⊗ 𝑙 ∈ 𝑈 (𝐼)Z. This means that 𝐸𝑚⊗𝑙 ∈ Γ, and
then −id ∈ Γ. ■

For Γ = Õ+ (𝐿) we have the following constraints for existence of irregular cusp.

Lemma 4.3 If 𝐼 is an irregular 0-dimensional cusp for Γ = Õ+ (𝐿), then div(𝐼) = 2, 𝐴𝐿 (𝐼 )
is 2-elementary, and𝑈 (𝐼) ′Z/𝑈 (𝐼)Z ≃ Z/2 is a subgroup of 𝐴𝐿 (𝐼 ) .

Proof Let 𝐼 = Z𝑙 and assume that −𝐸𝑚⊗𝑙 ∈ Õ+ (𝐿) for a vector𝑚 of 𝐼⊥
Q
/𝐼Q. Then for

any 𝑣 ∈ 𝐼⊥ ∩ 𝐿∨ the vector −𝐸𝑚⊗𝑙 (𝑣) = −𝑣 + (𝑚, 𝑣)𝑙 must be contained in 𝑣 + 𝐿. This
implies that

2𝑣 ∈ (𝑚, 𝑣)𝑙 + 𝐿. (4.1)

If we substitute 𝑣 = 𝑙/div(𝐼), we find that (2/div(𝐼))𝑙 ∈ 𝐿, and so div(𝐼) = 1 or 2. The

case div(𝐼) = 1 is excluded by Lemma 4.2. Thus div(𝐼) = 2.

If [𝑣] ∈ (𝐼⊥/𝐼)∨ denotes the image of 𝑣 ∈ 𝐼⊥ ∩ 𝐿∨, then (4.1) means that 2[𝑣] ∈
𝐼⊥/𝐼 . This shows that 𝐴𝐼⊥/𝐼 is 2-elementary. Finally, (4.1) implies that (𝑚, 𝑣) ∈ Z for
every 𝑣 ∈ 𝐼⊥ ∩ 𝐿, and so 𝑚 ∈ (𝐼⊥/𝐼)∨. ■

This determines the structure of 𝐴𝐿 when Õ+ (𝐿) has an irregular 0-dimensional

cusp.

Proposition 4.4 If Õ+ (𝐿) has an irregular cusp, then 𝐴𝐿 ≃ Z/8 ⊕ (Z/2)⊕𝑎 or 𝐴𝐿 ≃
(Z/4)⊕2 ⊕ (Z/2)⊕𝑎 as abelian groups.
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Proof Let 𝐼 = Z𝑙 be as in Lemma 4.3. Let 𝑥 = [𝑙/2] ∈ 𝐴𝐿 . Since 𝐴𝐿 (𝐼 ) ≃ 𝑥⊥/𝑥
is 2-elementary and both ⟨𝑥⟩ and 𝐴𝐿/𝑥⊥ are isomorphic to Z/2, we see that 𝐴𝐿 must

be isomorphic to either (Z/2)⊕𝑎 or Z/4 ⊕ (Z/2)⊕𝑎 or Z/8 ⊕ (Z/2)⊕𝑎 or (Z/4)⊕2 ⊕
(Z/2)⊕𝑎 as an abelian group. The first case 𝐴𝐿 ≃ (Z/2)⊕𝑎 cannot occur because then
−id ∈ Õ+ (𝐿). Let us show that the second case does not occur.

Suppose to the contrary that 𝐴𝐿 ≃ Z/4 ⊕ (Z/2)⊕𝑎 as an abelian group. Then we

have an orthogonal decomposition 𝐴𝐿 = 𝐴0 ⊕ 𝐴1 where 𝐴0 ≃ Z/4 is generated by

an element 𝑥0 of norm 𝜀/4 for some 𝜀 ∈ (Z/8)×, and 𝐴1 = 𝐴⊥
0 is 2-elementary. The

isotropic element 𝑥 ∈ 𝐴𝐿 is either (i) contained in 𝐴1 or (ii) of the from 2𝑥0 + 𝑥1 with
𝑥1 ≠ 0 ∈ 𝐴1. In the case (i), 𝑥⊥/𝑥 ⊃ 𝐴0 is not 2-elementary. In the case (ii), we can take

an element 𝑦1 ∈ 𝐴1 with (𝑥1, 𝑦1) = 1/2 by the nondegeneracy of 𝐴1. Then the element

𝑦 = 𝑥0 + 𝑦1 is contained in 𝑥⊥ and 2𝑦 ≠ 𝑥. Hence 𝑥⊥/𝑥 is not 2-elementary again. ■

Remark 4.5 Further calculation shows that 𝑥 = [𝑙/2] ∈ 𝐴𝐿 is divisible by 4 (and

hence unique) in the case 𝐴𝐿 ≃ Z/8 ⊕ (Z/2)⊕𝑎 , and divisible by 2 in the case 𝐴𝐿 ≃
(Z/4)⊕2 ⊕ (Z/2)⊕𝑎 .

Example 4.6 Let 𝐿 = 2𝑈 ⊕ 𝑚𝐸8 ⊕ ⟨−2𝑑⟩. Then Õ+ (𝐿) has no irregular cusp when

𝑑 ≠ 4. We show in Proposition 4.14 that Õ+ (𝐿) indeed has an irregular cusp when

𝑑 = 4. When 𝑚 = 2, Õ+ (𝐿) is the modular group for the moduli space of polarized 𝐾3
surfaces of degree 2𝑑.

Example 4.7 Let 𝐿 = 2𝑈 ⊕ 𝑚𝐸8 ⊕ ⟨−2𝑡⟩ ⊕ ⟨−2𝑑⟩. Then Õ+ (𝐿) has no irregular cusp
when (𝑡, 𝑑) ≠ (4, 1), (2, 2), (1, 4). We show in §4.5 that Õ+ (𝐿) indeed has an irregular
cusp in these exceptional cases.When𝑚 = 2, Õ+ (𝐿) is themodular group for themoduli

space of polarized irreducible symplectic manifolds of 𝐾3[𝑡−1]-type with polarization

of split type and degree 2𝑑 ([9]).

Example 4.8 When 𝐿 = 𝑈 ⊕ 2𝐸8 ⊕ 𝑀 , where 𝑀 is a certain lattice of signature (1, 2)
and discriminant 𝑑 ≡ 2 mod 6, Õ+ (𝐿) is the modular group for the moduli space of

special cubic fourfolds of discriminant 𝑑 ([18]). Since 𝐴𝐿 has length ≤ 3 and order 𝑑, we
find that Õ+ (𝐿) has no irregular cusp when 𝑑 ≠ 8, 32.

Example 4.9 Similarly,when 𝐿 = 𝑈⊕2𝐸8⊕𝑀 , where𝑀 is a certain lattice of signature

(1, 2) and discriminant 𝑑 ≡ 0, 2, 4 mod 8, Õ+ (𝐿) is the modular group for the moduli

space of special 𝐾3[2]-fourfolds of degree 2 and discriminant 𝑑 ([16]). This group has

no irregular cusp when 𝑑 ≠ 32.

Example 4.10 When 𝐿 = 𝑈 ⊕ 2𝐸8 ⊕ ⟨2𝑑⟩, Õ+ (𝐿) is the modular group for the moduli

space of 𝑈 ⊕ ⟨−2𝑑⟩-polarized 𝐾3 surfaces studied in [4]. This group has no irregular

cusp when 𝑑 ≠ 4.
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4.2 O’Grady 10

In this subsection we let 𝐿 be an even lattice of the form 𝐿 = 𝑀 ⊕ ⟨−2𝑑⟩ with 𝑀 of

signature (2, 𝑏 − 1). We consider the group

Γ = { 𝛾 ∈ O+ (𝐿) | 𝛾 |𝐴𝑀 = ±id, 𝛾 |𝐴⟨−2𝑑⟩ = id }.

Then Γ contains Õ+ (𝐿) with index ≤ 2, with Γ = Õ+ (𝐿) if and only if 𝐴𝑀 is 2-

elementary. We have −id ∈ Γ if and only if 𝑑 = 1. When 𝑀 = 2𝑈 ⊕ 2𝐸8 ⊕ 𝐴2,
Γ is the modular group for the moduli space of polarized O’Grady 10 manifolds with

polarization of split type and degree 2𝑑 ([10]).

Proposition 4.11 The group Γ has no irregular cusp when 𝑑 ≠ 2, 4.

Proof Assume that 𝐼 = Z𝑙 is an irregular cusp for Γ and −𝐸𝑚⊗𝑙 ∈ Γ for 𝑚 ∈ 𝐼⊥
Q
/𝐼Q.

The case 𝑑 = 1 is excluded by −id ∉ Γ. We shall show that 𝑑 | 4. Since 𝐸2𝑚⊗𝑙 =
(−𝐸𝑚⊗𝑙) ◦ (−𝐸𝑚⊗𝑙) ∈ Õ+ (𝐿), we see that 2𝑚 ⊗ 𝑙 ∈ 𝐿 (𝐼) by Lemma 4.1. Hence we can

take a lift �̃� of 𝑚 from 𝐼⊥ ∩ 1
2
𝐿. Let 𝑣 be a generator of ⟨−2𝑑⟩∨. The vector

−𝐸𝑚⊗𝑙 (𝑣) = −𝑣 + (�̃�, 𝑣)𝑙 − (𝑙, 𝑣)�̃� + 1

2
(𝑚, 𝑚)(𝑙, 𝑣)𝑙

must be contained in 𝑣 + 𝐿, and hence

2𝑣 ∈ (�̃�, 𝑣)𝑙 − (𝑙, 𝑣)�̃� + 1

2
(𝑚, 𝑚)(𝑙, 𝑣)𝑙 + 𝐿. (4.2)

Since (�̃�, 𝑣) ∈ 1
2
Z, (𝑙, 𝑣) ∈ Z and (𝑚, 𝑚) ∈ 1

2
Z, we find that2𝑣 ∈ 1

4
𝐿. Hence2𝑑 | 8. ■

The case 𝑑 = 2 does not occur when |𝐴𝑀 | is square-free, because then 𝐴𝐿 is

anisotropic and hence div(𝐼) = 1. In Proposition 4.14 we show that Γ indeed has an

irregular cusp when 𝑑 = 4 and 𝑀 contains𝑈.

4.3 Generalized Kummer

In this subsection we let 𝐿 = 𝑀 ⊕ ⟨−2𝑑⟩ be as in §4.2 and consider the group

Γ = { 𝛾 ∈ O+ (𝐿) | 𝛾 |𝐴𝑀 = det(𝛾)id, 𝛾 |𝐴⟨−2𝑑⟩ = id }.

This is an index ≤ 2 subgroup of the group considered in §4.2. When 𝑀 = 2𝑈 ⊕ ⟨−2𝑡⟩
with 𝑡 ≥ 3, Γ is the modular group for the moduli space of polarized deformation gen-

eralized Kummer varieties of 𝐴 [𝑡 ]-type with polarization of split type and degree 2𝑑
([2]).

