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Abstract

We revisit the coordinatisation method for projective planes by considering the consequences of using
finite fields to coordinatise projective planes of prime power order. This leads to some general restrictions
on the form of the resulting planar ternary ring (PTR) when viewed as a trivariate polynomial over the
field. We also consider how the Lenz–Barlotti type of the plane being coordinatised impacts the form of
the PTR polynomial, thereby deriving further restrictions.
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1. Introduction

This paper is concerned with two interlinked areas in the study of projective planes—
namely the coordinatisation method and the Lenz–Barlotti classification—and their
study through the medium of polynomials over finite fields. The coordinatisation
method takes an arbitrary projective plane and produces a trivariate function known
as a planar ternary ring (PTR) over whatever set is used as the labelling set during
the coordinatisation process. The Lenz–Barlotti classification is a coarse classification
system for affine and projective planes centred on the transitive behaviour exhibited by
the full automorphism group of the plane. There is a well-known interaction between
the properties exhibited by the PTR and the Lenz–Barlotti type of the plane, and this
interaction has played a pivotal role in the theory of projective planes over the past 60
years. Our objective in this paper is to introduce the theory of polynomials over finite
fields as an additional tool to be used in this interaction, at least in the case of planes of
prime power order. Given the breadth of background knowledge involved, the paper
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is, at times, somewhat expository in nature, and the theory developed herein should be
viewed mainly as a tool. It offers multiple avenues of future research.

We begin, in Section 2, by discussing the coordinatisation method, and describe
how this leads to the concept of the planar ternary ring. We then restrict ourselves to
projective planes of prime power order. (Of course, anyone who believes the prime-
power conjecture is true would view this as no restriction at all; the present author is
not willing to express any view on that conjecture’s validity, at least not in print!) This
allows us to use finite fields in the coordinatisation process, and so the resulting PTR
can be treated as a reduced trivariate polynomial over a finite field, what we call a PTR
polynomial. In Section 4 we derive restrictions on the form of the PTR polynomial
using the functional properties that any PTR must exhibit. As will be seen, several
forms of reduced permutation polynomials and κ-polynomials (both of which we shall
define below) naturally arise from this relation. The culmination of the results of this
section, and the main statement in this general situation, is given in Theorem 4.8.

In Section 5 we outline the Lenz–Barlotti classification system for projective
planes. It is generally well known that knowledge of the Lenz–Barlotti type of a
projective plane P can lead to additional algebraic properties of the PTR obtained from
coordinatising it, but this only occurs when some effort is made to coordinatise the
plane in an optimal way. We make explicit what we mean by optimal coordinatisation,
and utilise this concept to obtain further restrictions on the form of the PTR polynomial
under various assumptions concerning the Lenz–Barlotti type. (While the idea of
optimal coordinatisation has been known in a folklore sense for many years, the
author is not aware of anywhere specific where this is recorded.) We show how, in
suitable circumstances, one can coordinatise suitable planes so that either the additive
or multiplicative loop resulting from the coordinatisation is exactly the same as its
corresponding field operation, and consider how this can affect the form of the PTR
polynomial. Theorems 5.2 and 5.4 are the main results of this section. We end
with some concluding remarks concerning potential future directions; in particular,
we outline the two main ideas the author had in mind when originally turning to the
research of this paper.

2. Coordinatisation

The method of coordinatisation has been used now for over 70 years. There are
at least three standard coordinatisation methods. Although they are all essentially
equivalent, they produce slightly different properties in the resulting PTRs. We shall
use the process outlined by Hughes and Piper in [8, Ch. 5]: they give the two other
methods at the end of that same chapter. An extended version of this paper, containing
a full description of the method along with diagrams, can be found on arXiv.

Let P be a projective plane of order n and let R be any set of cardinality n; this set
and the symbol ∞ are the only symbols required to produce a coordinate system for
the plane. We designate two special elements of R by 0 and 1 for reasons which will
become clear. The coordinatisation process begins by choosing a quadrangle O x y I
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of the plane. These four points, which play the critical role in the method, are labelled
O = (0, 0), x = (0), y = (∞) and I = (1, 1).

The coordinatisation method now proceeds to introduce coordinates to all points
and lines of the plane. At its conclusion, the plane P consists of:

• the points (x, y) ∈ R × R;
• the points (a) with a ∈ R ∪ {∞};
• the lines [m, k], m, k ∈ R, which are specifically the lines joining (m) with (0, k);
• the lines [a] with a ∈ R, which consist of the points (a, y) with y ∈ R and (∞);
• the line [∞], which consists of the points (a), a ∈ R, and (∞).

From this coordinatisation, one now defines a trivariate function T on R, called a
planar ternary ring, by setting T (m, x, y) = k if and only if (x, y) ∈ [m, k]. This PTR
will exhibit certain properties and is actually equivalent to the projective plane as any
three variable function exhibiting those properties can be used to define a projective
plane. More precisely, we have the following important result, essentially due to Hall
[6]; see also Hughes and Piper, [8, Theorem 5.1].

Lemma 2.1 (Hall [6, Theorem 5.4]). Let P be a projective plane of n and R be any set
of cardinality n. Let T : R3 → R be a PTR obtained from coordinatising P . Then T
must satisfy the following properties:

(a) T (a, 0, z) = T (0, b, z) = z for all a, b, z ∈ R;
(b) T (x, 1, 0) = x and T (1, y, 0) = y for all x, y ∈ R;
(c) if a, b, c, d ∈ R with a , c, then there exists a unique x satisfying T (x, a, b) =

T (x, c, d);
(d) if a, b, c ∈ R, then there is a unique z satisfying T (a, b, z) = c;
(e) if a,b, c,d ∈ R with a , c, then there is a unique pair (y, z) satisfying T (a, y, z) = b

and T (c, y, z) = d.

Conversely, any trivariate function T defined on R which satisfies properties (c)–(e)
can be used to define an affine plane AT of order q as follows:

• the points of A are (x, y), with x, y ∈ R;
• the lines of A are the symbols [m, a], with m, a ∈ R, defined by

[m, a] = {(x, y) ∈ R × R : a = T (m, x, y)},

and the symbols [c], with c ∈ R, defined by

[c] = {(c, y) : y ∈ R}.

It is customary to define an addition ⊕ and multiplication � by

x ⊕ y = T (1, x, y),
x � y = T (x, y, 0),

for all x, y ∈ R. It is well known that the properties of the plane guarantee that both
⊕ and � are loops with identities 0 and 1 over R and R?, respectively. A PTR is
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called linear over R if T (x, y, z) = (x � y) ⊕ z for all x, y, z ∈ R; that is, if T can be
reconstructed from only knowing the operations ⊕ and �. We mention an important
example. Consider the polynomial T (X, Y, Z) = XY + Z. It is easily checked that the
polynomial T is a linear PTR over any field K ; it defines the Desarguesian plane in
every case. It cannot be overemphasised that the same plane can yield many different
PTRs as choosing different quadrangles as the reference points O, x, y and I may yield
very different PTRs. This is discussed further in Section 5.

3. Coordinatising using finite fields

Throughout the remainder of the paper we fix q = pe for some prime p and natural
number e. We use Fq to denote the finite field of q elements and F?q its nonzero
elements. Every function on Fq can be represented uniquely by a polynomial in Fq[X]
of degree less than q; this follows at once from Lagrange interpolation, and indeed this
observation is easily extended to the multivariate case. Any polynomial whose degree
in each variable is less than q is called reduced.

One can choose any set R of cardinality n for the labelling of points in the
coordinatisation process, but since the coordinatisation method will produce an
algebraic structure on the set chosen, there are obviously good and bad choices. The
resulting function will often exhibit additional algebraic structure, inherited from the
plane, so algebraic sets are obvious candidates. For example, regardless of the plane,
the points O and I determine two special elements, zero and one respectively, of the
coordinatisation which have properties much the same as 0 and 1 in any ring with
unity. Since the labelling during the coordinatisation process is arbitrary, by choosing
a ring of order n with unity, we may label the zero and one of the coordinatisation as
the 0 and 1 of the ring.

We now move to make the previous paragraph much more formal in the case where
the plane has prime power order q. Let P be a projective plane of order q. In the
coordinatisation process, if we use the finite field Fq as the labelling set, then the PTR
obtained through coordinatisation will be a function in three variables defined over Fq,
and consequently can be viewed as (reduced) polynomial T ∈ Fq[X,Y,Z]. Furthermore,
since the correspondence of elements in the coordinatisation and the elements of Fq is
arbitrary, we may set the zero and one of the coordinatisation of P to be the elements
0 and 1 of Fq.

Definition 3.1. A PTR polynomial T (X,Y,Z) over Fq is any three-variabled polynomial
in Fq[X, Y, Z] resulting from the coordinatisation of a plane P of order q through
labelling the points of P using elements of Fq and where we label O = (0, 0) and
I = (1, 1).

Note that for a PTR polynomial, we are guaranteed that the zero and one of the PTR
and the 0 and 1 of Fq coincide. An equivalent definition is that T ∈ Fq[X,Y,Z] is a PTR
polynomial over Fq if it satisfies properties (a)–(e) of Lemma 2.1 over Fq.
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4. Restrictions on the form of PTR polynomials
We now look to exploit the conditions on T described in Lemma 2.1 to obtain

restrictions on the possible forms of T . Throughout we assume T is a reduced
polynomial.