Proposition 4.12 The group Γ has no irregular cusp when 𝑑 ∤ 4. Moreover, when 𝑏 is even,
Γ has no irregular cusp unless 𝐴𝐿 is isomorphic to Z/8 ⊕ (Z/2)⊕𝑎 or (Z/4)⊕2 ⊕ (Z/2)⊕𝑎
as abelian groups.

Proof The assertion 𝑑 ∤ 4 follows from Corollary 3.5 and Proposition 4.11. Since

Γ ∩ SO+ (𝐿) = Õ+ (𝐿) ∩ SO+ (𝐿), Corollary 3.4 shows that when 𝑏 is even, Γ has an
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irregular cusp if and only if Õ+ (𝐿) has an irregular cusp. Then our assertion follows

from Proposition 4.4. ■

This shows that when 𝑀 = 2𝑈 ⊕ ⟨−2𝑡⟩, Γ has no irregular cusp when (𝑡, 𝑑) ≠
(4, 1), (2, 2), (1, 4). In §4.5 we show that Γ indeed has an irregular cusp in these

exceptional cases.

4.4 Special cubic fourfolds

In this subsection we let 𝐿 be an even lattice of the form 𝐿 = 𝑀 ⊕𝐾 with |𝐴𝐾 | > 1 odd.

(𝐾 may be either negative-definite or hyperbolic or of signature (2, ∗).) We consider the

group

Γ = { 𝛾 ∈ O+ (𝐿) | 𝛾 |𝐴𝑀 = ±id, 𝛾 |𝐴𝐾 = id }.

When 𝑀 = ⟨2𝑛⟩ ⊕ 𝑈 ⊕ 2𝐸8 and 𝐾 = 𝐴2, Γ is the modular group for the moduli space

of special cubic fourfolds of discriminant 6𝑛 ([18]).

Proposition 4.13 The group Γ has no irregular cusp.

Proof Suppose to the contrary that 𝐼 = Z𝑙 is an irregular cusp and −𝐸𝑚⊗𝑙 ∈ Γ. As in
the proof of Proposition 4.11, we can take a lift of 𝑚 from 𝐼⊥ ∩ 1

2
𝐿. We take a vector

𝑣 ∈ 𝐾∨ − 𝐾 . Then −𝐸𝑚⊗𝑙 (𝑣) must be contained in 𝑣 + 𝐿. The same calculation as (4.2)

tells us that 8𝑣 ∈ 𝐿. Therefore [𝑣] ∈ 𝐴𝐾 ⊂ 𝐴𝐿 satisfies 8[𝑣] = 0, but this contradicts

the assumption that |𝐴𝐾 | is odd. ■

4.5 Examples of irregular cusps

In this subsection we present two series of examples of irregular cusps, infinitely many

in every dimension. We will denote by 𝑒, 𝑓 the standard basis of𝑈.
As the first series of examples,we consider even lattices of the form 𝐿 = 𝑈⊕⟨−8⟩⊕𝑀

with 𝑀 hyperbolic. We define the group Γ by

Γ = { 𝛾 ∈ O+ (𝐿) | 𝛾 |𝐴𝑀 = ±id, 𝛾 |𝐴⟨−8⟩ = id }.

This is the group considered in §4.2with 𝑑 = 4. The groupΓ contains Õ+ (𝐿) with index
≤ 2, and we have Γ = Õ+ (𝐿) if and only if 𝐴𝑀 is 2-elementary.

Proposition 4.14 The group Γ has an irregular cusp.

Proof First note that −id ∉ Γ by the condition 𝛾 |𝐴⟨−8⟩ = id. Let 𝑣 be a generator of
⟨−8⟩. We take the vectors

𝑙 = 2𝑒 + 2 𝑓 + 𝑣, 𝑚 = 𝑒/2 − 𝑓 /2,

and show that −𝐸𝑚⊗𝑙 ∈ Γ. This amounts to checking the following:

𝐸𝑚⊗𝑙 (𝐿) ⊂ 𝐿, 𝐸𝑚⊗𝑙 |𝐴𝑀 = ±id, 𝐸𝑚⊗𝑙 (𝑣/8) ∈ −𝑣/8 + 𝐿.
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16 S. Ma

Since 𝑀 ⊥ ⟨𝑙, 𝑚⟩, 𝐸𝑚⊗𝑙 acts trivially on 𝑀 . By direct calculation, we see that

𝐸𝑚⊗𝑙 (𝑒) = 4𝑒 + 𝑓 + 𝑣, 𝐸𝑚⊗𝑙 ( 𝑓 ) = 𝑒, 𝐸𝑚⊗𝑙 (𝑣) = −𝑣 − 8𝑒.

This proves our assertion. ■

As the second series of examples, we consider even lattices of the form 𝐿 = 𝑈 ⊕
⟨−4⟩⊕2 ⊕ 𝑀 with 𝑀 hyperbolic, and the group Γ defined by

Γ = { 𝛾 ∈ O+ (𝐿) | 𝛾 |𝐴𝑀 = ±id, 𝛾 |𝐴⟨−4⟩⊕2 = id }.

The group Γ contains Õ+ (𝐿) with index ≤ 2, and Γ = Õ+ (𝐿) if and only if 𝐴𝑀 is

2-elementary.

Proposition 4.15 The group Γ has an irregular cusp.

Proof This is similar to the first example.We let 𝑣1, 𝑣2 be the standard basis of ⟨−4⟩⊕2
and show that −𝐸𝑚⊗𝑙 ∈ Γ for the vectors

𝑙 = 2𝑒 + 2 𝑓 + 𝑣1 + 𝑣2, 𝑚 = 𝑒 + 𝑣1/2.

The detail is left to the reader. ■

5 1-dimensional cusps

In this section we recall, following [17], [11], [6], [12], the structure of the stabilizer of

a 1-dimensional cusp of D = D𝐿 with its action on the Siegel domain model, and the

canonical partial toroidal compactification over the cusp. This is a long preliminary for

the next §6. Although this section is nomore than expository, we need to keep the rather

self-contained style of §2, for the same reasons as in §2 and for consistency.

Throughout this section we fix a rank 2 primitive isotropic sublattice 𝐽 of 𝐿. The
choice of the componentD determines a connected component of P𝐽C − P𝐽R, which is
the cusp corresponding to 𝐽 . This in turn determines an orientation of 𝐽 . We abbreviate

𝐽⊥ = 𝐽⊥ ∩ 𝐿 and write

𝐿 (𝐽) = 𝐽⊥/𝐽,
which is a negative-definite lattice of rank 𝑏−2. We will call an embedding 2𝑈Q ↩→ 𝐿Q
a splitting for 𝐽Q if it sends the standard 2-dimensional isotropic subspace of 2𝑈Q to 𝐽Q.
This defines a lift 𝐿 (𝐽)Q ↩→ 𝐽⊥

Q
of 𝐿 (𝐽)Q as 2𝑈⊥

Q
.

5.1 Siegel domain model

We consider the two-step linear projection

P𝐿C d P(𝐿/𝐽)C d P(𝐿/𝐽⊥)C
and restrict it to D ⊂ 𝑄 ⊂ P𝐿C. The center of the first projection P𝐿C d P(𝐿/𝐽)C
is the line P𝐽C, and its fibers are planes containing P𝐽C (minus P𝐽C). Since 𝑄 contains

P𝐽C, a plane containing P𝐽C either

• intersects with𝑄 at two distinct lines (one is P𝐽C), or
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• intersects with𝑄 at P𝐽C with multiplicity 2, or
• is contained in𝑄.

The first case occurs exactly when the plane is not contained in P𝐽⊥
C
. In that case, we can

write the plane as P⟨𝐽, 𝑣⟩C with (𝑣, 𝑣) = 0 and (𝑣, 𝐽) . 0. Then we have

P⟨𝐽, 𝑣⟩C ∩𝑄 = P𝐽C ∪ P⟨𝑙, 𝑣⟩C
where C𝑙 = 𝑣⊥ ∩ 𝐽C. This shows that the restriction of the first projection P𝐿C d
P(𝐿/𝐽)C to𝑄 −𝑄 ∩ P𝐽⊥

C

𝜋1 : 𝑄 −𝑄 ∩ P𝐽⊥C → P(𝐿/𝐽)C − P𝐿 (𝐽)C
is an affine line bundle, with the fiber over the point P(⟨𝐽, 𝑣⟩C/𝐽C) being the affine line
P⟨𝑙, 𝑣⟩C−[𝑙]. The inequality (𝜔, �̄�) > 0 defines a (shifted) upper half plane in this affine

line.

We identify (𝐿/𝐽⊥)C = 𝐽∨
C
by the pairing. The second projection

𝜋2 : P(𝐿/𝐽)C − P𝐿 (𝐽)C → P(𝐿/𝐽⊥)C = P𝐽∨C

is an affine space bundle. It is (non-canonically) isomorphic to the vector bundle 𝐿 (𝐽)C⊗
OP𝐽∨

C
(1) where, by abuse of notation,OP𝐽∨

C
(1) stands for the line bundle corresponding

to this sheaf (the dual of the tautological line bundle). To be more specific, if we choose

a lift 𝐿 (𝐽)C ↩→ 𝐽⊥
C
of 𝐿 (𝐽)C, this determines a splitting (𝐿/𝐽)C ≃ 𝐿 (𝐽)C ⊕ (𝐿/𝐽⊥)C

where (𝐿/𝐽⊥)C is mapped to 𝐿 (𝐽)⊥
C
/𝐽C. This splitting defines an isomorphism

𝐿 (𝐽)C ⊗ OP𝐽∨
C
(1) ≃ P(𝐿/𝐽)C − P𝐿 (𝐽)C

over P𝐽∨
C
= P(𝐿/𝐽⊥)C. At the fiber over each point [𝑣] of P(𝐿/𝐽⊥)C, this isomorphism

is written as

Hom(C𝑣, 𝐿 (𝐽)C) → P(C𝑣 ⊕ 𝐿 (𝐽)C) − P𝐿 (𝐽)C, (5.1)

where to a linear map C𝑣 → 𝐿 (𝐽)C we associate its graph.
The orientation of 𝐽 determines a connected componentH𝐽 of P𝐽

∨
C
−P𝐽∨R . We write

V𝐽 = 𝜋−12 (H𝐽 ) andD(𝐽) = 𝜋−11 (V𝐽 ). By definition,D(𝐽) consists of points C𝜔 ∈ 𝑄
such that the map (·, 𝜔) : 𝐽R → C is an orientation-preserving R-isomorphism. We

thus have the enlarged two-step fibration

D ⊂ D(𝐽) 𝜋1→ V𝐽
𝜋2→ H𝐽 .