Theorem 4.1. Suppose T ∈ Fq[X,Y,Z] satisfies property (a). Then

T (X,Y,Z) = Z + XYZ M1(X,Y,Z) + M2(X,Y), (4.1)

where

M1(X,Y,Z) =

q−2∑
i=0

q−2∑
j=0

q−2∑
k=0

bi jkXiY jZk,

M2(X,Y) =

q−1∑
i=1

q−1∑
j=1

ci jXiY j.

In particular,
x � y = T (x, y, 0) = M2(x, y) (4.2)

for all x, y ∈ Fq.

Proof. As a polynomial, we may represent T as

T (X,Y,Z) =

q−1∑
i, j,k=0

ai jkXiY jZk.

By property (a), T (0, 0, z) = z for all z. Viewing this as a polynomial identity in Z, we
immediately find

a00k =

1 if k = 1,
0 if k , 1.

Noting that T (x, 0,Z) = Z for all x, we again view this as a polynomial identity in X,Z,
and obtain

Z = T (X, 0,Z) =

q−1∑
i=0

Xi
(q−1∑

k=0

ai0kZk
)
.

For i , 0, this now forces
q−1∑
k=0

ai0kZk = 0.

As a polynomial identity, we get ai0k = 0 for all i , 0. A similar argument shows
a0 jk = 0 for all j , 0. Hence,

T (X,Y,Z) = Z +

q−1∑
i, j=1

q−1∑
k=0

ai jkXiY jZk = Z + XY T1(X,Y,Z),

for some reduced T1 ∈ Fq[X, Y, Z]. It is clear we can now rewrite T1 as claimed
in (4.1). �
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So we see that property (a) alone isolates the behaviour of �, though of course it
does not define the behaviour of �.

A polynomial f ∈ Fq[X1, . . . , Xn] is called a permutation polynomial (PP) over Fq

if the evaluation map x 7→ f (x) is equidistributive on Fq; that is, for each y ∈ Fq, the
equation f (x) = y has qn−1 solutions x ∈ Fn

q. (In the case where n = 1, the evaluation
map is a bijection.) It follows from Hermite’s criterion that if a reduced polynomial
f ∈ Fq[X1, . . . , Xn] is a PP over Fq, then the degree of f in each Xi is at most q − 2.
We now show how PPs are intimately related to PTR polynomials. Though this result
could just as easily be established by considering the plane directly, we choose instead
to use as few of the properties of Lemma 2.1 as is necessary in each case.

Theorem 4.2. Let T ∈ Fq[X,Y,Z]. The following statements hold.

(i) Suppose T satisfies properties (a) and (c). Then T (X, y, z) is a PP in X for every
choice of (y, z) ∈ F?q × Fq.

(ii) Suppose T satisfies properties (a) and (e). Then T (x, Y, z) is a PP in Y for every
choice of (x, z) ∈ F?q × Fq.

(iii) Suppose T satisfies property (d). Then T (x, y,Z) is a PP in Z for every choice of
(x, y) ∈ Fq × Fq.

Proof. For (i), an appeal to property (c) with c = 0 , a, b, d arbitrary shows that the
equation T (x, a, b) = T (x, 0, d) has a unique solution x. By property (a), T (x, 0, d) = d,
and so T (x, a, b) = d has a unique solution x for each d ∈ Fq.

For (ii), fix a = 0. By property (e), for any b, c, d with c , 0 there exists a unique
(y, z) such that T (0, y, z) = b and T (c, y, z) = d. By property (a), T (0, y, z) = z, and so
z is fixed: z = b. Thus, as we range over all d ∈ Fp, we have a unique preimage y,
proving the claim.

For (iii), fix x, y. Property (d) tells us that for any c, we can always solve uniquely
for z in T (x, y, z) = c. Thus T (x, y, z1) = T (x, y, z2) implies z1 = z2, so that T (x, y, Z) is
a PP in Z for every x, y. �

Corollary 4.3. Suppose T ∈ Fq[X, Y, Z] satisfies properties (a), (c), (d) and (e). Then
T has degree at most q − 2 in each of X, Y, and Z.

Proof. By assumption, T has the form given in (4.1). Since T (x, y, Z) is a PP for all
x, y ∈ Fq, Hermite’s criterion tells us

q−1∑
i, j=1

ai j (q−1)xiy j = 0

for all x, y. This holds as a polynomial identity in X, Y , and so bi j (q−1) = 0 for all i, j.
Similar arguments can be used to obtain the bounds on the degrees of X and Y . �

A concept related to PPs is that of a κ-polynomial. A polynomial f ∈ Fq[X1, . . . , Xn]
is a κ-polynomial over Fq if

ka = #{x ∈ Fn
q : f(x) = a}
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is independent of a for a ∈ F?q . In direct contrast to the study of permutation
polynomials, there are almost no results in the literature directly discussing κ-
polynomials. This seems altogether surprising since the specified regularity on
preimages of all nonzero elements of the field suggests such polynomials must almost
certainly appear in many guises. As an example of how they may arise, recall that
a skew Hadamard difference set (SHDS) D ⊂ F?q is a set of order (q − 1)/2 where
every element of F?q can be written as a difference of elements of D in precisely
(q − 3)/4 ways. Let D be any SHDS, and define a two-to-one map φ : F?q → D in
an arbitrary way. Extending φ to all of Fq by setting φ(0) = 0, we can associate with
φ a reduced polynomial f ∈ Fq[X]. It is straightforward to confirm the polynomial
M(X, Y) = f (X) − f (Y) is a κ-polynomial over Fq with ka = q − 1 for all a ∈ F?q .
(One could generalise this construction in a suitable way to obtain κ-polynomials
in more than two variables using difference families.) The thesis of Matthews [13]
contains some general results on κ-polynomials. Some of these results are given
in the Handbook of Finite Fields [14, Section 9.4]. Theorem 9.4.8 of [14], which
is straightforward to prove, shows how κ-polynomials play a role in the study of
projective planes. We now prove a slightly extended version of that result.

Theorem 4.4. Suppose T ∈ Fq[X, Y, Z] satisfies property (a) and either property (c) or
(e). Then T (X,Y, z) − z is a κ-polynomial for any z ∈ Fq.

Proof. Fix z and consider the polynomial fz ∈ Fq[X,Y] given by fz(X,Y) = T (X,Y, z). If
d = z, then by property (a), T (0, y, z) = T (x, 0, z) = d for all x, y ∈ Fq. Thus fz(x, y) = d
has (at least) 2q − 1 solutions. If d , z, then by Theorem 4.2(i) or (ii), there are
precisely q − 1 solutions (x, y) ∈ F?q × F

?
q to the equation fz(x, y) = d. Since this

accounts for all q2 images, we see that

fz(x, y) = d

has q − 1 solutions when d , z,
has 2q − 1 solutions when d = z.

Consequently, the polynomial fz(X,Y) − z = T (X,Y, z) − z is a κ-polynomial over Fq. �

Corollary 4.5. Suppose T ∈ Fq[X, Y, Z] satisfies either property (a) and one of
properties (c) or (e); or property (d). Then T (X,Y,Z) is a PP over Fq.

Proof. Suppose first that T satisfies property (a) and one of properties (c) or (e). Fixing
z, d ∈ Fq, we see from the proof of Theorem 4.4 that

T (x, y, z) = d

has q − 1 solutions when z , d,
has 2q − 1 solutions when z = d.

Consequently, as we range over all z ∈ Fq, a given d has (2q − 1) + (q − 1)(q − 1) = q2

preimages (x, y, z) ∈ F3
q.

Now suppose property (d) is satisfied. Then by Theorem 4.2(iii), the polynomial
T (x, y,Z) is a PP for all choices of (x, y) ∈ Fq × Fq. It follows at once that T (x, y, z) = d
has precisely q2 solutions (x, y, z). �
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At this point, we have shown that properties (a), (c) and (d) can lead to PPs. Property
(e) can also be used to derive a PP result, but not over Fq. Suppose T ∈ Fq[X, Y, Z].
Let {1, β} be a basis for Fq2 over Fq. For any a, b ∈ Fq, we define the function
S a,b : Fq2 → Fq2 by

S a,b(x) = S a,b(y + βz) = T (a, y, z) + βT (b, y, z).

When we talk of the polynomial S a,b we will mean the polynomial of least degree in
Fq2 [X] which when induced produces the function just defined. The following lemma
is now immediate.

Lemma 4.6. Suppose T ∈ Fq[X, Y, Z] satisfies property (e). Then S a,b is a permutation
polynomial over Fq2 whenever a , b.

Finally, we consider how property (b) impacts the form of the PTR polynomial. We
have already seen how property (a) alone isolates the behaviour of �; see (4.2) above.
One interesting outcome of combining properties (a) and (b) is that the behaviour of ⊕
is also isolated.

Lemma 4.7. Suppose T ∈ Fq[X, Y, Z] satisfies properties (a) and (b). Then T has the
shape (4.1) and

q−1∑
i=1

ci j =

q−1∑
i=1

cji =

1 if j = 1,
0 if j > 1.

Moreover,
y ⊕ z = T (1, y, z) = y + z + yz M1(1, y, z) (4.3)

for all y, z ∈ Fq.

Proof. From property (b), we know T (X, 1, 0) = X. Combining this polynomial
identity with (4.1) forces the first set of conditions on the coefficients, while using
T (1, Y, 0) = Y forces the second set. In addition, applying T (1, y, 0) = y to (4.1), we
also find T (1, y, z) = y + z + yz M1(1, y, z), as claimed. �

Now, if we combine all of the above, we obtain the following result about PTR
polynomials, the proof of which is immediate from the above statements.