This is the Siegel domain realization of D with respect to 𝐽 . Here D(𝐽) → V𝐽 is an

affine line bundle, inside whichD → V𝐽 is a fibration of upper half planes. OverH𝐽 ⊂
P𝐽∨
C
we have the Hodge line bundle in 𝐽C = 𝐽C ⊗ OH𝐽 defined by

𝐹 := OH𝐽 (−1)⊥ ⊂ 𝐽C,

where we view OH𝐽 (−1) as a sub line bundle of 𝐽∨C ⊗ OH𝐽 naturally. Then OH𝐽 (1) is
naturally isomorphic to 𝐽C/𝐹 . To summarize, we have an isomorphism

V𝐽 ≃ 𝐿 (𝐽)C ⊗ OH𝐽 (1) ≃ 𝐿 (𝐽)C ⊗ (𝐽C/𝐹). (5.2)

The relation with the tube domain model is as follows. We choose a rank 1 prim-

itive sublattice 𝐼 of 𝐽 . This corresponds to a 0-dimensional cusp in the closure of the
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1-dimensional cusp for 𝐽 . The filtration 𝐼 ⊂ 𝐽 ⊂ 𝐽⊥ ⊂ 𝐿 determines the projec-

tions P(𝐿/𝐼)C d P(𝐿/𝐽)C d P(𝐿/𝐽⊥)C. Then the composition of this with the tube

domain realizationD ⊂ D(𝐼) ↩→ P(𝐿/𝐼)C is the Siegel domain realization above.

5.2 Stabilizer over Q

Let Γ(𝐽)Q be the subgroup of the stabilizer of 𝐽Q inO+ (𝐿Q) that acts on 𝐽Q with deter-
minant 1. The determinant 1 condition is not restrictive when restricting to subgroups

ofO+ (𝐿). We write

𝑊 (𝐽)Q = Ker(Γ(𝐽)Q → O(𝐿 (𝐽)Q) × SL(𝐽Q)),

𝑈 (𝐽)Q = Ker(Γ(𝐽)Q → GL(𝐽⊥Q )),

𝑉 (𝐽)Q = 𝑊 (𝐽)Q/𝑈 (𝐽)Q.
By definition we have the canonical exact sequences

1 → 𝑊 (𝐽)Q → Γ(𝐽)Q → O(𝐿 (𝐽)Q) × SL(𝐽Q) → 1, (5.3)

0 → 𝑈 (𝐽)Q → 𝑊 (𝐽)Q → 𝑉 (𝐽)Q → 0. (5.4)

The group𝑊 (𝐽)Q is the unipotent radical ofΓ(𝐽)Q. If we choose a splitting 𝐿Q ≃ 2𝑈Q⊕
𝐿 (𝐽)Q for 𝐽Q, the first exact sequence (5.3) splits (non-canonically):

Γ(𝐽)Q ≃ (O(𝐿 (𝐽)Q) × SL(𝐽Q)) ⋉𝑊 (𝐽)Q. (5.5)

Here SL(𝐽Q) acts on the component 2𝑈Q ≃ 𝐽Q ⊕ 𝐽∨
Q
, and O(𝐿 (𝐽)Q) acts on the

component 𝐿 (𝐽)Q.
On the other hand, the second exact sequence (5.4) never splits. Indeed, 𝑊 (𝐽)Q

is a Heisenberg group as follows. We have a canonical ∧2𝐽-valued symplectic form

on 𝐿 (𝐽) ⊗ 𝐽 as the tensor product of the quadratic form on 𝐿 (𝐽) and the canoni-

cal symplectic form 𝐽 × 𝐽 → ∧2𝐽 on 𝐽 . This gives a Heisenberg group structure on

∧2𝐽Q × (𝐿 (𝐽)Q ⊗ 𝐽Q). Explicitly, we take a bijection 𝐿 (𝐽)Q ⊗ 𝐽Q ≃ 𝐿 (𝐽)Q × 𝐿 (𝐽)Q by
choosing a positive basis of 𝐽 , and define a product on ∧2𝐽Q × 𝐿 (𝐽)Q × 𝐿 (𝐽)Q by

(𝛼, 𝑣1, 𝑣2) · (𝛽, 𝑤1, 𝑤2) = (𝛼 + 𝛽 + (𝑣2, 𝑤1), 𝑣1 + 𝑤1, 𝑣2 + 𝑤2).

The center is ∧2𝐽Q × {0} × {0}.

Lemma 5.1 𝑊 (𝐽)Q is isomorphic to the Heisenberg group for 𝐿 (𝐽)Q ⊗ 𝐽Q with center
𝑈 (𝐽)Q, and we have the canonical isomorphisms

∧2𝐽Q → 𝑈 (𝐽)Q, 𝑙 ∧ 𝑙 ′ ↦→ 𝐸𝑙⊗𝑙′ ,

𝐿 (𝐽)Q ⊗ 𝐽Q → 𝑉 (𝐽)Q, 𝑚 ⊗ 𝑙 ↦→ 𝐸�̃�⊗𝑙 mod 𝑈 (𝐽)Q.

Proof This should be well-known (see, e.g., [12]), but we provide a proof in the present

context for the convenience of the readers. We choose a rank 1 primitive sublattice 𝐼 of
𝐽 and put 𝐽 = (𝐽/𝐼) ⊗ 𝐼 ⊂ 𝐿 (𝐼). Note that 𝐽 ≃ ∧2𝐽 naturally. We restrict the sequence

2024/02/05 22:27

https://doi.org/10.4153/S0008414X24000129 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000129


Irregular Cusps 19

(2.3) for Γ(𝐼)Q to𝑊 (𝐽)Q ⊂ Γ(𝐼)Q. It is clear that𝑊 (𝐽)Q∩𝑈 (𝐼)Q = 𝐽⊥
Q
∩ 𝐿 (𝐼)Q, which

contains𝑈 (𝐽)Q with

𝑈 (𝐽)Q = (𝐽⊥Q )
⊥ = 𝐽Q ≃ ∧2𝐽Q ⊂ 𝑈 (𝐼)Q. (5.6)

The image of 𝑊 (𝐽)Q → O+ (𝐿 (𝐼)Q) is the subgroup of the stabilizer of 𝐽Q that acts

trivially on 𝐽Q and 𝐽
⊥
Q
/𝐽Q. This consists of Eichler transvections of 𝐿 (𝐼)Q with respect

to 𝐽Q, hence isomorphic to (𝐽⊥
Q
/𝐽Q) ⊗ 𝐽Q ≃ 𝐿 (𝐽)Q ⊗ (𝐽/𝐼)Q. In this way we obtain the

exact sequence

0 → 𝐽⊥Q ∩ 𝐿 (𝐼)Q → 𝑊 (𝐽)Q → 𝐿 (𝐽)Q ⊗ (𝐽/𝐼)Q → 0. (5.7)

We choose lifts 𝐿 (𝐽)Q ↩→ 𝐽⊥
Q
and (𝐽/𝐼)Q ↩→ 𝐽Q. This induces a section of (5.7)

which consists of the Eichler transvections 𝐸𝑤 of 𝐿Q with 𝑤 ∈ 𝐿 (𝐽)Q ⊗ (𝐽/𝐼)Q.
Together with the splitting 𝐽⊥

Q
∩ 𝐿 (𝐼)Q ≃ 𝐽Q ⊕ (𝐿 (𝐽)Q ⊗ 𝐼Q), we obtain a bijection

𝑊 (𝐽)Q ≃ 𝐽Q × (𝐿 (𝐽)Q ⊗ 𝐼Q) × (𝐿 (𝐽)Q ⊗ (𝐽/𝐼)Q).

This gives an isomorphism with the Heisenberg group. ■

Note that𝑈 (𝐽)Q is not just the center of𝑊 (𝐽)Q, but also the center of Γ(𝐽)Q. This
is the reason we put the determinant 1 condition in the definition of Γ(𝐽)Q.

The action of Γ(𝐽)Q on the Siegel domain model can be described through the fil-

tration𝑈 (𝐽)Q ⊂ 𝑊 (𝐽)Q ⊂ Γ(𝐽)Q. By definition𝑈 (𝐽)Q acts onV𝐽 ⊂ P(𝐽⊥
C
)∨ trivially

and𝑊 (𝐽)Q acts onH𝐽 ⊂ P𝐽∨
C
trivially. We let𝑈 (𝐽)C ⊂ O(𝐿C) be the group of Eichler

transvections 𝐸𝑙⊗𝑙′ with 𝑙, 𝑙 ′ ∈ 𝐽C. Then 𝑈 (𝐽)C ≃ ∧2𝐽C preserves D(𝐽) and acts on

V𝐽 trivially. The following descriptions should be well-known, but we provide a proof

in the present setting for the convenience of the readers.

Lemma 5.2 The following holds.
(1)D(𝐽) → V𝐽 is a principal𝑈 (𝐽)C-bundle.
(2) The group𝑉 (𝐽)Q ≃ 𝐿 (𝐽)Q ⊗ 𝐽Q acts onV𝐽 → H𝐽 as the relative translation on the

vector bundle 𝐿 (𝐽)C ⊗ (𝐽C/𝐹) via an isomorphism (5.2).
(3)We choose a splitting for 𝐽Q, which induces a splitting (5.5) ofΓ(𝐽)Q and an isomorphism

(5.2) forV𝐽 . Then the lifted subgroupO(𝐿 (𝐽)Q) × SL(𝐽Q) of Γ(𝐽)Q acts onV𝐽 → H𝐽 by
the equivariant action of SL(𝐽Q) on 𝐽C/𝐹 and the linear action of O(𝐿 (𝐽)Q) on 𝐿 (𝐽)C.

Proof (1) Recall from §5.1 that a fiber ofD(𝐽) → V𝐽 is an affine line P⟨𝑙, 𝑣⟩C − [𝑙]
where 𝑣 ∈ 𝐿C is an isotropic vector with (𝑣, 𝐽) . 0 and C𝑙 = 𝑣⊥ ∩ 𝐽C. We take 𝑙 ′ ∈ 𝐽C
with (𝑙 ′, 𝑣) = 1. Then 𝐸𝛼𝑙∧𝑙′ ∈ 𝑈 (𝐽)C, 𝛼 ∈ C, sends a pointC(𝑣 + 𝛽𝑙) of P⟨𝑙, 𝑣⟩C − [𝑙]
to

C(𝑣 + 𝛽𝑙) ↦→ C(𝑣 + (𝛼𝑙 ′, 𝑣)𝑙 + 𝛽𝑙) = C(𝑣 + (𝛼 + 𝛽)𝑙).
This shows that𝑈 (𝐽)C acts on each fiber ofD(𝐽) → V𝐽 freely and transitively.