Theorem 4.8. Suppose T (X,Y,Z) is a PTR polynomial over Fq. Then

T (X,Y,Z) = Z + XYZ M1(X,Y,Z) + M2(X,Y), (4.4)

with

M1(X,Y,Z) =

q−3∑
i=0

q−3∑
j=0

q−3∑
k=0

bi jkXiY jZk,

M2(X,Y) =

q−2∑
i=1

q−2∑
j=1

ci jXiY j.

In addition, T is linear if and only if for all x, y, z ∈ Fq, z , 0, we have

xy M1(x, y, z) = M2(x, y)M1(1,M2(x, y), z). (4.5)
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We get an immediate corollary which extends Lemma 4.7 for linear PTR
polynomials.

Corollary 4.9. For a linear PTR polynomial T ∈ Fq[X,Y,Z] of the form (4.4), we have

q−3∑
i=0

bi jk =

q−3∑
i=0

b jik

for all 0 ≤ j ≤ q − 3 and 1 ≤ k ≤ q − 3.

The result follows by substituting y = 1 into (4.5), whereby one obtains
xM1(x, 1, z) = xM1(1, x, z) for all x, z ∈ Fq. This can be viewed as a polynomial
equation in X,Z and the statement of the corollary follows.

5. The Lenz–Barlotti classification

Let P be a projective plane and Γ denote the full collineation group of P . If a
collineation fixes a line L pointwise and a point p linewise, then it is called a central
collineation, andL and p are called the axis and centre of the collineation, respectively.
It is well known that every central collineation in Γ has a unique centre p and unique
axis L. Let Γ(p,L) be the subgroup of Γ consisting of all central collineations of P
with centre p and axis L. The plane P is said to be (p,L)-transitive if for every two
distinct points q, r that are (a) collinear with p but not equal to p, and (b) not on L,
there exists a necessarily unique collineation γ ∈ Γ(p,L) which maps q to r. Now let
M be a second line of P , not necessarily distinct from L. If P is (p,L)-transitive for
all p ∈ M, then P is said to be (M,L)-transitive; the concept of (p, q)-transitivity is
defined dually. If P is (L,L)-transitive, then L is called a translation line and P is
called a translation plane with respect to the line L. The definitions of translation
point and dual translation plane are defined dually also.

The Lenz–Barlotti classification for projective planes is based on the possible sets

T = {(p,L) : P is (p,L)-transitive}

of point–line transitivities that the full collineation group of a plane can exhibit.
Developed by Lenz [10] and refined by Barlotti [1], the classification has a hierarchy of
types, starting with few or no point–line transitivities in types I and II, through to type
VII.2, which represents the Desarguesian plane and where T consists of every possible
point–line flag. There are no type VI planes at all: the type arises naturally in the study
of potential permutation groups, but no plane can exist of this type. For any Lenz–
Barlotti type where a finite example is known, one can also find an infinite example.
The converse is not true; infinite examples of types III.1, III.2 and VII.1 are known,
while it can be shown that finite examples of each of these types are impossible: in the
case of type VII.1, this is due to the Artin–Zorn theorem which states that any finite
alternative division ring is a field, (see [8], Theorem 6.20); type III.1 was ultimately
resolved by Hering and Kantor [7] and type III.2 was completed by Lüneberg [12] and
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Yaqub [15]. It should be noted that several finite cases remain open: the question of
existence of finite projective planes of Lenz–Barlotti types I.2, I.3, I.4 and II.2 remains
unresolved.

Our motivation for discussing the Lenz–Barlotti types for projective planes is
made clear when we return to considering the coordinatisation of planes. In parallel
with the Lenz–Barlotti classification, there is a corresponding structural hierarchy for
properties of PTRs as one ascends through the Lenz–Barlotti types, though one now
assumes that the coordinatisation is done in such a fashion that the resulting PTR
exhibits the most structure. In Lenz–Barlotti type I.1, the PTR has no additional
structure beyond Lemma 2.1. All other planes can be coordinatised to produce a
linear PTR. A Lenz–Barlotti type II plane can be coordinatised to produce a PTR
T which is linear and where ⊕ is associative (so ⊕ describes a group operation on the
coordinatising set R). Any plane which is at least Lenz–Barlotti type IV is a translation
plane. Lenz–Barlotti type IV planes can be coordinatised to produce quasifields, Lenz–
Barlotti type V planes can produce semifields, and the Desarguesian case, of course,
can produce a field. More specifically, we have the following lemma.

Lemma 5.1. The following statements hold.

(i) A plane P which is only ((0), [0])-transitive is necessarily Lenz–Barlotti type I.2.
The plane P is ((0), [0])-transitive if and only if it can be coordinatised by a linear
PTR with associative multiplication �. In such cases, Γ((0), [0]) is isomorphic to
the group described by �. Moreover. during coordinatisation, x is chosen to be
the point (0).