(2) We choose a splitting 𝐿Q ≃ 𝐽Q ⊕ 𝐿 (𝐽)Q ⊕ (𝐿/𝐽⊥)Q for 𝐽Q where the lift of

(𝐿/𝐽⊥)Q is perpendicular to the lift of 𝐿 (𝐽)Q. Let [𝑣] be a point of H𝐽 ⊂ P(𝐿/𝐽⊥)C.
By (5.1), the fiber ofV𝐽 → H𝐽 over [𝑣] is the affine line

P(C𝑣 ⊕ 𝐿 (𝐽)C) − P𝐿 (𝐽)C ≃ Hom(C𝑣, 𝐿 (𝐽)C)
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in P(𝐿/𝐽)C. Here the point corresponding to 𝑓 ∈ Hom(C𝑣, 𝐿 (𝐽)C) is its graph C(𝑣 +
𝑓 (𝑣)). We take 𝐸𝑚⊗𝑙 ∈ 𝑊 (𝐽)Q/𝑈 (𝐽)Q where𝑚 ∈ 𝐿 (𝐽)Q and 𝑙 ∈ 𝐽Q. Then 𝐸𝑚⊗𝑙 sends
C(𝑣 + 𝑓 (𝑣)) to

C(𝑣 + 𝑓 (𝑣)) ↦→ C(𝑣 + (𝑙, 𝑣)𝑚 − 2−1 (𝑚, 𝑚)(𝑙, 𝑣)𝑙 + 𝑓 (𝑣) − (𝑚, 𝑓 (𝑣))𝑙)
= C(𝑣 + 𝑓 (𝑣) + (𝑙, 𝑣)𝑚) ∈ P(𝐿/𝐽)C.

This means that 𝐸𝑚⊗𝑙 acts on Hom(C𝑣, 𝐿 (𝐽)C) by the translation 𝑓 ↦→ 𝑓 + (𝑙, ·)𝑚.
Finally, we notice that the R-isomorphism

𝐿 (𝐽)R ⊗R 𝐽R → 𝐿 (𝐽)C ⊗C (𝐽C/𝐹[𝑣 ]) = 𝐿 (𝐽)C ⊗C (𝐽C/𝑣⊥) ≃ 𝐿 (𝐽)C ⊗C (C𝑣)∨

sends 𝑚 ⊗ 𝑙 to 𝑚 ⊗ (𝑙, ·). This proves the assertion (2).
The proof of (3) is straightforward and is left to the readers. ■

5.3 Stabilizer over Z

Now let Γ be a finite-index subgroup ofO+ (𝐿). We write

Γ(𝐽)Z = Γ(𝐽)Q ∩ Γ, 𝑊 (𝐽)Z = 𝑊 (𝐽)Q ∩ Γ, 𝑈 (𝐽)Z = 𝑈 (𝐽)Q ∩ Γ,

and consider the quotients

Γ(𝐽)Z = Γ(𝐽)Z/𝑈 (𝐽)Z, 𝑉 (𝐽)Z = 𝑊 (𝐽)Z/𝑈 (𝐽)Z, Γ𝐽 = Γ(𝐽)Z/𝑊 (𝐽)Z,

Γ(𝐽)Q = Γ(𝐽)Q/𝑈 (𝐽)Z, 𝑊 (𝐽)Q/Z = 𝑊 (𝐽)Q/𝑈 (𝐽)Z, 𝑈 (𝐽)Q/Z = 𝑈 (𝐽)Q/𝑈 (𝐽)Z.
By definition we have the canonical exact sequences

0 → 𝑉 (𝐽)Z → Γ(𝐽)Z → Γ𝐽 → 1, (5.8)

0 → 𝑊 (𝐽)Q/Z → Γ(𝐽)Q → O(𝐿 (𝐽)Q) × SL(𝐽Q) → 1, (5.9)

0 → 𝑈 (𝐽)Q/Z → 𝑊 (𝐽)Q/Z → 𝑉 (𝐽)Q → 0.

Then (5.8) is canonically embedded in (5.9). We have

𝑉 (𝐽)Z ∩𝑈 (𝐽)Q/Z = {0} (5.10)

as subgroups of 𝑊 (𝐽)Q/Z because 𝑊 (𝐽)Z ∩ 𝑈 (𝐽)Q = 𝑈 (𝐽)Z by definition. Note

that 𝑈 (𝐽)Q/Z is the group of torsion points of the 1-dimensional torus 𝑇 (𝐽) =
𝑈 (𝐽)C/𝑈 (𝐽)Z. Ifwe choose a splitting for 𝐽Q, the induced splitting (5.5) ofΓ(𝐽)Q defines
a splitting of (5.9):

Γ(𝐽)Q ≃ (O(𝐿 (𝐽)Q) × SL(𝐽Q)) ⋉𝑊 (𝐽)Q/Z. (5.11)

But this does not mean that (5.8) splits.

5.4 Partial toroidal compactification

We denote T (𝐽) = D(𝐽)/𝑈 (𝐽)Z andX(𝐽) = D/𝑈 (𝐽)Z. By Lemma 5.2, T (𝐽) → V𝐽

is a principal𝑇 (𝐽)-bundle acted on equivariantly byΓ(𝐽)Q. The projectionX(𝐽) → V𝐽
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is a punctured disc bundle in T (𝐽) → V𝐽 . By Lemma 5.2, the action of Γ(𝐽)Q on

V𝐽 → H𝐽 is described as follows.

Lemma 5.3 We choose a splitting for 𝐽Q to give an isomorphism (5.2) forV𝐽 and a splitting
(5.11) of Γ(𝐽)Q. We express an element 𝛾 of Γ(𝐽)Q as 𝛾 = (𝛾1, 𝛾2, 𝛼) accordingly, where
𝛾1 ∈ O(𝐿 (𝐽)), 𝛾2 ∈ SL(𝐽) and 𝛼 ∈ 𝑊 (𝐽)Q/Z. Then 𝛾 acts onV𝐽 ≃ 𝐿 (𝐽)C ⊗ (𝐽C/𝐹) as
the equivariant action by (𝛾1, 𝛾2) and the translation by [𝛼] ∈ 𝑉 (𝐽)Q ≃ 𝐿 (𝐽)Q ⊗ 𝐽Q.

Thus V𝐽/𝑉 (𝐽)Z is a fibration of abelian varieties over H𝐽 isogenous to the self

fiber product of the universal elliptic curve. The group Γ𝐽 acts on V𝐽/𝑉 (𝐽)Z by the

equivariant action plus some possible translation.

Now let 𝑇 (𝐽) ≃ C be the canonical partial compactification of the torus 𝑇 (𝐽). We

take the relative torus embedding

T (𝐽) = (T (𝐽) × 𝑇 (𝐽))/𝑇 (𝐽).

This is the line bundle associated to the principal 𝑇 (𝐽)-bundle T (𝐽) → V𝐽 and the

standard character of 𝑇 (𝐽). Let X(𝐽) be the interior of the closure of X(𝐽) in T (𝐽).
This is the partial toroidal compactification of X(𝐽) over the 1-dimensional cusp 𝐽 .

Note that no choice of fan is required: this is canonical. The boundary divisor of X(𝐽)
is canonically isomorphic toV𝐽 .

The relation with a partial toroidal compactification over an adjacent 0-dimensional

cusp 𝐼 ⊂ 𝐽 is as follows. Recall that 𝐽 = (𝐽/𝐼) ⊗ 𝐼 ≃ ∧2𝐽 is an isotropic sublattice

of 𝐿 (𝐼), oriented by the orientation of 𝐽 . The ray 𝜎𝐽 = (𝐽R)≥0 is in the closure of the

positive cone, and it is contained in any Γ(𝐼)Z-admissible fan Σ. The torus embedding

𝑇 (𝐼) ↩→ 𝑇 (𝐼)𝜎𝐽 defined by𝜎𝐽 is a Zariski open set of𝑇 (𝐼)Σ. By (5.6) we have𝑈 (𝐽)R =
𝐽R ⊂ 𝑈 (𝐼)R and

𝑈 (𝐽)Z = 𝐽R ∩𝑈 (𝐼)Z = R𝜎𝐽 ∩𝑈 (𝐼)Z. (5.12)

Therefore the inclusionD(𝐽) ⊂ D(𝐼) induces the etale map

T (𝐽) → 𝑇 (𝐼)𝜎𝐽 ⊂ 𝑇 (𝐼)Σ, (5.13)

which maps the boundary divisor of T (𝐽) to the unique boundary divisor of 𝑇 (𝐼)𝜎𝐽 .
We note that𝑈 (𝐼)Z ⊂ Γ(𝐽)Z.

6 Irregular 1-dimensional cusps

In this section we define and study irregular 1-dimensional cusps. For simplicity we

assume 𝑏 ≥ 3 so that 𝐿 (𝐽) ≠ {0}. Let Γ be a finite-index subgroup of O+ (𝐿) and 𝐽 be
a rank 2 primitive isotropic sublattice of 𝐿. We keep the notation from §5. Irregularity

of the 1-dimensional cusp 𝐽 can be characterized as follows.

Proposition 6.1 The following conditions are equivalent.

(1) 𝑈 (𝐽)Z ≠ 𝑈 (𝐽) ′Z where𝑈 (𝐽) ′Z = 𝑈 (𝐽)Q ∩ ⟨Γ,−id⟩.
(2) −id ∉ Γ and −𝐸𝑤 ∈ Γ(𝐽)Z for some 𝑤 ∈ ∧2𝐽Q.
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(3) −id ∉ Γ andΓ(𝐽)Z contains an element 𝛾 of finite order whose image inO(𝐿 (𝐽))×SL(𝐽)
is (−id𝐿 (𝐽 ) ,−id𝐽 ).

(4) Γ(𝐽)Z contains an element 𝛾 which acts trivially onV𝐽 but nontrivially on X(𝐽).

When these hold, the element 𝛾 of Γ(𝐽)Z in (3), (4) is given by −𝐸𝑤 in (2), has order 2, and is
unique.

Definition 6.1 We say that the 1-dimensional cusp 𝐽 is irregularwhen these properties
hold, and regular otherwise.

Proof The equivalence (1) ⇔ (2) is similar to (1) ⇔ (2) in Proposition 3.1. The

quotient𝑈 (𝐽) ′Z/𝑈 (𝐽)Z ≃ Z/2 is generated by 𝐸𝑤 in (2).

(2) ⇒ (4): Since 𝐸𝑤 for𝑤 ∈ ∧2𝐽Q acts trivially onV𝐽 by Lemma 5.2, so does−𝐸𝑤 .
(2) ⇒ (3): The element 𝛾 = [−𝐸𝑤 ] ofΓ(𝐽)Z is of order 2 and acts on 𝐽 , 𝐿 (𝐽) by−1.
(3) ⇒ (4): By the description of the Γ(𝐽)Z-action on V𝐽 in Lemma 5.3, we find

that the element 𝛾 of (3) acts on V𝐽 by some translation. Since 𝛾 is of finite order by

assumption, this translation must be trivial.