(ii) A plane P which is only ((0), [0])-transitive and ((∞), [0, 0])-transitive is
necessarily Lenz–Barlotti type I.3. The plane P is ((0), [0])-transitive and
((∞), [0, 0])-transitive if and only if it can be coordinatised by a linear PTR with
associative multiplication � and displaying a left distributive law.

(iii) A plane P which is ((∞), [∞])-transitive is necessarily Lenz–Barlotti type at least
II. The plane P is ((∞), [∞])-transitive if and only if it can be coordinatised by a
linear PTR with associative addition ⊕. In such cases, Γ((∞), [∞]) is isomorphic
to the group described by ⊕. Moreover, during coordinatisation, y is chosen to
be the point (∞).

(iv) A plane P which is a translation plane or dual translation plane is necessarily
Lenz–Barlotti type at least IV. The plane P is a translation plane (respectively,
dual translation plane) if and only if it can be coordinatised by a linear PTR
with associative addition ⊕ and a right distributive law (x ⊕ y) � z = x � z + y � z
(respectively, a left distributive law x � (y ⊕ z) = x � y + x � z). In such cases,
the order of P must be a prime power q and the group described by ⊕ is
elementary abelian. Moreover, during coordinatisation, x y is the translation
line (respectively, y is the translation point).

(v) A plane P which is both a translation plane and a dual translation plane (so
[∞] is a translation line and (∞) is a translation point) is necessarily Lenz–
Barlotti type at least V. The plane P is Lenz–Barlotti type at least V if and only
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if it can be coordinatised by a linear PTR with associative addition ⊕ and both
a left and right distributive law. In such cases, the order of P must be a prime
power q and the group described by ⊕ is elementary abelian. Moreover, during
coordinatisation, the x y is the translation line and y is the translation point.

These results come from [3, Ch. 3], and [8, Chs. 5 and 6], and we refer the reader
to these references for further information on the Lenz–Barlotti classification and the
corresponding properties of PTRs.

The use of the word ‘can’ in the last result underlines an important point regarding
how to optimise properties in the coordinatisation process. Lemma 5.1 makes clear
the following strategy to be used during the coordinatisation process:

• if T contains an incident point–line flag, one such flag must always be ((∞), [∞]);
• ifT contains a nonincident point–line flag, one such flag must always be ((0), [0]).

Unless the plane is Lenz–Barlotti type I.1, at least one, and possibly both, of these
strategems can be met during the initiation phase of the coordinatising process, when
one chooses the triangle O x y. In the following, we assume that the planes have
been coordinatised optimally with respect to the properties exhibited by the PTR,
and in accordance with the above strategy. As part of such an ‘optimising’ strategy,
we prioritise associativity of the operations ⊕ and � of the PTR over distributivity
whenever there is such a choice available.

This optimal coordinatisation can be exploited even further during the
coordinatisation process by understanding the actions of the additive and multiplicative
loops on the lines O x and/or O y. (These actions can be made explicit: the details are
omitted here, but the extended version of this paper on arXiv does contain them.) For
example, if P is ((∞), [∞])-transitive and the group Γ((∞), [∞]) is known, one can
use that group (or a representation of that group in the additive group of Fq; see [2]
for more details) as the labelling set and use the action of ⊕ on O y to ensure that ⊕ is
actually the operation of the group. Likewise, if the plane is ((0), [0])-transitive and the
group Γ((0), [0]) is known, one can use that group, along with an additional element 0,
as the labelling set to ensure that � is a representation of the operation of the group.

Linking these optimising strategies to PTR polynomials, the most obvious cases
we might be interested in are when either Γ((∞), [∞]) is elementary abelian, or
when Γ((0), [0]) is cyclic. In the former case, through optimal coordinatisation, we
can assume ⊕ is field addition, while in the latter case, we can force � to be field
multiplication through coordinatising optimally. (It should be noted that one cannot
simultaneously assume optimal coordinatisation for both ⊕ and � as the labelling
of the line O y is determined by exactly one of the representations of ⊕ and � in
the above optimising strategies.) In cases where neither of these conditions arise, a
representation theory for representing groups by polynomials is needed; such a theory
was recently developed by Castillo and the author (see [2]).

For the remainder of this paper, we consider how knowing that either ⊕ or � is a
field operation affects the PTR polynomial. We begin with the case where ⊕ is assumed
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to be field addition; this situation is actually quite common, especially in the study of
semifields, dating back to the first proper examples given by Dickson in [4]. In fact, if
the plane is Lenz–Barlotti type IV or higher, then you are guaranteed that any optimal
coordinatisation will force ⊕ to be field addition.