(4) ⇒ (2), (3): Suppose that 𝛾 ∈ Γ(𝐽)Z acts trivially on V𝐽 but nontrivially on

X(𝐽). We take a splitting (5.11) of Γ(𝐽)Q and express 𝛾 = (𝛾1, 𝛾2, 𝛼) accordingly.
Since 𝛾 acts on H𝐽 trivially, we must have 𝛾2 = id𝐽 or −id𝐽 . Then, since 𝛾 acts on

V𝐽 ≃ 𝐿 (𝐽)C ⊗ (𝐽C/𝐹) trivially, we see from Lemma 5.3 that (𝛾1, 𝛾2) = (id𝐿 (𝐽 ) , id𝐽 )
or (−id𝐿 (𝐽 ) ,−id𝐽 ), and the image of 𝛼 ∈ 𝑊 (𝐽)Q/Z in 𝑉 (𝐽)Q must be 0, namely

𝛼 ∈ 𝑈 (𝐽)Q/Z. The case (𝛾1, 𝛾2) = (id𝐿 (𝐽 ) , id𝐽 ) cannot occur, because then 𝛾 ∈
𝑈 (𝐽)Q/Z ∩𝑉 (𝐽)Z and so 𝛾 = id by (5.10). Therefore 𝛾 = (−id𝐿 (𝐽 ) ,−id𝐽 , 𝐸𝑤 ) for some

𝑤 ∈ ∧2𝐽Q. Since −id𝐿 = (−id𝐿 (𝐽 ) ,−id𝐽 , 0) with respect to this (and any) splitting, we
find that 𝛾 = −𝐸𝑤 . Thus −𝐸𝑤 ∈ Γ. Finally, we have −id ∉ Γ, for otherwise 𝐸𝑤 = −𝛾
would be contained in𝑈 (𝐽)Z, which in turn implies that 𝛾 acts trivially onX(𝐽). ■

As in the case of 0-dimensional cusps, 𝑈 (𝐽) ′Z is the projection image of 𝑈 (𝐽)★Z =
({±id}·𝑈 (𝐽)Q)∩Γ in𝑈 (𝐽)Q, andwe have𝑈 (𝐽)★Z/𝑈 (𝐽)Z = ⟨−𝐸𝑤 ⟩when 𝐽 is irregular.

Since the boundary divisor ofX(𝐽) is naturally isomorphic toV𝐽 , the condition (4)
can be restated as follows.

Corollary 6.2 A 1-dimensional cusp 𝐽 is irregular if and only if X(𝐽) → X(𝐽)/Γ(𝐽)Z is
ramified along the boundary divisor ofX(𝐽). In that case, the ramification index is 2, and the
unique nontrivial element of Γ(𝐽)Z fixing the boundary divisor is given by −𝐸𝑤 .

By the condition (1), irregularity of a 1-dimensional cusp reduces to that of an

adjacent 0-dimensional cusp as follows.

Proposition 6.3 Let 𝐼 ⊂ 𝐽 be a rank 1 primitive sublattice and𝜎𝐽 ⊂ 𝑈 (𝐼)R be the isotropic
ray corresponding to 𝐽 . Then 𝐽 is irregular if and only if 𝐼 is irregular and 𝜎𝐽 is an irregular
ray.
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Proof Recall from Definition 3.2 that the ray 𝜎𝐽 is called irregular when R𝜎𝐽 ∩
𝑈 (𝐼)Z ≠ R𝜎𝐽 ∩ 𝑈 (𝐼) ′Z. By (5.12) we have R𝜎𝐽 ∩ 𝑈 (𝐼)Z = 𝑈 (𝐽)Z, and similarly

R𝜎𝐽 ∩𝑈 (𝐼) ′Z = 𝑈 (𝐽) ′Z. This proves our assertion. ■

Corollary 6.4 If Γ has no irregular 0-dimensional cusp, it has no irregular 1-dimensional
cusp.

7 Toroidal compactification

In this section we study singularities and ramification divisors in the boundary of a

toroidal compactification of the modular variety. These are studied in [6], [13] under the

condition −id ∈ Γ, and we explain what modification is necessary in the general case,

especially at the irregular cusps.

Let 𝐿 be a lattice of signature (2, 𝑏) andΓ be a subgroup ofO+ (𝐿) of finite index. The
input data for constructing a toroidal compactification of F (Γ) = Γ\D is a collection

Σ = (Σ𝐼 )𝐼 of Γ(𝐼)Z-admissible fans (§2.4), one for each Γ-equivalence class of rank 1

primitive isotropic sublattices 𝐼 of 𝐿. No choice is required for 1-dimensional cusps.

Thus Σ is a finite collection of independent fans.

The toroidal compactification associated to Σ is defined as ([1] p.163)

F (Γ)Σ =

(
D ⊔

⊔
𝐼

X(𝐼)Σ𝐼 ⊔
⊔
𝐽

X(𝐽)
)
/∼,

where 𝐼 (resp. 𝐽) ranges over all primitive isotropic sublattices of 𝐿 of rank 1 (resp. 2),

and ∼ is the equivalence relation generated by the following:

• Action of 𝛾 ∈ Γ givingD → D ,X(𝐼)Σ𝐼 → X(𝛾𝐼)Σ𝛾𝐼 andX(𝐽) → X(𝛾𝐽).
• The natural mapsD → X(𝐼)Σ𝐼 andD → X(𝐽).
• The etale gluing mapsX(𝐽) → X(𝐼)Σ𝐼 for 𝐼 ⊂ 𝐽 given by (5.13).

Theorem 7.1 ([1]) The space F (Γ)Σ is a compact Moishezon space containing F (Γ) as a
Zariski open set, and we have a morphism from F (Γ)Σ to the Baily-Borel compactification of
F (Γ). For each cusp 𝐼 , 𝐽 , the natural map

X(𝐼)Σ𝐼 /Γ(𝐼)Z → F (Γ)Σ, X(𝐽)/Γ(𝐽)Z → F (Γ)Σ

is locally isomorphic in an open neighborhood of boundary points lying over that cusp.

Perhaps a word might be in order because, strictly speaking, the theory of [1] is

applied to the image of Γ in O+ (𝐿R)/±id, which is ⟨Γ,−id⟩/±id, rather than Γ itself.

Then 𝑈 (𝐼)Z should be replaced by 𝑈 (𝐼) ′Z, X(𝐼) = D/𝑈 (𝐼)Z by X(𝐼) ′ = D/𝑈 (𝐼) ′Z,
Γ(𝐼)Z byΓ′(𝐼)Z = ⟨Γ(𝐼)Z,−id⟩/±id, and similarly for 1-dimensional cusps 𝐽 . But since
X(𝐼) ′ = X(𝐼) or X(𝐼) ′ = X(𝐼)/⟨−𝐸𝑤 ⟩ with −𝐸𝑤 ∈ Γ(𝐼)Z (and similarly for 𝐽), we
have naturally(

D ⊔
⊔
𝐼

X(𝐼)Σ𝐼 ⊔
⊔
𝐽

X(𝐽)
)
/∼ =

(
D ⊔

⊔
𝐼

(X(𝐼) ′)Σ𝐼 ⊔
⊔
𝐽

X(𝐽) ′
)
/∼′,
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where ∼′ is the equivalence relation similar to ∼. The last statement of Theorem 7.1 ([1]

p.175) is justified because we have

X(𝐼)Σ𝐼 /Γ(𝐼)Z = (X(𝐼) ′)Σ𝐼 /(Γ′(𝐼)Z/𝑈 (𝐼) ′Z)

(see also (7.1)), and similarly for 𝐽 .
The reasonweprefer toworkwith𝑈 (𝐼)Z rather than𝑈 (𝐼) ′Z is that Fourier expansion

of Γ-modular forms of arbitrary weight can be done with𝑈 (𝐼)Z (see §8).
If 𝐷 (𝜎) ⊂ X(𝐼)Σ𝐼 is the boundary divisor corresponding to a ray 𝜎 ∈ Σ𝐼 , general

points of 𝐷 (𝜎) lie over the 𝐼-cusp if and only if 𝜎 is positive-definite. When 𝜎 = 𝜎𝐽
is isotropic corresponding to a 1-dimensional cusp 𝐽 ⊃ 𝐼 , 𝐷 (𝜎𝐽 ) is glued with the

boundary divisor of X(𝐽), and its general points lie over the 𝐽-cusp. By combining the

last statement of Theorem 7.1 with Corollaries 3.8 and 6.2, we obtain the following.

Proposition 7.2 (1) The projectionX(𝐼)Σ𝐼 → F (Γ)Σ is ramified along irregular boundary
divisors ofX(𝐼)Σ𝐼 with ramification index 2, and not ramified along other boundary divisors.
If we take quotient by𝑈 (𝐼)★Z/𝑈 (𝐼)Z, then (D/𝑈 (𝐼)★Z )Σ𝐼 → F (Γ)Σ is not ramified along
the boundary divisors.

(2) The projection X(𝐽) → F (Γ)Σ is ramified along the unique boundary divisor (with
index 2) if and only if 𝐽 is irregular. If we take quotient by𝑈 (𝐽)★Z/𝑈 (𝐽)Z, thenD/𝑈 (𝐽)★Z →
F (Γ)Σ is not ramified along the boundary divisor.

Proof What remains is to show that (1) is still true evenwhen a ray𝜎 = 𝜎𝐽 is isotropic.
Since the mapX(𝐽) → F (Γ)Σ in (2) factorizes asX(𝐽) → X(𝐼)Σ𝐼 → F (Γ)Σ and the

gluing mapX(𝐽) → X(𝐼)Σ𝐼 is etale, our assertion forX(𝐼)Σ𝐼 → F (Γ)Σ follows from

(2) and Proposition 6.3. ■

When Γ contains −id, Proposition 7.2 is proved in [6], [13]. In that case, we have no

irregular cusp, so no ramification divisor in the boundary.

Remark 7.3 It appears that in some literatures, the “no ramification boundary divisor”

property is used to claim that F (Γ′)Σ → F (Γ)Σ is not ramified along the boundary

divisors for neat subgroups Γ′ < Γ. This seems not true already in the case of modular

curves: for example, Γ(𝑁) < SL2 (Z). The point is that𝑈 (𝐼)Z,Γ = 𝑈 (𝐼)Q ∩ Γ depends

on Γ, so𝑈 (𝐼)Z,Γ′ = 𝑈 (𝐼)Q ∩ Γ′ is in general smaller than𝑈 (𝐼)Z,Γ. If 𝜎 is a ray in Σ𝐼 ,
assumed regular for simplicity, we have ramification index

[R𝜎 ∩𝑈 (𝐼)Z,Γ : R𝜎 ∩𝑈 (𝐼)Z,Γ′]

at the corresponding boundary divisor. It seems that so far, all argument using the above

claim can be avoided: see the proof of Theorem 8.9.

Next we study singularities. A fan Σ𝐼 = (𝜎𝛼) is called basic with respect to a lattice
Λ ⊂ 𝑈 (𝐼)Q if each cone𝜎𝛼 is generated by a part of a basis ofΛ. The singularity theorem
([6], [13]) is still true, if we require the fan Σ𝐼 to be basic with respect to𝑈 (𝐼) ′Z, rather
than𝑈 (𝐼)Z.
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Proposition 7.4 (cf. [6], [13]) (1) We choose the fans Σ = (Σ𝐼 ) so that each Σ𝐼 is basic with
respect to 𝑈 (𝐼) ′Z. Then F (Γ)Σ has canonical singularities at the boundary points lying over
the 0-dimensional cusps.

(2) When 𝑏 ≥ 9, F (Γ)Σ has canonical singularities at the boundary points lying over the
1-dimensional cusps.

Proof When Γ contains −id, this is proved in [6], [13] for 0-dimensional cusps, and in

[6] for 1-dimensional cusps. We show that the general case is reduced to this case. We

consider 0-dimensional cusps. The case of 1-dimensional cusps is similar. It suffices to

show thatX(𝐼)Σ𝐼 /Γ(𝐼)Z has canonical singularities.
Let Γ′ = ⟨Γ,−id⟩ and Γ′(𝐼)Z = Γ′ ∩ Γ(𝐼)Q. Then 𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q ∩ Γ′ and

Γ′(𝐼)Z = ⟨Γ(𝐼)Z,−id⟩. Since the fan Σ𝐼 is also rational with respect to𝑈 (𝐼) ′Z, it defines
a toroidal embedding (D/𝑈 (𝐼) ′Z)Σ𝐼 ofD/𝑈 (𝐼) ′Z. This is the quotient of (D/𝑈 (𝐼)Z)Σ𝐼
by the translation by𝑈 (𝐼) ′Z/𝑈 (𝐼)Z (which is nontrivial exactlywhen 𝐼 is irregular). Since
𝑈 (𝐼) ′Z/𝑈 (𝐼)Z ⊂ Γ′(𝐼)Z/𝑈 (𝐼)Z, we have

(D/𝑈 (𝐼)Z)Σ𝐼 /Γ(𝐼)Z = (D/𝑈 (𝐼)Z)Σ𝐼 /(Γ′(𝐼)Z/𝑈 (𝐼)Z) (7.1)

≃ (D/𝑈 (𝐼) ′Z)Σ𝐼 /(Γ′(𝐼)Z/𝑈 (𝐼) ′Z).

Since Σ𝐼 is basic with respect to𝑈 (𝐼) ′Z and −id ∈ Γ′, we can apply the result of [13] to
the last quotient to see that this has canonical singularities. ■

8 Modular forms and pluricanonical forms

Let 𝐿 be a lattice of signature (2, 𝑏) and Γ be a subgroup of O+ (𝐿) of finite index. For
simplicity we assume 𝑏 ≥ 3. In this section we compare the vanishing order of cusp

forms and pluricanonical forms, and explain how the low weight cusp form trick of

Gritsenko-Hulek-Sankaran [6] is modified at irregular boundary divisors. We take this

occasion to generalize “low weight” to “low slope”, for possible future use.

8.1 Modular forms

LetL = OP𝐿C (−1) |D be the restriction of the tautological line bundle toD ⊂ P𝐿C. Let
𝜒 be a character of Γ. By our assumption 𝑏 ≥ 3, 𝜒(Γ) ⊂ C× is finite ([14]). We assume

that 𝜒 |𝑈 (𝐼 )Z ≡ 1 for every 0-dimensional cusp 𝐼 . This holds, e.g., for 𝜒 = 1, det. A Γ-
invariant section of the Γ-linearized line bundle L⊗𝑘 ⊗ 𝜒 over D is called a modular
form of weight 𝑘 and character 𝜒 with respect to Γ.

Let 𝐼 be a rank 1 primitive isotropic sublattice of 𝐿. We choose a generator 𝑙𝐼 of 𝐼 .
This defines a frame 𝑠𝐼 of L determined by the condition (𝑠𝐼 ( [𝜔]), 𝑙𝐼 ) = 1, where we

view 𝑠𝐼 ( [𝜔]) ∈ L [𝜔 ] = C𝜔 ⊂ 𝐿C. The factor of automorphy with respect to 𝑠𝐼 is
given by

𝑗 (𝛾, [𝜔]) = (𝛾𝜔, 𝑙𝐼 )
(𝜔, 𝑙𝐼 )

=
(𝜔, 𝛾−1𝑙𝐼 )
(𝜔, 𝑙𝐼 )

, 𝛾 ∈ Γ, [𝜔] ∈ D . (8.1)

Let 1𝜒 be a nonzero vector in the representation line of 𝜒. Then 𝑠
⊗𝑘
𝐼 ⊗ 1𝜒 is a frame of

the line bundle L⊗𝑘 ⊗ 𝜒, via which modular forms 𝐹 = 𝑓 𝑠⊗𝑘𝐼 ⊗ 1𝜒 of weight 𝑘 and
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character 𝜒 are identified with holomorphic functions 𝑓 onD satisfying

𝑓 (𝛾 [𝜔]) = 𝜒(𝛾) 𝑗 (𝛾, [𝜔])𝑘 𝑓 ( [𝜔]), 𝛾 ∈ Γ, [𝜔] ∈ D .

Since 𝑠⊗𝑘𝐼 ⊗ 1𝜒 is invariant under 𝑈 (𝐼)Z by our assumption, 𝑓 is 𝑈 (𝐼)Z-invariant,
hence descends to a function onD/𝑈 (𝐼)Z. By the tube domain realizationD → D𝐼 ⊂
𝑈 (𝐼)C (after a choice of 𝐼 ′ ⊂ 𝐿 with (𝐼, 𝐼 ′) . 0), 𝑓 is identified with a function onD𝐼

invariant under translation by the lattice𝑈 (𝐼)Z. Then it admits a Fourier expansion

𝑓 (𝑍) =
∑

𝑙∈𝑈 (𝐼 )∨Z

𝑎(𝑙)𝑞𝑙 , 𝑞𝑙 = exp(2𝜋𝑖(𝑙, 𝑍)), 𝑍 ∈ D𝐼 . (8.2)

By the Koecher principle, we have 𝑎(𝑙) ≠ 0 only when 𝑙 ∈ C𝐼 . The modular form 𝐹
is called a cusp form if 𝑎(𝑙) = 0 for every 𝑙 ∈ 𝑈 (𝐼)∨Z with (𝑙, 𝑙) = 0 at every rank 1

primitive isotropic sublattice 𝐼 of 𝐿. (𝑎(0) is the value of 𝑓 at the 0-dimensional cusp

for 𝐼 , and
∑
𝜎∩𝑈 (𝐼 )∨Z 𝑎(𝑙)𝑞

𝑙 for an isotropic ray 𝜎 = 𝜎𝐽 gives the restriction of 𝑓 to the
1-dimensional cusp for 𝐽 ⊃ 𝐼 .)

Fourier expansion at an irregular cusp satisfies the following.

Lemma 8.1 Suppose that 𝐼 is irregular and −𝐸𝑤 ∈ Γ(𝐼)Z. When the weight 𝑘 satisfies
𝜒(−𝐸𝑤 ) = (−1)𝑘+1, e.g., 𝑘 odd for 𝜒 = 1 or 𝑘 . 𝑏 mod 2 for 𝜒 = det, then we have
𝑎(𝑙) = 0 for 𝑙 ∈ (𝑈 (𝐼) ′Z)∨. In particular, 𝑎(0) = 0 in this case. When 𝜒(−𝐸𝑤 ) = (−1)𝑘 ,
we have 𝑎(𝑙) = 0 for 𝑙 ∉ (𝑈 (𝐼) ′Z)∨.

Proof Since −𝐸𝑤 acts on 𝐼 by −1, the factor of automorphy of −𝐸𝑤 on L is −1 by
(8.1). Thereforewe find that 𝑓 (𝑍+𝑤) = 𝜒(−𝐸𝑤 ) (−1)𝑘 𝑓 (𝑍). Thuswe have 𝑓 (𝑍+𝑤) =
− 𝑓 (𝑍) when 𝜒(−𝐸𝑤 ) = (−1)𝑘+1, while 𝑓 (𝑍 + 𝑤) = 𝑓 (𝑍) when 𝜒(−𝐸𝑤 ) = (−1)𝑘 .

On the other hand, since 𝑤 generates 𝑈 (𝐼) ′Z/𝑈 (𝐼)Z ≃ Z/2 by Proposition 3.1,

pairing with 𝑤 defines an isomorphism 𝑈 (𝐼)∨Z/(𝑈 (𝐼) ′Z)∨ → 1
2
Z/Z. Thus we have

(𝑙, 𝑤) ∈ Z for 𝑙 ∈ (𝑈 (𝐼) ′Z)∨, while (𝑙, 𝑤) ∈ 1/2 + Z for 𝑙 ∈ 𝑈 (𝐼)∨Z − (𝑈 (𝐼) ′Z)∨. There-
fore, if we substitute 𝑍 → 𝑍+𝑤 into 𝑞𝑙 = exp(2𝜋𝑖(𝑙, 𝑍)), then 𝑞𝑙 → 𝑞𝑙 if 𝑙 ∈ (𝑈 (𝐼) ′Z)∨
and 𝑞𝑙 → −𝑞𝑙 if 𝑙 ∈ 𝑈 (𝐼)∨Z − (𝑈 (𝐼) ′Z)∨. This implies our assertion. ■

8.2 Vanishing order

In this subsection we study the vanishing order of modular forms along boundary divi-

sors. We will define two types of vanishing order: 𝜈𝜎 (𝐹) and 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹). 𝜈𝜎 (𝐹) is
defined by Fourier expansion and is always an integer. On the other hand, 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹)
can be strictly half-integral, and measures the vanishing order at the level of F (Γ)Σ.

Let 𝐼 be a rank 1 primitive isotropic sublattice of 𝐿. Let Σ = Σ𝐼 = (𝜎𝛼) be a Γ(𝐼)Z-
admissible fan in𝑈 (𝐼)R and 𝜎 be a ray in Σ. Let 𝑤𝜎 be the generator of 𝜎 ∩𝑈 (𝐼)Z. Let
𝑓 (𝑍) = ∑

𝑙∈𝑈 (𝐼 )∨Z 𝑎(𝑙)𝑞
𝑙 be the Fourier expansion of aΓ-modular form 𝐹 = 𝑓 𝑠⊗𝑘𝐼 ⊗1𝜒

around 𝐼 . We define the vanishing order of 𝐹 along 𝜎 as

𝜈𝜎 (𝐹) = min{ (𝑙, 𝑤𝜎) | 𝑙 ∈ 𝑈 (𝐼)∨Z , 𝑎(𝑙) ≠ 0 }.
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This is a nonnegative integer because𝑤𝜎 ∈ C𝐼 has nonnegative pairingwithC𝐼 . Clearly
𝜈𝜎 (𝐹) depends on 𝑈 (𝐼)Z and hence on Γ. If we shrink Γ without changing 𝐹 and 𝜎,
then 𝜈𝜎 (𝐹) will be multiplied in general.

When𝜎 is positive-definite, we have𝜎⊥∩C𝐼 = {0}, and so 𝑙 = 0 is the only vector in

C𝐼 with (𝑙, 𝑤𝜎) = 0. Therefore, for such 𝜎, we have 𝜈𝜎 (𝐹) > 0 if and only if 𝑎(0) = 0.