Theorem 5.2. Let P be a projective plane of order q = pe for some prime p which
is ((∞), [∞])-transitive and where Γ((∞), [∞]) is elementary abelian. Suppose T ∈
Fq[X, Y, Z] is a PTR polynomial obtained from coordinatising P optimally, so that the
resulting additive loop is field addition.

(i) If P is strictly Lenz–Barlotti type II.1, then

T (X,Y,Z) = M2(X,Y) + Z, (5.1)

where M2(X,Y) is as in (4.4).
(ii) If P is strictly Lenz–Barlotti type II.2, then T ∈ Fq[X, Y, Z] is of the shape (5.1),

where
M2(x,M2(y, z)) = M2(M2(x, y), z)

for all x, y, z ∈ Fq.
(iii) If P is a translation plane of Lenz–Barlotti type at least IV, then T ∈ Fq[X, Y, Z]

is of the shape (5.1), where

M2(X,Y) =

e−1∑
i=0

q−1∑
j=1

ci jXpi
Y j. (5.2)

(iv) If P is a dual translation plane of Lenz–Barlotti type at least IV, then T ∈
Fq[X,Y,Z] is of the shape (5.1), where

M2(X,Y) =

q−1∑
i=1

e−1∑
e=0

ci jXiY p j
. (5.3)

(v) If P is Lenz–Barlotti type at least V, then T ∈ Fq[X, Y, Z] is of the shape (5.1),
where

M2(X,Y) =

e−1∑
i=0

e−1∑
j=0

ci jXpi
Y p j

. (5.4)

Proof. By our hypotheses, the plane P is necessarily Lenz–Barlotti type at least II.1,
and y ⊕ z = y + z, so that in (4.3) we see M1 = 0. Claim (i) now follows at once from
Theorem 4.8. The extension to Lenz–Barlotti type II.2 is immediate from the fact
that, in an optimal coordinatisation, the plane will be both ((∞), [∞])-transitive and
((0), [0])-transitive, and x � y = M2(x, y) will act isomorphically to Γ((0), [0]). Thus the
condition given on M2 is nothing more than the associative property of the operation �.

For (iii), Lemma 5.1 tells us we must have equation (5.1), as well as a right
distributive law. Thus M2(X, Y) must satisfy M2(a + b, y) = M2(a, y) + M2(b, y) for all
a, b, y ∈ Fq. It follows at once that M2(X, Y) is a linearised polynomial in X. Thus M2
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has the form claimed. A similar argument deals with the case (iv). The claims of (v)
now follow at once as a Lenz–Barlotti type V plane is both a translation plane and a
dual translation plane. �

It is worth noting that whenever we consider a projective plane of Lenz–Barlotti
type at least IV, we are guaranteed that we can obtain a PTR polynomial of one of the
shapes (5.2), (5.3), or (5.4), via Lemma 5.1.

A polynomial f ∈ Fq[X] is called a complete mapping on Fq if both f (X) and
f (X) + X are PPs over Fq. Complete mappings and their extensions have been studied
in several situations. For example, they are connected to the construction of Latin
squares. Our next result shows how complete mappings arise completely naturally
and in numbers when we look at PTR polynomials.

Lemma 5.3. Let P be a projective plane of order q = pe for some prime p which
is ((∞), [∞])-transitive and where Γ((∞), [∞]) is elementary abelian. Suppose T ∈
Fq[X, Y, Z] is a PTR polynomial obtained from coordinatising P optimally, so that the
resulting additive loop is field addition. Then, for any a ∈ Fq \ {0, 1}, the polynomial
fa(X) = M2(X, a) − X, is a complete mapping on Fq.

Proof. By Theorem 5.2, we know that T (X, Y, Z) = M2(X, Y) + Z. We now appeal
to properties (b) and (c). By property (c), for a, b, c, d ∈ Fq with a , c, there exists
a unique x satisfying M(x, a) + b = M(x, c) + d. Setting b = 0, c = 1 and appealing
to property (b), we find that for all a , 1, M(x, a) − M(x, 1) = M(x, a) − x = d has a
unique solution in x for any d. Thus fa(X) = M(X, a) − X is a permutation polynomial
over Fq for all a , 1. Additionally, fa(X) + X = M(X, a) = T (X, a, 0) is a permutation
polynomial for all a , 0 by Theorem 4.2(i). �

It remains to consider what can be said about PTR polynomials when we know
� coincides with field multiplication. Our initial assumption, then, must be that
the plane is at least ((0), [0])-transitive. We note that in this case, by starting with
a finite projective plane with a nonincident flag transitivity, the only Lenz–Barlotti
types possible are I.2, I.3, I.4, II.2, the planar nearfields of type IV, or VII.2 We
may ignore the planar nearfields case, as the multiplicative groups involved in that
case are necessarily nonabelian, so can never be cyclic. Additionally, it was shown
by Ghinelli and Jungnickel [5] that I.3 and I.4 planes correspond to the nonabelian
and abelian case, respectively, of the same existence problem for neo-difference
sets. Consequently, Lenz–Barlotti type I.3 can be omitted from our considerations.
Since II.2 strictly contains only I.2, in the hierarchy of Lenz–Barlotti types under
consideration, we have two distinct strings: I.2 ⊆ I.4 ⊆ VII.2, and I.2 ⊆ II.2 ⊆ VII.2.
We have the following statement.