Similarly, when 𝜎 is isotropic, we have 𝜎⊥ ∩ C𝐼 = 𝜎. Therefore, in this case, we have

𝜈𝜎 (𝐹) > 0 if and only if 𝑎(𝑙) = 0 for all 𝑙 ∈ 𝜎 ∩𝑈 (𝐼)∨Z . Thus, 𝐹 is a cusp form if and

only if 𝜈𝜎 (𝐹) > 0 at every ray 𝜎 at every 0-dimensional cusp 𝐼 .
The following criterion is trivial but perhaps might be sometimes useful in view of

Theorem 8.9. Compare with [1], [5] in related cases.

Corollary 8.2 Assume the following holds: if 𝑎(𝑙) ≠ 0, then (𝑙, 𝑤) ≥ 𝑟 for every 𝑤 ∈
𝑈 (𝐼)Z ∩ C𝐼 . Then we have 𝜈𝜎 (𝐹) ≥ 𝑟 for every ray 𝜎 ∈ Σ.

Proof Take 𝑤 to be the generator of 𝜎 ∩𝑈 (𝐼)Z. ■

When 𝜎 is irregular, 𝜈𝜎 (𝐹) belongs to the following parity.

Proposition 8.3 Suppose that the ray 𝜎 is irregular and −𝐸𝑤 ∈ Γ(𝐼)Z. Then 𝜈𝜎 (𝐹) is odd
when 𝜒(−𝐸𝑤 ) = (−1)𝑘+1, and even when 𝜒(−𝐸𝑤 ) = (−1)𝑘 .

Proof Let𝑤𝜎 be the generator of𝜎∩𝑈 (𝐼)Z. Since𝑈 (𝐼) ′Z = ⟨𝑈 (𝐼)Z, 𝑤𝜎/2⟩, a vector
𝑙 of𝑈 (𝐼)∨Z belongs to (𝑈 (𝐼) ′Z)∨ if and only if (𝑙, 𝑤𝜎) is even. Then our assertion follows
from Lemma 8.1. ■

We also define the geometric vanishing order of 𝐹 along 𝜎 as

𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) =
{
𝜈𝜎 (𝐹) 𝜎 : regular
1
2
𝜈𝜎 (𝐹) 𝜎 : irregular

If 𝑤′
𝜎 is the generator of 𝜎 ∩𝑈 (𝐼) ′Z, we can write uniformly as

𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) = min{ (𝑙, 𝑤′
𝜎) | 𝑙 ∈ 𝑈 (𝐼)∨Z , 𝑎(𝑙) ≠ 0 }. (8.3)

Note that 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) is in 1/2 + Z when 𝜎 is irregular and the weight 𝑘 satisfies

𝜒(−𝐸𝑤 ) = (−1)𝑘+1 so that 𝜈𝜎 (𝐹) is odd.
Geometric interpretation of 𝜈𝜎 (𝐹) is as follows. Recall that the ray 𝜎 corresponds

to a boundary divisor𝐷 (𝜎) of the partial compactificationX(𝐼)Σ ofX(𝐼) = D/𝑈 (𝐼)Z.
The line bundleL⊗𝑘⊗𝜒 descends to a line bundle overX(𝐼), again denoted byL⊗𝑘⊗𝜒.
The point is that, since 𝑠⊗𝑘𝐼 ⊗ 1𝜒 is𝑈 (𝐼)Z-invariant, it descends to a frame of L⊗𝑘 ⊗ 𝜒
over X(𝐼), and we use this frame to extend L⊗𝑘 ⊗ 𝜒 to a line bundle over X(𝐼)Σ, still
denoted by the same notation. Namely, 𝑠⊗𝑘𝐼 ⊗ 1𝜒 extends to a frame of the extended line

bundle by definition. The property 𝑙 ∈ C𝐼 = C𝐼
∨
in the Fourier expansion implies that

a modular form 𝐹 extends holomorphically overX(𝐼)Σ as a section of L⊗𝑘 ⊗ 𝜒.

Proposition 8.4 𝜈𝜎 (𝐹) is equal to the vanishing order of 𝐹 as a section of L⊗𝑘 ⊗ 𝜒 over
X(𝐼)Σ along the boundary divisor 𝐷 (𝜎).
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Proof Recall that 𝜎 defines a sub toroidal embedding X(𝐼)𝜎 ⊂ X(𝐼)Σ, the unique
boundary divisor of which is a Zariski open set of 𝐷 (𝜎) and is the quotient torus (or its
analytic open set) defined by the quotient lattice 𝑈 (𝐼)Z/Z𝑤𝜎 . The character group of

this boundary torus is𝜎⊥∩𝑈 (𝐼)∨Z .We choose a vector 𝑙𝜎 ∈ 𝑈 (𝐼)∨Z such that (𝑙𝜎 , 𝑤𝜎) =
1 and put 𝑞 = 𝑞𝑙𝜎 , which is a character of 𝑇 (𝐼). Then 𝑞 extends holomorphically over

X(𝐼)𝜎 with 𝐷 (𝜎) = (𝑞 = 0). The Fourier expansion (8.2) can be arranged as 𝑓 =∑
𝑚≥0 𝜑𝑚𝑞

𝑚 where

𝜑𝑚 =
∑

𝑙∈𝜎⊥∩𝑈 (𝐼 )∨Z

𝑎(𝑙 + 𝑚𝑙𝜎)𝑞𝑙 .

This is a Taylor expansion of 𝑓 along the divisor 𝐷 (𝜎). Since (𝑙 + 𝑚𝑙𝜎 , 𝑤𝜎) = 𝑚 for

𝑙 ∈ 𝜎⊥ ∩𝑈 (𝐼)∨Z , we find that

𝜈𝜎 (𝐹) = min{ 𝑚 | 𝜑𝑚 . 0 }.

This proves our assertion. ■

We can also give a geometric interpretation of 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) when

𝑠⊗𝑘𝐼 ⊗ 1𝜒 is invariant under 𝑈 (𝐼)★Z = ({±id} ·𝑈 (𝐼)Q) ∩ Γ. (8.4)

This holds, e.g., when 𝑘 is even with 𝜒 = 1 and when 𝑘 ≡ 𝑏 mod 2with 𝜒 = det. Recall

that𝑈 (𝐼) ′Z is the image of𝑈 (𝐼)★Z in𝑈 (𝐼)Q. Under the condition (8.4), the function 𝑓 (𝑍)
on the tube domain D𝐼 is invariant under translation by 𝑈 (𝐼) ′Z, so the index lattice

in the Fourier expansion reduces to (𝑈 (𝐼) ′Z)∨ ⊂ 𝑈 (𝐼)∨Z . In other words, 𝑎(𝑙) = 0 if

𝑙 ∉ (𝑈 (𝐼) ′Z)∨, so 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) is an integer. The frame 𝑠⊗𝑘𝐼 ⊗ 1𝜒 descends to a frame of

L⊗𝑘 ⊗ 𝜒 over

X(𝐼) ′ = D/𝑈 (𝐼)★Z = D/𝑈 (𝐼) ′Z,

using which we can extend L⊗𝑘 ⊗ 𝜒 to a line bundle over (X(𝐼) ′)Σ. The ray 𝜎
corresponds to a boundary divisor 𝐷 (𝜎) ′ of (X(𝐼) ′)Σ. We have

• 𝐷 (𝜎) ′ = 𝐷 (𝜎) inX(𝐼)Σ = (X(𝐼) ′)Σ when 𝐼 is regular.
• 𝐷 (𝜎) ′ ≃ 𝐷 (𝜎) withX(𝐼)Σ → (X(𝐼) ′)Σ doubly ramified along 𝐷 (𝜎) ′ when 𝜎 is

irregular.
• 𝐷 (𝜎) ′ is the quotient of 𝐷 (𝜎) by𝑈 (𝐼) ′Z/𝑈 (𝐼)Z ≃ Z/2 withX(𝐼)Σ → (X(𝐼) ′)Σ
unramified along 𝐷 (𝜎) ′ when 𝐼 is irregular but 𝜎 is regular.

Then we see, either from Proposition 8.4 or by a similar argument, the following.

Proposition 8.5 When (8.4) holds, 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) is equal to the vanishing order of 𝐹 as a
section of L⊗𝑘 ⊗ 𝜒 over (X(𝐼) ′)Σ along the boundary divisor 𝐷 (𝜎) ′.

The vanishing order at a 1-dimensional cusp 𝐽 is reduced to the case considered

above. We choose a rank 1 primitive sublattice 𝐼 ⊂ 𝐽 and let 𝜎𝐽 be the isotropic ray

in𝑈 (𝐼)R corresponding to 𝐽 . Then we define

𝜈𝐽 (𝐹) = 𝜈𝜎𝐽 (𝐹), 𝜈𝐽 ,𝑔𝑒𝑜𝑚 (𝐹) = 𝜈𝜎𝐽 ,𝑔𝑒𝑜𝑚 (𝐹).
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The Taylor expansion 𝑓 =
∑
𝑚 𝜑𝑚𝑞

𝑚 in this case is nothing but the Fourier-Jacobi

expansion, and 𝜑𝑚 is essentially the 𝑚-th Fourier-Jacobi coefficient. Thus 𝜈𝐽 (𝐹) is the
minimal degree of nonzero Fourier-Jacobi coefficients.

We also have the following geometric interpretation of 𝜈𝐽 (𝐹). We use the 𝑈 (𝐽)Z-
invariant frame 𝑠⊗𝑘𝐼 ⊗ 1𝜒 to extend L⊗𝑘 ⊗ 𝜒 to a line bundle over X(𝐽). This is the
pullback of the extended line bundle L⊗𝑘 ⊗ 𝜒 over X(𝐼)Σ by the etale gluing map

X(𝐽) → X(𝐼)Σ. This extension does not depend on the choice of 𝐼 up to isomor-

phism. Then 𝜈𝐽 (𝐹) is the vanishing order of 𝐹 as a section of the extended line bundle

L⊗𝑘 ⊗ 𝜒 over X(𝐽) along the boundary divisor. Similarly, when 𝑠⊗𝑘𝐼 ⊗ 1𝜒 is invari-

ant under 𝑈 (𝐽)★Z , 𝜈𝐽 ,𝑔𝑒𝑜𝑚 (𝐹) equals to the vanishing order of 𝐹 along the boundary

divisor ofD/𝑈 (𝐽)★Z = D/𝑈 (𝐽) ′Z.

8.3 Pluricanonical forms

In this subsection we compare the vanishing order of modular forms and pluricanonical

forms along the boundary divisors. Recall that we have a canonical isomorphism

L⊗𝑏 ⊗ det ≃ 𝐾D

over D , as a consequence of the isomorphism 𝐾P𝐿C ≃ OP𝐿C (−𝑏 − 2) ⊗ det and the

adjunction formula. Let 𝐼 be a rank 1 primitive isotropic sublattice of 𝐿. The above
isomorphism descends toL⊗𝑏 ⊗ det ≃ 𝐾X(𝐼 )′ overX(𝐼) ′ = D/𝑈 (𝐼)★Z . Both line bun-
dles are extended over the partial compactification (X(𝐼) ′)Σ in the respective manner:

L⊗𝑏 ⊗ det is extended by the frame 𝑠⊗𝑏𝐼 ⊗ 1det, while 𝐾X(𝐼 )′ is extended to 𝐾 (X(𝐼 )′)Σ .