Theorem 5.4. Let P be a projective plane of order q = pe for some prime p which
is ((0), [0])-transitive and where Γ((0), [0]) is cyclic. Suppose T ∈ Fq[X, Y, Z] is
a PTR polynomial obtained from coordinatising P optimally, so that the resulting
multiplicative loop is field multiplication.
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(i) If P is strictly Lenz–Barlotti I.2, then

T (X,Y,Z) = Z + XY + XYZ M1(X,Y,Z), (5.5)

where

M1(X,Y,Z) =

q−3∑
i, j=0

bi j(XY)iZ j.

(ii) If P is strictly Lenz–Barlotti I.4, then T is of the shape (5.5), where

M1(X,Y,Z) =

q−3∑
i=0

bi(XY)iZq−2−i.

(iii) If P is strictly Lenz–Barlotti II.2, then T is of the shape (5.5), where

yz + xy M1(1, x, y)(1 + z M1(1, x + y + xy M1(1, x, y), z))
= xy + yz M1(1, y, z)(1 + x M1(1, x, y + z + yz M1(1, y, z)))

for all x, y, z ∈ Fq.

Proof. By hypothesis, x � y = xy, and Lemma 5.1 tells us the PTR is linear. Thus
T (x, y, z) = (xy) ⊕ z, and now an appeal to Theorem 4.8 produces claim (i), where we
define bi j by bi j = bii j.

For (ii), we use the fact that the PTR polynomial T obtained from optimal
coordinatisation must have a left distributive law. Since x(y ⊕ z) = xy ⊕ xz for all
x, y, z ∈ Fq, we have the identity

xyz M1(1, y, z) = x2yz M1(1, xy, xz)

for all x, y, z. Now this equation has no higher powers of y or z beyond the (q − 2)th,
and so we can view this as a polynomial identity in Y,Z. Equating coefficients, we find
for all x ∈ Fq and all 0 ≤ i, j ≤ q − 3,

bi jx = bi jx2+i+ j.

Thus bi j = 0 unless 2 + i + j = q, which proves we may index the (potentially) nonzero
coefficients by a single counter, and this yields (ii).

For (iii), the proof is essentially the same as for Lenz–Barlotti type II.2 in
Theorem 5.2, in that we know ⊕ will be associative in an optimal coordinatisation
of the plane P and the condition on M1 given above is equivalent. �

6. Concluding remarks

As stated in the introduction, the objective of this paper is to lay the groundwork for
enabling the theory of polynomials over finite fields to be incorporated into the study
of projective planes of prime power order. The results of Sections 4 and 5 achieve
this, but in the author’s opinion they should be viewed as the starting point, a tool, for
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future research. We therefore wish to conclude this paper by mentioning the main two
motivating problems we had in mind when originally developing this material.

Much is known about the allowable groups for central collineation groups involved
in some of the Lenz–Barlotti classes. Castillo and the author [2] provide a
representation theory for groups using polynomials over finite fields. That body of
theory could be used in conjunction with the results of the present paper to pursue
both computational and theoretical existence/nonexistence results with regard to some
of these classes. The lack of knowledge regarding the open Lenz–Barlotti classes, even
in small orders, is truly staggering. Also staggering is the fact that there remains no
classification of projective planes of order n for any n ≥ 11, order 10 having famously
been classified using a computer by Lam, Thiel and Swiercz in the late 1980s (see [9]);
this despite the immense increase in computer power in the last 30-odd years.

Even a casual perusal of Mathematical Reviews will show PPs have been a
significant research topic in their own right for many years (effectively since historical
times), with a wide array of applications. Problem P2 of [11], which states ‘Find
new classes of PPs of Fq’, is as relevant today as it was in 1988. At the other end
of the spectrum is our knowledge of κ-polynomials. The results concerning PPs
and κ-polynomials from Section 4 offer a method for constructing classes of these
polynomials. Any class of projective planes can be used to construct them. Under
optimal coordinatisation, Lenz–Barlotti type V.1 and VII.2 planes will only produce
additive polynomials, but any other known example of a projective plane will produce
nonadditive examples, and even type V.1 planes will produce nonadditive examples if
they are coordinatised suboptimally. The options here are basically endless, though
there are undoubtedly many technical issues to be overcome.
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