Proposition 8.6 (cf. [15]) Over (X(𝐼) ′)Σ the above isomorphism extends to

L⊗𝑏 ⊗ det ≃ 𝐾 (X(𝐼 )′)Σ (
∑
𝜎

𝐷 (𝜎) ′),

where𝜎 ranges over all rays inΣ and 𝐷 (𝜎) ′ is the boundary divisor of (X(𝐼) ′)Σ correspond-
ing to 𝜎.

Proof By the isomorphism L⊗𝑏 ⊗ det ≃ 𝐾D , the frame 𝑠⊗𝑏𝐼 ⊗ 1det of L⊗𝑏 ⊗ det

corresponds to a flat canonical form𝜔𝐼 on the tube domainD𝐼 ⊂ 𝑈 (𝐼)C, because both
extend overD(𝐼) ≃ 𝑈 (𝐼)C and are𝑈 (𝐼)C-invariant. Let 𝜎 be a ray in Σ and 𝑤′

𝜎 be the

generator of𝜎∩𝑈 (𝐼) ′Z. We take a vector 𝑙𝜎 ∈ (𝑈 (𝐼) ′Z)∨ with (𝑙𝜎 , 𝑤′
𝜎) = 1 and extend

it to a basis of (𝑈 (𝐼) ′Z)∨. This defines a coordinate 𝑍1 = (𝑙𝜎 , ·), 𝑍2, · · · , 𝑍𝑏 on𝑈 (𝐼)C.
We have𝜔𝐼 = 𝑑𝑍1 ∧ · · · ∧ 𝑑𝑍𝑏 up to constant. Then 𝑞 = 𝑞𝑙𝜎 , 𝑍2, · · · , 𝑍𝑏 define a local
coordinate around a point of 𝐷 (𝜎) ′ ⊂ (X(𝐼) ′)Σ with 𝐷 (𝜎) ′ = (𝑞 = 0). Since we have

𝑠⊗𝑏𝐼 ⊗ 1det = 𝑑𝑍1 ∧ · · · ∧ 𝑑𝑍𝑏 =
𝑑𝑞

𝑞
∧ 𝑑𝑍2 ∧ · · · ∧ 𝑑𝑍𝑏

around a point of 𝐷 (𝜎) ′, this proves our assertion. ■

This is the situation at a local chart for the boundary. We pass to the global situation.
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Proposition 8.7 Let 𝐹 be a modular form of weight𝑚𝑏 and character det𝑚 with respect to Γ
and 𝜔𝐹 be the corresponding rational 𝑚-canonical form on F (Γ)Σ. Let 𝐼 be a 0-dimensional
cusp, 𝜎 be a ray in Σ𝐼 , and Δ(𝜎) be the corresponding boundary divisor of F (Γ)Σ. Then the
vanishing order 𝜈Δ(𝜎) (𝜔𝐹 ) of 𝜔𝐹 along Δ(𝜎) is given by

𝜈Δ(𝜎) (𝜔𝐹 ) = 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) − 𝑚 =

{
𝜈𝜎 (𝐹) − 𝑚 𝜎 : regular
1
2
𝜈𝜎 (𝐹) − 𝑚 𝜎 : irregular

Proof Let 𝜋 : (X(𝐼) ′)Σ𝐼 → F (Γ)Σ be the projection. By Propositions 8.5 and 8.6, we
have

𝜈𝐷 (𝜎)′ (𝜋∗𝜔𝐹 ) = 𝜈𝜎,𝑔𝑒𝑜𝑚 (𝐹) − 𝑚.
By Proposition 7.2 (1), 𝜋 is not ramified along 𝐷 (𝜎) ′, regardless of whether 𝜎 is

positive-definite or isotropic. This implies that 𝜈𝐷 (𝜎)′ (𝜋∗𝜔𝐹 ) = 𝜈Δ(𝜎) (𝜔𝐹 ). ■

When 𝜎 = 𝜎𝐽 is isotropic, the above equality can be written as

𝜈Δ(𝜎𝐽 ) (𝜔𝐹 ) = 𝜈𝐽 ,𝑔𝑒𝑜𝑚 (𝐹) − 𝑚,

where Δ(𝜎𝐽 ) is the boundary divisor of F (Γ)Σ over 𝐽 .
By Gritsenko-Hulek-Sankaran [6], every irreducible component of the ramifica-

tion divisor of D → F (Γ) has ramification index 2 (and is defined by a reflection).

Since every boundary divisor of F (Γ)Σ is of the form Δ(𝜎) for some ray 𝜎 at some

0-dimensional cusp 𝐼 , Proposition 8.7 implies the following.

Corollary 8.8 The 𝑚-canonical form 𝜔𝐹 extends holomorphically over the regular locus of
F (Γ)Σ if and only if the following hold:

(1) 𝜈𝑅 (𝐹) ≥ 𝑚 at every irreducible component 𝑅 of the ramification divisor ofD → F (Γ).
(2) 𝜈𝜎 (𝐹) ≥ 𝑚 at every regular ray 𝜎 for every 0-dimensional cusp.
(3) 𝜈𝜎 (𝐹) ≥ 2𝑚 at every irregular ray 𝜎 for every irregular 0-dimensional cusp.

Note that extendability at the boundary divisors over the 1-dimensional cusps is

encoded in the conditions (2), (3) at isotropic rays 𝜎 for adjacent 0-dimensional cusps.

8.4 Low slope cusp form criterion

We now arrive at our principal purpose. Theorem 1.2 follows from the case 𝑘 < 𝑏 in

the following.

Theorem 8.9 Let 𝐿 be a lattice of signature (2, 𝑏) with 𝑏 ≥ 9. LetΓ be a subgroup ofO+ (𝐿)
of finite index. We take a Γ-admissible collection of fans Σ = (Σ𝐼 ) such that Σ𝐼 is basic with
respect to𝑈 (𝐼) ′Z = 𝑈 (𝐼)Q ∩ ⟨Γ,−id⟩ at each 0-dimensional cusp 𝐼 . Assume that we have a
cusp form 𝐹 of some weight 𝑘 and character with respect to Γ satisfying the following:

(1) At every irreducible component 𝑅 of the ramification divisor of D → F (Γ), we have
𝜈𝑅 (𝐹)/𝑘 > 1/𝑏.

(2) At every regular ray 𝜎 of Σ𝐼 at every 0-dimensional cusp 𝐼 , we have 𝜈𝜎 (𝐹)/𝑘 > 1/𝑏.
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(3) At every irregular ray 𝜎 of Σ𝐼 at every irregular 0-dimensional cusp 𝐼 , we have
𝜈𝜎 (𝐹)/𝑘 > 2/𝑏.

Then F (Γ) is of general type.

Proof The following argument is a slightmodification of the proof of [6] Theorem 1.1,

avoiding the use of a neat cover.

Replacing 𝐹 with its power, which does not change the slopes 𝜈∗ (𝐹)/𝑘 , we may

assume that the character 𝜒 is trivial. We first consider the case 𝑏 ∤ 𝑘 . By further

replacing 𝐹 with its power 𝐹2𝑁 , where 𝑁 is determined by [𝑘/𝑏] + 2−𝑁−1 ≤ 𝑘/𝑏 <
[𝑘/𝑏] + 2−𝑁 , we may assume that 𝑘/𝑏 ≥ [𝑘/𝑏] + 1/2 so that [2𝑘/𝑏] = 2[𝑘/𝑏] + 1.

We write 𝑁0 = [𝑘/𝑏] + 1. Then 𝐹 has vanishing order ≥ 𝑁0 at the ramifica-

tion divisors of D → F (Γ) and at the regular boundary divisors, and vanishing

order ≥ 2𝑁0 at the irregular boundary divisors. We denote by 𝑀𝑙 (Γ) the space of Γ-
modular forms of weight 𝑙 with trivial character. For an even number 𝑚 we consider

the subspace 𝑉𝑚 = 𝐹𝑚 · 𝑀(𝑏𝑁0−𝑘)𝑚 (Γ) of 𝑀𝑏𝑁0𝑚 (Γ). Modular forms in 𝑉𝑚 have

vanishing order ≥ 𝑚𝑁0 at the interior ramification divisors and at the regular bound-

ary divisors, and vanishing order ≥ 2𝑚𝑁0 at the irregular boundary divisors. Thus

the corresponding𝑚𝑁0-canonical forms extend holomorphically over the regular locus

of F (Γ)Σ by Corollary 8.8. By our choice of Σ, F (Γ)Σ has canonical singularities at

the boundary points by Proposition 7.4, and the interior F (Γ) has canonical singular-
ities by Gritsenko-Hulek-Sankaran [6]. Therefore these 𝑚𝑁0-canonical forms extend

holomorphically over a desingularization 𝑋 of F (Γ)Σ. Since 𝑏𝑁0 > 𝑘 , we have

dim𝑉𝑚 = dim𝑀(𝑏𝑁0−𝑘)𝑚 (Γ) ∼ 𝑐 · 𝑚𝑏 (𝑚 → ∞)

for some 𝑐 > 0, so we find that 𝐾𝑋 is big.

When 𝑏 | 𝑘 , we replace 𝐹 with the product of a sufficiently large power of 𝐹 and a

modular form of weight indivisible by 𝑏. This perturbs the slopes 𝜈∗ (𝐹)/𝑘 only by 𝜀, so
the inequalities in (1) – (3) still hold. Then the same argument works. ■

Remark 8.10 If we replace ">" in the conditions (1) – (3) by "≥", then the conclusion

will be weakened to "F (Γ) has nonnegative Kodaira dimension". A power of 𝐹 gives a

nonzero pluricanonical form.

Geometric explanation of Theorem 8.9 is as follows. We have the Q-linear equiva-
lence

𝐾F(Γ)Σ ∼Q 𝑏L − 𝐵/2 − Δ𝑟𝑒𝑔 − Δ𝑖𝑟𝑟

over F (Γ)Σ, where 𝐵 is the interior branch divisor and Δ𝑟𝑒𝑔,Δ𝑖𝑟𝑟 are the regular and
irregular boundary divisors respectively. The coefficients of 𝐵 and Δ𝑖𝑟𝑟 will be multi-

plied by 2 when pulled back to local charts. The existence of the cusp form 𝐹 means

that 𝑏′L − 𝐵/2 − Δ𝑟𝑒𝑔 − Δ𝑖𝑟𝑟 is Q-effective for some 𝑏′ < 𝑏, 𝑏′ ∈ Q. (To be explicit,
𝑏′ = 𝑘/𝑁0 in the case 𝑏 ∤ 𝑘 in the proof.) Thus we have

𝐾F(Γ)Σ ∼ (Q-effective) + (𝑏 − 𝑏′)L = (Q-effective) + (big) = (big),

and the singularities do not impose obstruction.
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